

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-17/0979 vom 6. April 2018

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Deutsches Institut für Bautechnik

fischer Injektionssystem FIS EM Plus

Verbunddübel zur Verankerung im Beton

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

37 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330499-00-0601

Z22320.18

Europäische Technische Bewertung ETA-17/0979

Seite 2 von 37 | 6. April 2018

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z22320.18 8.06.01-380/17

Europäische Technische Bewertung ETA-17/0979

Seite 3 von 37 | 6. April 2018

Besonderer Teil

1 Technische Beschreibung des Produkts

Das fischer Injektionssystem FIS EM Plus ist ein Verbunddübel, der aus einer Mörtelkartusche FIS EM Plus mit und einem Stahlteil nach Anhang A5 besteht.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A dargestellt.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäisch Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristische Werte unter statischer und quasistatischer Einwirkung, Verschiebungen	Siehe Anhang C1 bis C10
Charakteristische Werte für die seismische Leistungskategorien C1 und C2, Verschiebungen	Siehe Anhang C11 bis C14

3.2 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Keine Leistung bestimmt

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330499-00-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

Z22320.18 8.06.01-380/17

Europäische Technische Bewertung ETA-17/0979

Seite 4 von 37 | 6. April 2018

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

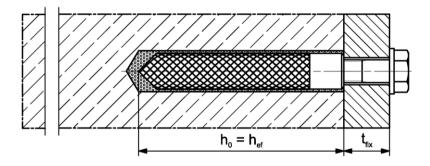
Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

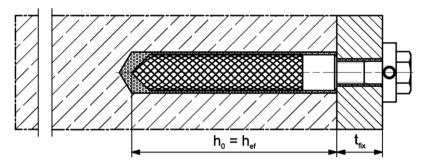
Ausgestellt in Berlin am 6. April 2018 vom Deutschen Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Abteilungsleiter

Beglaubigt

Z22320.18 8.06.01-380/17


Einbauzustände Teil 1 fischer Ankerstange Vorsteckmontage $h_0 = h_{ef}$ Durchsteckmontage (Ringspalt mit Mörtel verfüllt) $h_0 = h_{ef}$ Vor- oder Durchsteckmontage mit nachträglich verpresster Verfüllscheibe (Ringspalt mit Mörtel verfüllt) $h_0 = h_{ef}$ Abbildungen nicht maßstäblich h_0 = Bohrlochtiefe h_{ef} = Effektive Verankerungstiefe t_{fix} = Dicke des Anbauteils fischer Injektionssystem FIS EM Plus Anhang A 1 Produktbeschreibung Einbauzustände Teil 1


Einbauzustände Teil 2

fischer Innengewindeanker RG MI

Vorsteckmontage

Vorsteckmontage mit nachträglich verpresster Verfüllscheibe (Ringspalt mit Mörtel verfüllt)

Abbildungen nicht maßstäblich

 h_0 = Bohrlochtiefe

h_{ef} = Effektive Verankerungstiefe

 t_{fix} = Dicke des Anbauteils

fischer Injektionssystem FIS EM Plus

Produktbeschreibung

Einbauzustände Teil 2

Anhang A 2

Einbauzustände Teil 3 **Betonstahl** $h_0 = h_{ef}$ fischer Bewehrungsanker FRA Vorsteckmontage h_0 Durchsteckmontage (Ringspalt mit Mörtel verfüllt) h_0 Abbildungen nicht maßstäblich h_0 = Bohrlochtiefe h_{ef} = Effektive Verankerungstiefe t_{fix} = Dicke des Anbauteils fischer Injektionssystem FIS EM Plus Anhang A 3 Produktbeschreibung Einbauzustände Teil 3

Übersicht Systemkomponenten Teil 1	
Injektionskartusche (Shuttlekartusche) mit Verschlusskappe; Größen: 390 ml, 585 m	l, 1100 ml, 1500 ml
Aufdruck: fischer FIS EM Plus, Verarbeitungshinweise, Haltbarkeitsdatum, Kolbenwegskala (optional), Aushärte- und Verarbeitungszeiten (temperaturabhängig), Gefahrenhinweis, Gi Volumen	
Statikmischer FIS MR Plus oder UMR	
Injektionshilfe und Verlängerungsschlauch für Statikmischer	
	}
Reinigungsbürste BS / BSB	
Ausbläser ABP	
Abbildu	ıngen nicht maßstäblich
fischer Injektionssystem FIS EM Plus	
Systembeschreibung Übersicht Systemkomponenten Teil 1; Kartuschen / Statikmischer / Zubehör	Anhang A 4

Stahlteile

Übersicht Systemkomponenten Teil 2 fischer Ankerstange Größen: M8, M10, M12, M14, M16, M20, M22, M24, M27, M30 fischer Innengewindeanker RG MI Größen: M8, M10, M12, M16, M20 Schraube / Gewindestange / Scheibe / Mutter Verfüllscheibe FFD mit Injektionshilfe **Betonstahl** Nenndurchmesser: \$\phi8\$, \$\phi10\$, \$\phi12\$, \$\phi14\$, \$\phi16\$, \$\phi18\$, \$\phi20\$, \$\phi22\$, \$\phi24\$, \$\phi25\$, \$\phi26\$, \$\phi26\$, \$\phi30\$, \$\phi30\$, \$\phi36\$, \$\phi40\$ fischer Bewehrungsanker FRA Größen: M12, M16, M20, M24 Abbildungen nicht maßstäblich fischer Injektionssystem FIS EM Plus Anhang A 5 Systembeschreibung Übersicht Systemkomponenten Teil 2;

Teil	Bezeichnung		Material			
1	Injektionskartusche		Mörtel, Härter, Füllstoffe			
	Stahlart	Stahl, verzinkt	Nichtrostender Stahl A4	Hochkorrosions- beständiger Stahl C		
2	Ankerstange		Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462; EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 12\% \text{ Bruchdehnung}$ ag $A_5 > 8\%$, wenn keine Anforstungskategorie C2 zu berück			
		galv. verzinkt ≥ 5 μm,	1.4401; 1.4404;			
3	Unterlegscheibe ISO 7089:2000	galv. ver2llikt ≥ 5 μH, EN ISO 4042:1999 A2K oder feuerverzinkt ≥ 40 μm EN ISO 10684:2004	1.4401, 1.4404, 1.4578;1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565; 1.4529; EN 10088-1:2014		
4	Sechskantmutter	Festigkeitsklasse 5 oder 8; EN ISO 898-2:2012 galv. verzinkt ≥ 5 µm, ISO 4042:1999 A2K oder feuerverzinkt ≥ 40 µm EN ISO 10684:2004	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014		
5	fischer Innengewindeanker RG MI	Festigkeitsklasse 5.8 ISO 898-1:2013 galv. verzinkt ≥ 5 μm, ISO 4042:1999 A2K	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014		
6	Handelsübliche Schraube oder Anker-/ Gewindestange für fischer Innengewindeanker RG MI	Festigkeitsklasse 5.8 oder 8.8; EN ISO 898-1:2013 galv. verzinkt ≥ 5 μm, ISO 4042:1999 A2K A ₅ > 8 % Bruchdehnung	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014 A ₅ > 8 % Bruchdehnung	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014 A ₅ > 8 % Bruchdehnung		
7	Verfüllscheibe FFD ähnlich DIN 6319-G	galv. verzinkt ≥ 5 μm, EN ISO 4042:1999 A2K oder feuerverzinkt ≥ 40 μm EN ISO 10684:2004	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565;1.4529; EN 10088-1:2014		
8	Betonstahl EN 1992-1-1:2004 und AC:2010, Anhang C	Stäbe und Betonstahl vom R gemäß NDP oder NCL der E $f_{uk} = f_{tk} = k \cdot f_{yk}$	ing, Klasse B oder C mit f _{yk} u N 1992-1-1:2004 + AC:2010	nd k		
9	fischer Bewehrungsanker FRA	Betonstahlteil: Stäbe und Betonstahl vom R oder C mit f_{yk} und k gemäß NDP oder NCL der EN 1992-1-1:2004 + AC:201 $f_{uk} = f_{tk} = k \cdot f_{yk}$	se 70 oder 80 1:2009 1, 1.4401, 1.4404, 1.4571 1, 1.4362, 1.4062 114			
Prod	her Injektionssystem duktbeschreibung kstoffe	FIS EM Plus		Anhang A 6		

Spezifizierung des Verwendungszwecks (Teil 1) Tabelle B1.1: Übersicht Nutzungs- und Leistungskategorien FIS EM Plus mit ... Beanspruchung der Verankerung Ankerstange fischer Betonstahl fischer Innengewinde-Bewehrungsanker anker RG MI FRA KKKKKKKKKKKKKKK HARRICANIANA Hammerbohren mit alle Größen Standardbohrer Hammerbohren mit Hohlbohrer (Heller "Duster Bohrernenndurchmesser (d₀) Expert"; Bosch 12 mm bis 35 mm Speed Clean"; Hilti TE-CD, TE-YD")1) alle Größen Diamantbohren Tabellen: Tabellen: Tabellen: Tabellen: ungerissenen Statische und C1.1 C2.1 C3.1 C3.2 Beton alle alle alle alle C4.1 C4.1 C4.1 C4.1 quasi-statische Größen Größen Größen Größen gerissenen C5.1 C6.1 C7.1 C8.1 Belastung, im Beton C9.1 C9.2 C10.1 C10.2 Tabellen: Tabellen: M10 ф10 Seismische C11.1 C12.1 C1 bis bis Leistungs-C12.2 C12.2 M30 ф32 kategorie C13.1 C13.2 (nur Hammer-M12 Tabellen: bohren mit M16 C11.1 Standardbohrer / C2 M20 C12.2 Hohlbohrer) M24 C14.1 Trockener oder nasser alle Größen Beton Nutzungskategorie Wasser-12 gefülltes alle Größen Bohrloch D3 Einbaurichtung (horizontale und vertikale Montage nach unten, sowie Überkopfmontage) $T_{i,min} = 0$ °C bis $T_{i,max} = +40$ °C Einbautemperatur (maximale Kurzzeittemperatur +60 °C; Temperatur--40 °C bis +60 °C bereich I maximale Langzeittemperatur +35 °C) Gebrauchstemperaturbereiche Temperatur-(maximale Kurzzeittemperatur +72 °C; -40 °C bis +72 °C bereich II maximale Langzeittemperatur +50 °C) 1) Weitere verwendbare Hohlbohrer sind auf der homepage von fischer aufgeführt: www.fischer.de fischer Injektionssystem FIS EM Plus Anhang B 1 Verwendungszweck Spezifikationen (Teil 1)

Spezifizierung des Verwendungszwecks (Teil 2)

Verankerungsgrund:

 Bewehrter oder unbewehrter Normalbeton ohne Fasern der Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206-1:2013

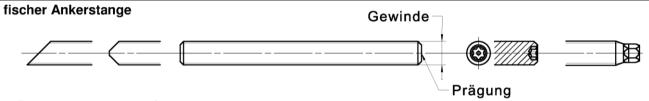
Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl)
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl oder hochkorrosionsbeständiger Stahl)
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl)

Anmerkung: Aggressive Bedingungen sind z. B. ständiges, abwechselndes Eintauchen in Meerwasser oder der Bereich der Spritzzone von Meerwasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z.B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden)

Bemessung:

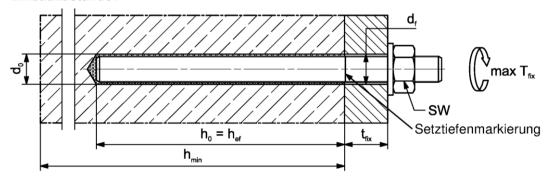
- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Stahlbetonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. Auf den Konstruktionszeichnungen ist die Lage der Dübel angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern)
- Verankerungen sind zu bemessen nach FprEN 1992-4:2017 und EOTA Technical Report TR 055


Einbau:

- Einbau des Dübels durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters
- Im Fall von Fehlbohrungen sind diese zu vermörteln
- · Effektive Verankerungstiefe markieren und einhalten
- Überkopfmontage erlaubt

fischer Injektionssystem FIS EM Plus	
Verwendungszweck Spezifikationen (Teil 2)	Anhang B 2

Tabelle B3.1: Montagekennwerte für Ankerstangen													
Ankerstangen		G	ewinde	M8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Schlüsselweite		SW		13	17	19	22	24	30	32	36	41	46
Bohrernenndurchmes	Bohrernenndurchmesser			10	12	14	16	18	24	25	28	30	35
Bohrlochtiefe		h ₀						h ₀ =	h _{ef}				
Effektive		h _{ef, min}		60	60	70	75	80	90	93	96	108	120
Verankerungstiefe		h _{ef, max}		160	200	240	280	320	400	440	480	540	600
Durchmesser des	Vorsteck- montage	d_{f}	[mm]	9	12	14	16	18	22	24	26	30	33
Durchgangsloch im Anbauteil	Durchsteck- montage	d _f		12	14	16	18	20	26	28	30	33	40
Minimale Dicke des Betonbauteils h		h _{min}			n _{ef} + 30 (≥ 100				h	l _{ef} + 20	0		
Maximales Montaged	Irehmoment	max T _{fix}	[Nm]	10	20	40	50	60	120	135	150	200	300



Prägung (an beliebiger Stelle) fischer Ankerstange:

Festigkeitsklasse 8.8, Nichtrostender Stahl A4 Festigkeitsklasse 80 und hochkorrosionsbeständiger Stahl C Festigkeitsklasse 80: •

Nichtrostender Stahl A4 Festigkeitsklasse 50 und hochkorrosionsbeständiger Stahl C Festigkeitsklasse 50: •• Alternativ: Farbmarkierung nach DIN 976-1

Einbauzustände:

Handelsübliche Gewindestangen, Unterlegscheiben und Sechskantmuttern dürfen ebenfalls verwendet werden, wenn die folgenden Anforderungen erfüllt werden:

- Materialien, Abmessungen und mechanische Eigenschaften gemäß Anhang A 6, Tabelle A6.1
- Prüfzeugnis 3.1 gemäß EN 10204:2004, die Dokumente müssen aufbewahrt werden
- Markierung der Verankerungstiefe

Abbildungen nicht maßstäblich

fischer Injektionssystem FIS EM Plus

Verwendungszweck
Montagekennwerte Ankerstangen

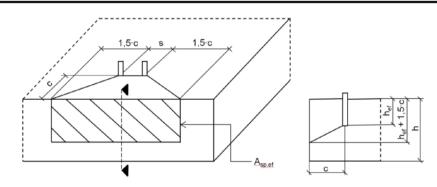
Anhang B 3

Tabelle B4.1: Minimale Ach	ıs- unc	l Ran	dabstä	ande fi	ür A nk	erstan	gen u	nd Bet	tonstal	nl	
Ankerstangen				M10	M12	M14	M16	-	M20	M22	M24
Betonstahl (Stabnenndurchmess	ser)	ф	8	10	12	14	16	18	20	22	24
Minimaler Randabstand											
Ungerissener / Gerissener Beton	C _{min}	[mm]	40	45	45	45	50	55	55	55	60
Minimaler Achsabstand	S _{min}	[[[[[]]]				gemä	ß Anha	ng B5			
Minimaler Achsabstand											
Ungerissener / Gerissener Beton	S _{min}	[mm]	40	45	55	60	65	85	85	95	105
Minimaler Randabstand	C _{min}	[mm]				gemä	ß Anha	ng B5			
Erforderliche projizierte Fläche											
Ungerissener Beton	^	[1000	8	13	22	23	24	38,5	38,5	39,5	40
O i	^ 1	mm ²]	6,5	10	16,5	17,5	18,5	29,5	29,5	30	30,5
Gerissener Beton		1	6,5	10	16,5	17,5	10,5	29,5	29,5	30	30,3
Ankerstangen)	-	-	M27	-	M30	-	29,5	-	-
		ф	·		·		·				· ·
Ankerstangen			-	-	M27	-	M30	-	-	-	-
Ankerstangen Betonstahl (Stabnenndurchmess	ser)	ф	-	-	M27	-	M30	-	-	-	-
Ankerstangen Betonstahl (Stabnenndurchmess Minimaler Randabstand			- 25	- 26	M27 -	- 28	M30 30	- 32	- 34	- 36	- 40
Ankerstangen Betonstahl (Stabnenndurchmess Minimaler Randabstand Ungerissener / Gerissener Beton	ser)	ф	- 25	- 26	M27 -	- 28	M30 30 80	- 32	- 34	- 36	- 40
Ankerstangen Betonstahl (Stabnenndurchmess Minimaler Randabstand Ungerissener / Gerissener Beton Minimaler Achsabstand	ser)	ф [mm]	- 25	- 26	M27 -	- 28	M30 30 80	- 32	- 34	- 36	- 40
Ankerstangen Betonstahl (Stabnenndurchmess Minimaler Randabstand Ungerissener / Gerissener Beton Minimaler Achsabstand Minimaler Achsabstand	Ser) C _{min} S _{min}	ф	- 25 75	- 26 75	M27 - 75	- 28 80 gemä	М30 30 80 ß Anha	- 32 120 ng B5	- 34	- 36	- 40
Ankerstangen Betonstahl (Stabnenndurchmess Minimaler Randabstand Ungerissener / Gerissener Beton Minimaler Achsabstand Minimaler Achsabstand Ungerissener / Gerissener Beton	C _{min} S _{min}	ф [mm]	- 25 75	- 26 75	M27 - 75	- 28 80 gemä	M30 30 80 β Anha	- 32 120 ng B5	- 34	- 36	- 40
Ankerstangen Betonstahl (Stabnenndurchmess Minimaler Randabstand Ungerissener / Gerissener Beton Minimaler Achsabstand Minimaler Achsabstand Ungerissener / Gerissener Beton Minimaler Randabstand	C _{min} S _{min}	ф [mm]	- 25 75	- 26 75	M27 - 75	- 28 80 gemä	M30 30 80 β Anha	- 32 120 ng B5	- 34	- 36	- 40

Spaltversagen für minimale Achs- und Randabstände in Abhängigkeit der effektiven Verankerungstiefe hef

Für die Berechnung des minimalen Achsabstands und des minimalen Randabstands der Anker in Kombination mit verschiedenen Einbindetiefen und -dicken des Betonbauteils ist die folgende Gleichung zu erfüllen:

 $A_{sp,req} < A_{sp,t}$


 $A_{\text{sp,req}} = \text{erforderliche projizierte Fläche}$

A_{sp,t} = A_{sp,ef} = effektive projizierte Fläche (gemäß Anhang B5)

fischer Injektionssystem FIS EM Plus	
Verwendungszweck Minimale Achs- und Randabstände für Ankerstangen und Betonstahl	Anhang B 4

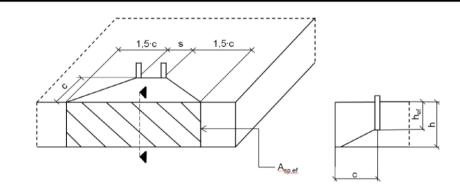


Tabelle B5.1: Effektive projizierte Fläche $A_{sp,t}$ bei einer Betonbauteildicke $h > h_{ef} + 1,5 \cdot c$ und $h \ge h_{min}$

Einzelanker		$A_{sp,t} = (3 \cdot c) \cdot (h_{ef} + 1, 5 \cdot c)$	[mm²]	mit o > o
Ankergruppen mit	s > 3 · c	$A_{sp,t} = (6 \cdot c) \cdot (h_{ef} + 1,5 \cdot c)$	[mm²]	mit c ≥ c _{min}
Ankergruppen mit	s ≤ 3 · c	$A_{sp,t} = (3 \cdot c + s) \cdot (h_{ef} + 1,5 \cdot c)$	[mm²]	mit $c \ge c_{min}$ und $s \ge s_{min}$

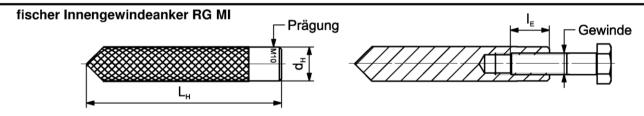
Tabelle B5.2: Effektive projizierte Fläche $A_{sp,t}$ bei einer Betonbauteildicke $h \le h_{ef} + 1,5 \cdot c$ und $h \ge h_{min}$

Einzelanker		$A_{sp,t} = 3 \cdot c \cdot vorhandenes h$	[mm²]	mit o > o
		$A_{sp,t} = 6 \cdot c \cdot vorhandenes h$	[mm²]	mit c ≥ c _{min}
Ankergruppen mit	s ≤ 3 · c	$A_{sp,t} = (3 \cdot c + s) \cdot vorhandenes h$	[mm²]	mit $c \ge c_{min}$ und $s \ge s_{min}$

Randabstände und Achsabstände sind auf 5 mm zu runden

Abbildungen nicht maßstäblich

fischer Injektionssystem FIS EM Plus

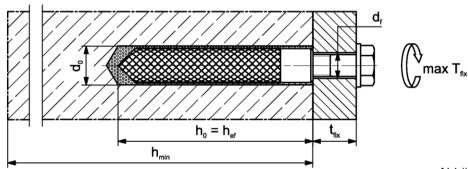

Verwendungszweck
Mindestdicke der Betonbauteile für Ankerstangen;
minimale Achs- und Randabstände

Anhang B 5

Tabelle B6.1: Montagekennwerte sowie min. Achs- und Randabstände für fischer Innengewindeanker RG MI

Innengewindeanker RG MI Ge			М8	M10	M12	M16	M20	
Hülsendurchmesser	$d_{nom} = d_H$		12	16	18	22	28	
Bohrernenn- durchmesser	d_0		14	18	20	24	32	
Bohrlochtiefe	h ₀				$h_0 = h_{ef} = L_H$			
Effektive Verankerungstiefe ($h_{ef} = L_{H}$)	h _{ef}		90	90	125	160	200	
Minimaler Achs- und Randabstand	S _{min} = C _{min}	[mm]	55	65	75	95	125	
Durchmesser des Durch- gangsloch im Anbauteil	d _f		9	12	14	18	22	
Mindestdicke des Betonbauteils	h _{min}		120	125	165	205	260	
Maximale Einschraubtiefe	I _{E,max}		18	23	26	35	45	
Minimale Einschraubtiefe	$I_{E,min}$		8	10	12	16	20	
Maximales Montagedrehmoment	max T _{fix}	[Nm]	10	20	40	80	120	

Prägung: Ankerg


Ankergröße z.B.: M10

Nichtrostender Stahl → zusätzlich A4; z.B.: M10 A4

Hochkorrosionsbeständiger Stahl → zusätzlich C; z.B.: M10 C

Befestigungsschraube oder Ankerstangen / Gewindestangen (einschließlich Mutter und Unterlegscheibe) müssen den zugehörigen Materialien und Festigkeitsklassen gemäß Anhang A 6, Tabelle A6.1 entsprechen

Einbauzustände:

Abbildungen nicht maßstäblich

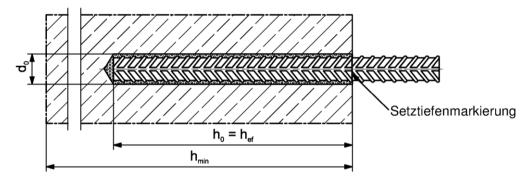
fischer Injektionssystem FIS EM Plus

Verwendungszweck

Montagekennwerte fischer Innengewindeanker RG MI

Anhang B 6

Tabelle B7.1: Montagekennwerte für Betonstahl											
Stabnenndurchmesser		ф	8 ¹⁾	10 ¹⁾	12 ¹⁾	14	16	18	20	22	24
Bohrernenndurchmesser	d ₀		10 12	12 14	14 16	18	20	25	25	30	30
Bohrlochtiefe	h ₀						$h_0 = h_{ef}$				
Effektive	$h_{\text{ef,min}}$	[mm]	60	60	70	75	80	85	90	94	98
Verankerungstiefe	h _{ef,max}	[[[[]	160	200	240	280	320	360	400	440	480
Mindestdicke des Betonbauteils	h_{min}			ef + 30 : 100)				h _{ef} + 2	?d₀		
Stabnenndurchmesser		ф	25	26	28	30	32	34	36	40	_
Bohrernenndurchmesser	d ₀		30	35	35	40	40	40	45	55	-
Bohrlochtiefe	h ₀						$h_0 = h_{ef}$				
Effektive	h _{ef,min}	[mm]	100	104	112	120	128	136	144	160	-
Verankerungstiefe	h _{ef,max}	ן ניייייז <u>ן</u>	500	520	560	600	640	680	720	800	-
Mindestdicke des Betonbauteils	h _{min}						h _{ef} + 2d ₀)	•		


¹⁾ Beide Bohrernenndurchmesser sind möglich

Betonstahl

- Mindestwert der bezogenen Rippenfläche f_{R,min} gemäß Anforderung aus EN 1992-1-1:2009 + AC:2010
- Die Rippenhöhe muss im folgenden Bereich liegen: $0.05 \cdot \phi \le h_{rib} \le 0.07 \cdot \phi$ (ϕ = Stabnenndurchmesser, h_{rib} = Rippenhöhe)

Einbauzustände:

Abbildungen nicht maßstäblich

fischer Injektionssystem FIS EM Plus

Verwendungszweck

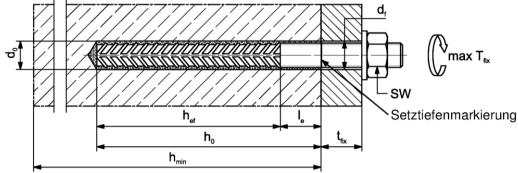
Montagekennwerte Betonstahl

Anhang B 7

Tabelle B8.1:	Montagekennwerte sowie min. Achs- und Randabstände für fischer
	Bewehrungsanker FRA

Bewehrungsanker	FRA	G	ewinde	M1	2 ¹⁾	M16	M20	M24	
Stabnenndurchmess	ser	ф		1	2	16	20	25	
Schlüsselweite		SW] [1	9	24	30	36	
Bohrernenndurchme	esser	d ₀] [14	16	20	25	30	
Bohrlochtiefe		h ₀] [h _{ef}	+ l _e		
Effektive		$h_{\text{ef,min}}$		7	0	80	90	96	
Verankerungstiefe		$h_{\text{ef,max}}$		14	Ю	220	300	380	
Abstand Betonoberf Schweißstelle	läche zur	l _e	[1	100					
Minimaler Achs- und Randabstand		S _{min} = C _{min}	[mm]	5	5	65	85	105	
Durchmesser des	Vorsteck- montage	≤ d _f		1	4	18	22	26	
Durchgangsloch im Anbauteil	Durchsteck- montage	≤ d _f		1	8	22	26	32	
Mindestdicke des Betonbauteils		h_{min}		h ₀ + (≥ 1			h ₀ + 2d ₀		
Maximales Montagedrehmomer	nt	$\max_{T_{\text{fix}}}$	[Nm]	4	0	60	120	150	

¹⁾ Beide Bohrernenndurchmesser sind möglich



Prägung stirnseitig z. B.:

FRA (für nichtrostenden Stahl);
FRA C (für hochkorrosionsbeständigen Stahl)

Einbauzustände:

Abbildungen nicht maßstäblich

fischer Injektionssystem FIS EM Plus

Verwendungszweck

Montagekennwerte fischer Bewehrungsanker FRA

Anhang B 8

Tabelle B9.1: Kennwerte der Reinigungsbürste BS (Stahlbürste)

Die Größe der Reinigungsbürste bezieht sich auf den Bohrernenndurchmesser

Bohrernenn- durchmesser	d ₀	[mm]	10	12	14	16	18	20	24	25	28	30	32	35	40	45	55
Stahlbürsten- durchmesser	d_b	[mm]	11	14	16	2	0	25	26	27	30		40		42	47	58

Tabelle B9.2 Maximale Verarbeitungszeit des Mörtels und minimale Aushärtezeit (Die Temperatur im Beton darf während der Aushärtung des Mörtels den angegebenen Mindestwert nicht unterschreiten)

Temperatur im Verankerungsgrund [°C]	Maximale Verarbeitungszeit t _{work}	Minimale Aushärtezeit t _{cure}
±0 bis +4	150 min	90 h
+5 bis +9	120 min	40 h
+10 bis +19	30 min	18 h
+20 bis +29	14 min	10 h
+30 bis +40	7 min	5 h

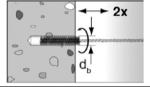
¹⁾ Im nassen Beton oder wassergefüllten Bohrlöchern sind die Aushärtezeiten zu verdoppeln

fischer Injektionssystem FIS EM Plus

Verwendungszweck
Kennwerte der Reinigungsbürsten
Verarbeitungs- und Aushärtezeiten

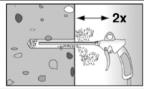
Anhang B 9

Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Standardbohrer)


Bohrloch erstellen. Bohrlochdurchmesser d_0 und Bohrlochtiefe h_0 siehe **Tabellen B3.1**, **B6.1**, **B7.1**, **B8.1**

2

Bohrloch reinigen: Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)



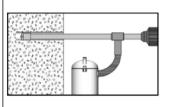
3

Bohrloch zweimal ausbürsten. Für Bohrlochdurchmesser ≥ 30 mm eine Bohrmaschine benutzen. Bei tiefen Bohrlöchern Verlängerung verwenden. Entsprechende Bürsten siehe **Tabelle B9.1**

4

Bohrloch reinigen: Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)

Mit Schritt 6 fortfahren


Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Hohlbohrer)

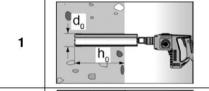
1

Einen geeigneten Hohlbohrer (siehe **Tabelle B1.1**) auf Funktion der Staubabsaugung prüfen

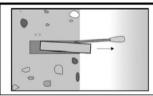
2

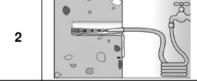
Verwendung eines geeigneten Staubabsaugsystems wie z.B. Bosch GAS 35 M AFC oder eines Staubabsaugsystems mit vergleichbaren Leistungsdaten

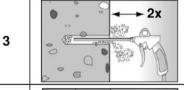
Bohrloch mit Hohlbohrer erstellen. Das Staubabsaugsystem muss den Bohrstaub konstant während des gesamten Bohrvorgangs absaugen und auf maximale Leistung eingestellt sein. Bohrlochdurchmesser \mathbf{d}_0 und Bohrlochtiefe \mathbf{h}_0 siehe **Tabellen B3.1, B6.1, B7.1, B8.1**

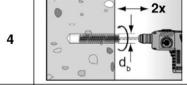

Mit Schritt 6 fortfahren

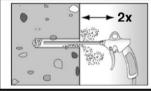
fischer Injektionssystem FIS EM Plus


Verwendungszweck Montageanleitung Teil 1 Anhang B 10

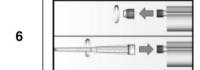

Bohrlocherstellung und Bohrlochreinigung (Nassbohren mit Diamantbohrkrone)


Bohrloch erstellen.
Bohrlochdurchmesser d₀
und Bohrlochtiefe h₀
siehe **Tabellen B3.1**, **B6.1**, **B7.1**, **B8.1**


Bohrkern brechen und herausziehen.


Bohrloch spülen, bis das Wasser klar wird.

Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)


Bohrloch zweimal unter Verwendung einer Bohrmaschine ausbürsten. Entsprechende Bürsten siehe **Tabelle B9.1**

Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)

Kartuschenvorbereitung

5

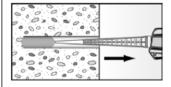
Verschlusskappe abschrauben

Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein)

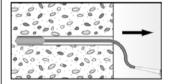
Kartusche in die Auspresspistole legen.

8

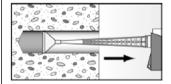
Einen etwa 10 cm langen Strang auspressen, bis der Mörtel gleichmäßig grau gefärbt ist. Nicht gleichmäßig grauer Mörtel ist zu verwerfen.


fischer Injektionssystem FIS EM Plus

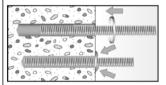
Verwendungszweck Montageanleitung Teil 2 Anhang B 11

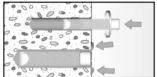


Mörtelinjektion



Ca. 2/3 des Bohrlochs mit Mörtel füllen. Immer am Bohrlochgrund beginnen und Blasen vermeiden

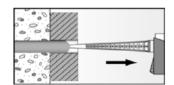

Bei Bohrlochtiefen ≥ 150 mm Verlängerungsschlauch verwenden



Bei Überkopfmontage, tiefen Bohrlöchern (h₀ > 250 mm) oder großen Bohrlochdurchmessern (d₀ ≥ 40 mm) Injektionshilfe verwenden

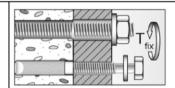
Montage Ankerstange und fischer Innengewindeanker RG MI

10



Nur saubere und ölfreie Verankerungselemente verwenden. Setztiefe des Ankers markieren. Die Ankerstange oder den fischer Innengewindeanker RG MI mit leichten Drehbewegungen in das Bohrloch schieben. Nach dem Setzen des Befestigungselementes muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein.

Bei Überkopfmontage die Ankerstange mit Keilen (z.B. fischer Zentrierkeile) fixieren bis der Mörtel auszuhärten beginnt


Bei Durchsteckmontage den Ringspalt mit Mörtel verfüllen

11

Aushärtezeit abwarten, t_{cure} siehe **Tabelle B9.2**

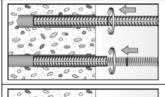
12

Montage des Anbauteils, max T_{fix} siehe **Tabellen B3.1 und B6.1**

Option

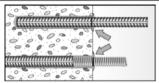
Nachdem die Aushärtezeit erreicht ist, kann der Bereich zwischen Anker und Anbauteil (Ringspalt) über die Verfüllscheibe FFD mit Mörtel befüllt werden. Druckfestigkeit ≥ 50 N/mm² (z.B. fischer Injektionsmörtel FIS HB, FIS SB, FIS V, FIS EM Plus).

ACHTUNG: Bei Verwendung der Verfüllscheibe FFD reduziert sich t_{fix} (Nutzlänge des Anker)


fischer Injektionssystem FIS EM Plus

Verwendungszweck Montageanleitung Teil 3 Anhang B 12

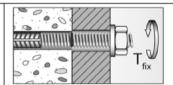
Z23874.18



Montage Betonstahl und fischer Bewehrungsanker FRA

Nur sauberen und ölfreien Betonstahl oder fischer Bewehrungsanker FRA verwenden. Die Setztiefe markieren. Mit leichten Drehbewegungen den Bewehrungsstab oder den fischer Bewehrungsanker FRA kräftig bis zur Setztiefenmarkierung in das gefüllte Bohrloch schieben

10


Nach dem Erreichen der Setztiefenmarkierung muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein.

11

Aushärtezeit abwarten, t_{cure} siehe **Tabelle B9.2**

12

Montage des Anbauteils, max T_{fix} siehe **Tabelle B8.1**

fischer Injektionssystem FIS EM Plus

Verwendungszweck Montageanleitung Teil 4 Anhang B 13

Anko	beans r- / Gewindestange				M8	M10	M12	M14	M16	M20	M22	M24	M27	M30			
	r- / Gewindestange ragfähigkeit, Stahlve	rsagen			IVIO	IVITO	IVIIZ	IVI 14	IVIIO	IVIZU	IVIZZ	IVIZ4	IVI Z /	IVISU			
		isagen	5.8		19	29	43	58	79	123	152	177	230	281			
. Ž	Stahl verzinkt		8.8		29	47	68	92	126	196	243	282	368	449			
Charakt. erstand I	Nichtrostender	Festigkeits-		[kN]	19	29	43	58	79	123	152	177	230	281			
Cha ersta	Stahl A4 und	klasse	70	[KIN]	26	41	59	81	110	172	212	247	322	393			
Charakt. Widerstand N _{Rk.s}	Hochkorrosions- beständiger Stahl C		80		30	47	68	92	126	196	243	282	368	449			
	rstandsbeiwerte ¹⁾		00		30	47	00	92	120	190	243	202	300	449			
Wide	13tunu3berwerte		5.8		1,50												
ands-	Stahl verzinkt		8.8		1,50												
rstan ert y _M	 Nichtrostender	Festigkeits-	50	[-]	2,86												
Widerstands- beiwert _{YMs.N}	Stahl A4 und	klasse	70	[-]						/ 1,87							
∑ ¤	Hochkorrosions- beständiger Stahl C		80							60							
Quer	tragfähigkeit, Stahlv	ersagen	50						1,	-							
	Hebelarm	o.ougon															
K,s			5.8		9	15	21	29	39	61	76	89	115	141			
Charakt. Widerstand V ⁰ RK.S	Stahl verzinkt		8.8		15	23	34	46	63	98	122	141	184	225			
Charakt.	Nichtrostender	Festigkeits- klasse	50	[kN]	9	15	21	29	39	61	76	89	115	141			
Ch lerst	Stahl A4 und Hochkorrosions-	NIASSE	70		13	20	30	40	55	86	107	124	161	197			
Ķ	beständiger Stahl C		80		15	23	34	46	63	98	122	141	184	225			
Duktil	itätsfaktor		k ₇	[-]					1,	,0							
Mit H	ebelarm																
t. M ⁰ Rk,s	Stahl verzinkt		5.8		19	37	65	104	166	324	447	560	833	1123			
		Faction its	8.8		30	60	105	167	266	519	716	896	1333	1797			
Charak erstand	Nichtrostender	Festigkeits- klasse	50	[Nm]	19	37	65	104	166	324	447	560	833	1123			
Charak Widerstand	Stahl A4 und Hochkorrosions-		70		26	52	92	146	232	454	626	784	1167	1573			
	beständiger Stahl C		80		30	60	105	167	266	519	716	896	1333	1797			
Wide	rstandsbeiwerte ¹⁾																
ψ >	Stahl verzinkt		5.8	1 1					1,	25							
Widerstands- beiwert _{YMs.} v		Eastiakaita	8.8						1,	25							
ersta	Nichtrostender Stahl A4 und	Festigkeits- klasse	50	[-]						38							
Wid	Hochkorrosions-		70						1,25 ²⁾	/ 1,56							
	beständiger Stahl C		80						1,	33							
1) Fa 2) N	alls keine abweichend ur zulässig für Stahl (len nationale C, mit f _{yk} / f _{uk}	en R ≥0,	egelu 8 und	ngen v A ₅ > 1	orliege 2 % (z	n .B. fisc	her An	kersta	ngen)							
fisc	her Injektionssyste	em FIS EN	ΙРΙ	us													
Leis	stungsdaten tungsmerkmale für di				n fisch	ner Ank	erstan	gen un	ıd		1	Anha	ng C	1			

Tabelle C2.1:									
fischer Innengev	windea	nker RG MI			М8	M10	M12	M16	M20
Zugtragfähigkei	t, Stahl	versagen							
		Festigkeits-	5.8		19	29	43	79	123
Charakt. Widerstand mit	N	klasse	8.8	[kN]	29	47	68	108	179
Schraube	$N_{Rk,s}$	Festigkeits-	A4	[KIN]	26	41	59	110	172
001114450		Klasse 70	С		26	41	59	110	172
Widerstandsbei	werte ¹⁾								
		Festigkeits-	5.8				1,50		
Widerstands-		klasse	8.8	[]			1,50		
beiwert	$\gamma_{Ms,N}$	Festigkeits-	A4	[-]		29 43 79 47 68 10 41 59 11 1,50 1,50 1,87 1,87 1,87 1,87 23,2 33,7 54 20,3 29,5 54 20,3 29,5 54 1,0 39 68 17 60 105 26 52 92 23 52 92 23 1,25 1,25 1,56 1,56			
		Klasse 70	С				1,87		
Quertragfähigke	eit, Star	ilversagen							
Ohne Hebelarm									
	Festigke				9,2	14,5	21,1	39,2	62,0
Charakt. Widerstand mit	$V^0_{\rm Rks}$				14,6	23,2	33,7	54,0	90,0
Schraube	V _{Rk,s}	Festigkeits-	_A4	[kN]	12,8	20,3	29,5	54,8	86,0
Oomaass		Klasse 70	С		12,8	20,3	29,5	54,8	86,0
Duktilitätsfaktor			k ₇	[-]			1,0		
Mit Hebelarm									
<u> </u>		Festigkeits-	5.8		20	39	68	173	337
Charakt. Widerstand mit	$M^0_{Rk,s}$	klasse	8.8	[Nm]	30	60	105	266	519
Schraube	IVI Rk,s	Festigkeits-	_A4	ניייאון	26	52	92	232	454
00		Klasse 70	С		26	52	92	232	454
Widerstandsbei	werte ¹⁾								
		Festigkeits-	5.8				1,25		
Widerstands-		klasse	8.8				1,25		1,25 / 1,50
beiwert	$\gamma_{Ms,V}$	Festigkeits-	A4	[-]			1,56	9 108 110 110 110 110 1173 266 232 232 232	
ĺ		Klasse 70	С	, 1			1,56		

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen ²⁾ Nur für Stahlversagen ohne Hebelarm

fischer Injektionssystem FIS EM Plus	
Leistungsdaten Leistungsmerkmale für die Stahltragfähigkeiten von fischer Innengewindeankern RG MI	Anhang C 2

	Querzugbeanspruchung von Betonstahl
Tabelle C3.1:	Leistungsmerkmale für die Stahltragfähigkeit unter Zug-/

Stabnenndurchmesser		ф	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Zugtragfähigkeit, Stahlversagen																			
Charakteristischer Widerstand	$N_{Rk,s}$	[kN]								As	· f ul	(1)							
Quertragfähigkeit, Stahlversager	1																		
Ohne Hebelarm																			
Charakteristischer Widerstand	$V^0_{ m Rk,s}$	[kN]							(),5 ·	A _s ·	f_{uk}^{-1})						
Duktilitätsfaktor	k ₇	[-]									0,8								
Mit Hebelarm																			
Charakteristisches Widerstand	${\sf M^0}_{\sf Rk,s}$	[Nm]							1	,2 ·	W_{el}	· f _{uk}	1)						

 $^{^{1)}}$ f_{uk} bzw. f_{yk} ist den Spezifikationen des Betonstahls zu entnehmen

Tabelle C3.2: Leistungsmerkmale für die Stahltragfähigkeit unter Zug-/ Querzugbeanspruchung von fischer Bewehrungsankern FRA

fischer Bewehrungsanker FRA			M12	M16	M20	M24
Zugtragfähigkeit, Stahlversager	n					
Charakteristischer Widerstand	$N_{Rk,s}$	[kN]	63	111	173	270
Widerstandsbeiwerte ¹⁾						
Widerstandsbeiwert	γMs,N	[-]		1	,4	
Quertragfähigkeit, Stahlversage	en					
Ohne Hebelarm						
Charakteristischer Widerstand	$V^0_{ m Rk,s}$	[kN]	30	55	86	124
Duktilitätsfaktor	k ₇	[-]		1	,0	
Mit Hebelarm						
Charakteristisches Widerstand	$M^0_{Rk,s}$	[Nm]	92	233	454	785
Widerstandsbeiwerte ¹⁾						
Widerstandsbeiwert	γMs,V	[-]		1,	56	

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

fischer Injektionssystem FIS EM Plus

Leistungsdaten
Leistungsmerkmale für die Stahltragfähigkeiten von Betonstahl und fischer Bewehrungsanker FRA

Anhang C 3

Größe										Alle G	rößen							
Zugbelastung																		
Ungerissener Be	eton	k _{ucr,N}								11	,0							
Gerissener Beto		k _{cr,N}	[-]							7,								
Faktoren für Be	etondruckfestigkei		20/25															
	C25/30									1,0	02							
_	C30/37									1,0	04							
- Erhöhungs-	C35/45									1,0	06							
faktor für τ _{Rk}	C40/50	Ψ_{c}	[-]							1,0	07							
_	C45/55									1,0	08							
_	C50/60									1,0	09							
Versagen durcl	n Spalten																	
	h / h _{ef} ≥ 2,0									1,0	h _{ef}							
Randabstand -	$2.0 > h / h_{ef} > 1.3$	$C_{cr,sp}$	f1	m] 4,6 h _{ef} - 1,8 h														
_	h / h _{ef} ≤ 1,3	. ,	[mm]	2,26 h _{ef} 2 c _{cr,sp}														
Achsabstand		S _{cr,sp}								2 c	cr,sp							
Versagen durcl	n kegelförmigen Be	etonau	sbruc	า														
Randabstand		C _{cr,N}	[con con]							1,5	h _{ef}							
Achsabstand		S _{cr,N}	[mm]							2 c	cr,N							
Querzugbelasti	ung																	
Montagesensitiv	itätsfaktor	γinst	[-]							1,	0							
Betonausbruch	auf der lastabgew			•														
Faktor für Beton	ausbruch	k ₈	[-]							2,	0							
Rechnerische I	Ourchmesser																	
Größe				M8	В	110	N	112	M14	M16	M20	M22	M24	M27	· r	M30		
fischer Ankersta Standard-Gewin	nge und destange	d _{nom}		8	1	10		12	14	16	20	22	24	27		30		
fischer Innengev	vindeanker RG MI	d _{nom}	[mm]	12	1	16		18	-	22	28	-	-	-	T	-		
fischer Bewehru	ngsanker FRA	d _{nom}		-		-		12	-	16	20	-	25	-		-		
Stabnenndurchr	nesser		ф	8	10 1	12 1	4	16	18 20	22 2	4 25	26 28	30 3	2 34	36	3 40		
Betonstahl		d_{nom}	[mm]	8	10 1	12 1	4	16	18 20	22 2	4 25	26 28	30 3	2 34	36	3 40		
Leistungsdate	tionssystem FIS en male für die Zug- / 0												Anha	ing (C 4			

	Leistungs Standard Bohrloch;	-Gewi	ndestan	gen i	m har	nmer	gebor	rten d					
Anker- / Gewindes	stange			M8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Kombiniertes Vers	sagen durc	h Herau	sziehen ι	ınd Be	tonau	sbrucl	n						
Rechnerischer Durc	chmesser	d	[mm]	8	10	12	14	16	20	22	24	27	30
Ungerissener Beto													
Charakteristische													
Hammerbohren mit		der Hol	<u>nlbohrer (t</u>	rocken	<u>er ode</u>	r nasse	er Beto	<u>n)</u>			<u> </u>		
Tempe- I: 35 °0 ratur-	C / 60 °C	-	[N/mm ²]	18	18	18	17	17	16	15	15	15	14
bereich II: 50 °C	C / 72 °C	$ au_{Rk,ucr}$		18	17	17	16	16	15	14	14	14	13
Hammerbohren mit	Standard-	oder Ho	hlbohrer (\	vasser	gefüllte	es Boh	rloch)						
	C / 60 °C		2-	16	16	15	13	13	11	11	10	10	9
ratur- ———— bereich II: 50 °C	C / 72 °C	$ au_{Rk,ucr}$	[N/mm ²]	15	14	14	13	12	11	10	10	9	9
Diamantbohren (tro	ckener ode	r nasser	Beton so	wie wa	.sserae	fülltes	L Bohrlo	∟ ch)					
-	C / 60 °C			16	15	13	12	12	10	10	10	9	9
ratur-	C / 72 °C	$\tau_{Rk,ucr}$	[N/mm ²]	15	14	12	11	11	10	9	9	8	8
00101011				15	14	12	11	''	10	9	9	0	0
Montagesensitivit Trockener oder nas		<u> </u>						1	,0				
Wassergefülltes Bo		γ_{inst}	[-]						,0 ,4				
Gerissener Beton	TITIOCIT							•	, -				
Charakteristische	Verbundtra	agfähigl	ceit im ge	rissen	en Be	ton C2	0/25						
Hammerbohren mit								n)					
	C / 60 °C			7,5	7,5	9	8,5	8,5	8,5	8,5	8,5	8,5	8,5
ratur-	C / 72 °C	$\tau_{\text{Rk,cr}}$	[N/mm ²]	7,5	7,5	9	8,5	8,5	8,5	8,5	8,5	8,5	8,5
bereich II: 50 °C Diamantbohren (tro		naccor	Poton)	7,5	7,5	Э	0,5	0,5	0,5	0,5	0,5	0,5	0,5
		nasser	<u> betorij</u>	7	7	7	7			7	7	7	7
ratur-	C / 60 °C	$\tau_{Rk,cr}$	[N/mm ²]	7	7	7	7	6	6	7	7	7	7
00101011	C / 72 °C			7	7	7	7	6	6	7	7	7	7
Hammerbohren mit		oder Ho	<u>nlbohrer u</u>	nd Dia	mantbo	ohren (i	rgefüllt	es Bor	<u>rloch)</u>			
Tempe- I: 35 °0 ratur- ———	C / 60 °C	-	[N/mm ²]	6	7,5	7,5	7	6	6	6	6	6	6
bereich II: 50 °C	C / 72 °C	$ au_{Rk,cr}$	[[14/11111]	6	7	7	7	6	6	6	6	6	6
Montagesensitivit	ätsfaktoren	1											
Trockener oder nas	ser Beton	.,	[_]					1	,0				
	hrloch	γ inst	[-]			1,2					1,4		

fischer Injektionssystem FIS EM Plus

Leistungsdaten

Leistungsmerkmale für die Zugtragfähigkeit von fischer Ankerstangen und Standard-Gewindestangen

Anhang C 5

Tabelle C6.1:	Leistungsmerkmale für die Zugtragfähigkeit von fischer
	Innengewindeankern RG MI im hammergebohrten oder diamantgebohrten
	Bohrloch; ungerissener oder gerissener Beton

Bohrlo	ch; unge	rissener	oder geri	_	on	aiamamgo	301111011
Innengewindeanker RG M	I		M8	M10	M12	M16	M20
Kombiniertes Versagen d	urch Herau	ısziehen ı	und Betonau	sbruch			
Rechnerischer Durchmesse	er d	[mm]	12	16	18	22	28
Ungerissener Beton							
Charakteristische Verbun	dtragfähig	keit im ur	ngerissenen	Beton C20/2	5		
<u>Hammerbohren mit Standar</u>	<u>d- oder Ho</u>	<u>hlbohrer (t</u>	rockener ode	r nasser Betc	<u>on)</u>		
Tempe- I: 35 °C / 60 °C		[N/mm ²]	15	14	14	13	12
ratur- bereich II: 50 °C / 72 °C	τ _{Rk,ucr}	[IN/mm]	14	13	13	12	11
<u>Hammerbohren mit Standar</u>	rd- oder Ho	hlbohrer (wassergefüllt	es Bohrloch)			
Tempe- I: 35 °C / 60 °C		[N1/100 100 ²]	14	12	12	11	10
ratur- H: 50 °C / 72 °C	τ _{Rk,ucr}	[N/mm ²]	13	12	11	10	9
Diamantbohren (trockener d	oder nasser	Beton so	wie wasserge	efülltes Bohrlo	ch)		
Tempe- I: 35 °C / 60 °C		FN 1/ 21	13	12	11	10	9
ratur- H: 50 °C / 72 °C	τ _{Rk,ucr}	[N/mm ²]	12	11	10	9	8
Montagesensitivitätsfakto	ren	•					
Trockener oder nasser Beto		r 1			1,0		
Wassergefülltes Bohrloch	γinst	[-]			1,4		
Gerissener Beton							
Charakteristische Verbun							
<u>Hammerbohren mit Standar</u>	<u>rd- oder Ho</u>	<u>hlbohrer u</u>	ınd Diamantb	<u>ohren (trocke</u>	ner oder nass	er Beton)	
Tempe- I: 35 °C / 60 °C ratur-		[N/mm ²]	7	6	6	7	7
bereich II: 50 °C / 72 °C	τ _{Rk,cr}		7	6	6	7	7
Hammerbohren mit Standar	<u>rd- oder Ho</u>	hlbohrer u	ınd Diamantb	<u>ohren (wasse</u>	rgefülltes Boh	<u>rrloch)</u>	
Tempe- I: 35 °C / 60 °C		21	7	6,5	6	6	6
ratur- H: 50 °C / 72 °C	τ _{Rk,cr}	[N/mm ²]	7	6	6	6	6
Montagesensitivitätsfakto	ren						
Trockener oder nasser Beto		[]			1,0		
Wassergefülltes Bohrloch		[-]		1,2		1,	4

fischer Injektionssystem FIS EM Plus	
Leistungsdaten Leistungsmerkmale für die Zugtragfähigkeit von fischer Innengewindeankern RG MI	Anhang C 6

Tabelle	C7	.1: Leistung				•		_	_	-								r o	der		
		gerissei	_		uia	iiia	mg	CDC	/1 11 LV		DOI	11100	JII,	un	gei	133			uci		
Stabneni	ndur	chmesser		Φ	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
		s Versagen dur	ch Herau				_		$\overline{}$									-			
		r Durchmesser	d	[mm]	8				16		20	22	24	25	26	28	30	32	34	36	40
Ungeriss	ene	r Beton																			
		sche Verbundt	ragfähig	keit im ur	nger	iss	enei	n Be	ton	C2	0/25	;									
Hammerk	ohre	en mit Standard-	oder Ho	hlbohrer (t	trock	kene	er oc	der r	nass	er E	Beto	<u>n)</u>									
Tempe-	l:	35 °C / 60 °C	_	[N/mm ²]	16	15	15	14	14	13	13	13	12	12	12	12	12	12	11	11	11
ratur- bereich	II:	50 °C / 72 °C	- τ _{Rk,ucr}		15	14	14	13	13	12	12	12	12	11	11	11	11	11	11	10	10
Hammerk	ohre	en mit Standard-	oder Ho	hlbohrer (was	ser	gefü	lltes	Boh	rloc	ch)										
Tempe- ratur-	l:	35 °C / 60 °C		[N/mm ²]	16	16	14	13	12	12	11	11	10	10	10	10	9	9	9	8	8
bereich	H:	50 °C / 72 °C	- τ _{Rk,ucr}		15	14	13	12	12	11	11	10	10	9	9	9	9	8	8	8	8
Diamantb	ohre	en (trockener od	er nasser	Beton so	wie	was	ser	gefü	lltes	Во	hrlo	ch)									
Tempe-	l:	35 °C / 60 °C	_	[N/mm ²]	16	15	13	12	12	11	10	10	10	9	9	9	9	8	8	8	7
ratur- bereich	H:	50 °C / 72 °C	- τ _{Rk,ucr}		15	14	12	11	11	10	10	9	9	9	8	8	8	8	7	7	7
Montage	sens	sitivitätsfaktore	n																		
Trockene	r ode	er nasser Beton	- ~	[-]									1,0								
Wasserge	efüllt	es Bohrloch	- γinst	[-]									1,4								
Gerissen	er B	eton																			
Charakte	risti	sche Verbundt	ragfähig	keit im ge	eriss	sene	en B	Beto	n C2	20/2	:5										
<u>Hammerk</u>	ohre	en mit Standard	oder Ho	<u>hlbohrer (</u>	troc	ken	er o	der ı	nass	er E	<u> 3eto</u>	<u>n)</u>									
Tempe- ratur-	l:	35 °C / 60 °C	- τ _{Rk,cr}	[N/mm ²]	7	7	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
bereich		50 °C / 72 °C			7	7	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
<u>Diamantb</u>	ohre	en (trockener od	<u>er nasser</u>	Beton)																	
Tempe- ratur-	l:	35 °C / 60 °C	- Tp:	[N/mm ²]	7	7	7	7	6	6	6	7	7	7	7	7	7	5	5	5	5
bereich	II:	50 °C / 72 °C	- τ _{Rk,cr}	[14/11111]	7	7	7	7	6	6	6	7	7	7	7	7	7	5	5	5	5
Hammerk	ohre	en mit Standard-	oder Ho	hlbohrer ι	ınd l	Diar	nan	tboh	ren	(wa	ssei	gefü	illte	s Bo	hrlo	ch)					
Tempe- ratur-	l:	35 °C / 60 °C		[N/mm ²]	6	7,5	6,5	6,5	6,5	6	6	6	6	6	6	6	6	5	5	5	5
bereich	II:	50 °C / 72 °C	- τ _{Rk,cr}	[14/11111]	6	6,5	6,5	6	6	6	6	6	6	6	6	6	6	5	5	5	5
Montage	sens	sitivitätsfaktore	n																		
Trockene	r ode	er nasser Beton	- 26	[-]									1,0								
Wasserge	efüllt	es Bohrloch	- γinst	[]			1	,2								1,4					
Leistun	gsd	ektionssystem aten erkmale für die Z			n Be	etons	stah	ı									An	har	ng C	7	

Tabelle C8.1:	Leistungsmerkmale für die Zugtragfähigkeit von fischer
	Bewehrungsankern FRA im hammergebohrten oder diamantgebohrten
	Bohrloch; ungerissener oder gerissener Beton

Bohrloch	_		oder gerisse		or diamantgos	01111011
fischer Bewehrungsanker FF	RA		M12	M16	M20	M24
Kombiniertes Versagen durc	h Herau	ısziehen ı	und Betonausbi	ruch		
Rechnerischer Durchmesser	d	[mm]	12	16	20	25
Ungerissener Beton						
Charakteristische Verbundtr	agfähig	keit im un	igerissenen Bet	ton C20/25		
Hammerbohren mit Standard-	<u>oder Hol</u>	nlbohrer (t	rockener oder na	asser Beton)		
Tempe- I: 35 °C / 60 °C ratur-		[N/mm²]	15	14	13	12
bereich II: 50 °C / 72 °C	τ _{Rk,ucr}	[[14/11111]	14	13	12	12
Hammerbohren mit Standard-	oder Ho	hlbohrer (v	wassergefülltes E	Bohrloch)		
Tempe- I: 35 °C / 60 °C		50.1/21	14	12	11	10
ratur-	$ au_{Rk,ucr}$	[N/mm ²]	13	12	11	9
Diamantbohren (trockener ode	r nasser	Beton so	wie wassergefüll	tes Bohrloch)		
Tempe- I: 35 °C / 60 °C		27	13	12	10	9
ratur-	$ au_{Rk,ucr}$	[N/mm ²]	12	11	10	9
Montagesensitivitätsfaktorer	า					
Trockener oder nasser Beton		. 1		1	,0	
Wassergefülltes Bohrloch	γinst	[-]		1	,4	
Gerissener Beton						
Charakteristische Verbundtr						
Hammerbohren mit Standard-	<u>oder Ho</u>	<u>hlbohrer u</u>	ind Diamantbohr	<u>en (trockener ode</u>	er nasser Beton)	
Tempe- I: 35 °C / 60 °C ratur-	_	[N/mm²]	8	8	8	8
bereich II: 50 °C / 72 °C	$ au_{Rk,cr}$		8	8	8	8
Hammerbohren mit Standard-	oder Ho	hlbohrer u	ind Diamantbohr	en (wassergefüllt	tes Bohrloch)	
Tempe- I: 35 °C / 60 °C		[N]/pa 27	7	6	6	6
ratur- ————————————————————————————————————	$ au_{Rk,cr}$	[N/mm ²]	7	6	6	6
Montagesensitivitätsfaktorer	า					
Trockener oder nasser Beton	,	[.]		1	,0	
Wassergefülltes Bohrloch	γinst	[-]	1	,2	1,	4

fischer Injektionssystem FIS EM Plus	
Leistungsdaten Leistungsmerkmale für die Zugtragfähigkeit von fischer Bewehrungsankern FRA	Anhang C 8

Ankersta	ange	M8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Verschie	bungs-Faktor	en für Zu	iglast ¹⁾								
Ungeris	sener oder ger	issener l	Beton; T	emperati	urbereich	ı I, II					
$\delta_{N0-Faktor}$	[mm/(N/mm²)]	0,07	0,08	0,09	0,09	0,10	0,11	0,11	0,12	0,12	0,13
$\delta_{N_{\infty} ext{-}Faktor}$	[[[[[[]]	0,11	0,12	0,13	0,14	0,15	0,16	0,17	0,18	0,19	0,19
Verschie	bungs-Faktor	en für Qı	uerlast ²⁾								
Ungeris	sener oder ger	issener l	Beton; T	emperati	urbereich	ı I, II					
$\delta_{ extsf{V0-Faktor}}$	[mm/kN]	0,18	0,15	0,12	0,10	0,09	0,07	0,07	0,06	0,05	0,05
δ _{V∞-Faktor}	[mm/kN]	0,27	0,22	0,18	0,16	0,14	0,11	0,10	0,09	0,08	0,07

1) Berechnung der effektiven Verschiebung:

 $\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Faktor}} \, \cdot \, \tau_{\text{Ed}}$

 $(\tau_{Ed}$: Bemessungswert der einwirkenden Zugspannung)

²⁾ Berechnung der effektiven Verschiebung:

 $\delta_{V0} = \delta_{V0\text{-Faktor}} \cdot V_{Ed}$

 $\delta_{V^{\infty}} = \delta_{V^{\infty}\text{-Faktor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

Tabelle C9.2: Verschiebungen für fischer Innengewindeanker RG MI

Innenge RG MI	windeanker	М8	M10	M12	M16	M20
Verschie	bungs-Faktor	en für Zuglast ¹⁾				
Ungerise	sener oder ger	issener Beton; To	emperaturbereich	ı I, II		
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm ²)]	0,09	0,10	0,10	0,11	0,13
$\delta_{\text{N}\infty\text{-Faktor}}$	[[[[[[]]/[[]]]]]	0,13	0,15	0,16	0,17	0,19
Verschie	bungs-Faktor	en für Querlast ²⁾				
Ungerise	sener oder ger	issener Beton; To	emperaturbereich	ı I, II		
$\delta_{\text{V0-Faktor}}$	[mm/kN]	0,12	0,09	0,08	0,07	0,05
$\delta_{V\infty ext{-Faktor}}$	[mm/kN]	0,18	0,14	0,12	0,10	0,08

1) Berechnung	der	effektiven	Verschiebung
- Derecillulu	uei	enekuven	verschiebung

 $\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Faktor}} \, \cdot \, \tau_{\text{Ed}}$

 $(\tau_{\text{Ed}} \text{: Bemessungswert der}$ einwirkenden Zugspannung)

²⁾ Berechnung der effektiven Verschiebung:

 $\delta_{V0} = \delta_{V0\text{-Faktor}} \cdot V_{Ed}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Faktor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

fischer Injektionssystem FIS EM Plus

Leistungsdaten

Verschiebungen Ankerstangen und fischer Innengewindeanker RG MI

Anhang C 9

Stabnen	•	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
durchme	esser '														<u> </u>			
	bungs-Fakto sener oder ge	ricea	nor R	eton:	Tam	norat	urbor	eich										
$\delta_{N0-Faktor}$	[mm/(N/mm ²)	0.07	0.08	0.09	0.09	0.10	0.10	0.11	0.11	0.12	0.12	0.12	0.13	0.13	0.13	0.14	0.14	0.1
S _{N∞-Faktor}	[mm/(N/mm ²)	$ \frac{0,07}{0,11} $	0.12	0,13	0.14	0.15	0.16	0,16	0,17	0.18	0.18	0,18	0,19	0.19	0.20	0.20	0.21	0,2
	bungs-Fakto					,,,,,	,,,,	-,	-,	-,	-,	-,	-,	-,	-,	5,=5	, , , ,	-,-
	sener oder ge					perat	urber	eich	I, II									
δ _{V0-Faktor}	[may may / Le N. 17]	0,18	0,15	0,12	0,10	0,09	0,08	0,07	0,07	0,06	0,06	0,06	0,05	0,05	0,05	0,04	0,04	0,0
ე ე∞-Faktor	[mm/kN]	0,27	0,22	0,18	0,16	0,14	0,12	0,11	0,10	0,09	0,09	0,08	0,08	0,07	0,07	0,06	0,06	0,0
1) Bered	hnung der eff	ektive	n Ver	schiel	oung:			²⁾ B	erec	าทนทg	der e	effekt	ven \	/erscl	niebu	ng:		
$\delta_{N0} =$	$\delta_{\text{N0-Faktor}} \cdot \tau_{\text{Ed}}$							δ	$v_0 = \delta$	S _{V0-Fakt}	tor · V	Ēd						
$\delta_{N\infty} =$	$\delta_{\text{N}_{\text{M}-\text{Faktor}}} \cdot \tau_{\text{Ed}}$							δ	V∞ = 6	δ _{V∞-Fak}	_{ctor} · V	Ed						
	Bemessungsw									Beme:								
einwi	rkenden Zugs	oannu	ing)					е	einwir	kende	en Qu	erkra	ft)					
Tabelle	C10.2: Ve	rschi	iebu	nger	ı für	fisc	her E	3ewe	hru	ngsa	anke	r FR	Α					
iischer E	Bewehrungs-			110				Mac				MAGG				1.40	14	
anker FF				V112			ı	M16				M20				M2	24	
anker FF Verschie	RA bungs-Fakto		ir Zug	glast ¹⁾								M20				M2	24	
anker FF Verschie	RA		ir Zug ner B	glast ¹⁾ Seton;		perat	urber	eich	I, II									
anker FF Verschie	RA bungs-Fakto sener oder ge	rissei	ir Zug ner B	glast ¹⁾ Seton; 0,09		perat	urber	reich 0,10	I, II			0,11				0,1	12	
anker FF Verschie Ungeriss S _{N0-Faktor} S _{N∞-Faktor}	RA bungs-Fakto sener oder ge [mm/(N/mm²)	rissei	ir Zug ner B	glast ¹⁾ seton; 0,09 0,13	Tem	perat	urber	eich	I, II								12	
anker FF Verschie Ungeriss Š _{N0-Faktor} Š _{N∞-Faktor} Verschie	RA bungs-Fakto sener oder ge [mm/(N/mm²) bungs-Fakto	rissei 	ir Zug ner B 0 0 ir Que	glast ¹⁾ seton; 0,09 0,13 erlast	Tem		urber	reich 0,10 0,15				0,11				0,1	12	
anker FF Verschie Ungeriss Š _{No-Faktor} Š _{N∞-Faktor} Verschie Ungeriss	RA bungs-Fakto sener oder ge [mm/(N/mm²)	rissei 	ir Zug ner B 0 0 ir Que	glast ¹⁾ seton; 0,09 0,13 erlast seton;	Tem		turber	reich 0,10 0,15				0,11				0,1	12	
anker FF Verschie Ungeriss Š _{No-Faktor} Š _{N∞-Faktor} Verschie Ungeriss Š _{V0-Faktor}	RA bungs-Fakto sener oder ge [mm/(N/mm²) bungs-Fakto	rissei 	ir Zug ner B 0 0 ir Que ner B	glast ¹⁾ seton; 0,09 0,13 erlast seton; 0,12	Tem		turber	reich 0,10 0,15 reich 0,09				0,11				0,1	12	
Anker FF Verschie Ungeriss No-Faktor Verschie Ungeriss No-Faktor No-Faktor	ebungs-Fakto sener oder ge [mm/(N/mm²) bungs-Fakto sener oder ge [mm/kN]	rissei ren fü	ir Zug ner B 0 0 ir Que ner B	glast ¹⁾ 8eton; 0,09 0,13 8etlast 8eton; 0,12 0,18	Tem	perat	turber	reich 0,10 0,15 reich 0,09 0,14	I, II			0,11 0,16 0,07 0,11				0,1 0,1 0,0 0,0	12	
Anker FF /erschie Jngeriss No-Faktor /erschie Jngeriss No-Faktor Vo-Faktor	ebungs-Fakto sener oder ge [mm/(N/mm²) ebungs-Fakto sener oder ge	rissei ren fü	ir Zug ner B 0 0 ir Que ner B	glast ¹⁾ 8eton; 0,09 0,13 8etlast 8eton; 0,12 0,18	Tem	perat	turber	reich 0,10 0,15 reich 0,09 0,14	I, II	rechn	ung d	0,11 0,16 0,07 0,11		en Ve	rschie	0,1 0,1 0,0 0,0	12	
Anker FF Verschie Ungeriss No-Faktor Verschie Ungeriss Ovo-Faktor 1) Berec No =	Phungs-Fakto Sener oder ge [mm/(N/mm²) Phungs-Fakto Sener oder ge [mm/kN] Phung der eff δ _{NO-Faktor} · τ _{Ed}	rissei ren fü	ir Zug ner B 0 0 ir Que ner B	glast ¹⁾ 8eton; 0,09 0,13 8etlast 8eton; 0,12 0,18	Tem	perat	turber	reich 0,10 0,15 reich 0,09 0,14	I, II 2) Bei δνα	$\delta_{V0} = \delta_{V0}$)-Faktor	0,11 0,16 0,07 0,11 ler eff		en Ve	rschie	0,1 0,1 0,0 0,0	12	
Anker FF Verschie Jngeriss δ_{N0} -Faktor Verschie Jngeriss δ_{V0} -Faktor δ_{V0} -Faktor δ_{V0} -Faktor δ_{N0} -Faktor δ_{N0} = δ_{N0} =	chungs-Fakto sener oder ge $[mm/(N/mm^2)]$ chungs-Fakto sener oder ge $[mm/kN]$ chnung der eff $\delta_{N0\text{-Faktor}} \cdot \tau_{\text{Ed}}$ $\delta_{N\infty\text{-Faktor}} \cdot \tau_{\text{Ed}}$	risser ren fü risser	ir Zug ner B 0 0 ir Que ner B 0 0	glast ¹⁾ 8eton; 0,09 0,13 8etlast 8eton; 0,12 0,18	Tem	perat	turber	reich 0,10 0,15 reich 0,09 0,14	I, II 2) Be δνα δνο	$\delta_{V0} = \delta_{V0}$ $\delta_{V0} = \delta_{V0}$)-Faktor ∞-Faktor	0,11 0,16 0,07 0,11 der eff · V _{Ed}	ektive		rschie	0,1 0,1 0,0 0,0	12	
Anker FF Verschie Ungeriss δ_{N0} -Faktor Verschie Ungeriss δ_{V0} -Faktor δ_{V0} -Faktor 1) Berec $\delta_{N0} = 0$ $\delta_{N\infty} = 0$ $\delta_{N\infty} = 0$	Ebungs-Fakto sener oder ge [mm/(N/mm²) bungs-Fakto sener oder ge [mm/kN] chnung der eff δ _{N0-Faktor} · τ _{Ed} δ _{N∞-Faktor} · τ _{Ed} Semessungsw	risser ren fü risser ektive	ir Zug ner B 0 0 ir Que ner B 0 0	glast ¹⁾ 8eton; 0,09 0,13 8etlast 8eton; 0,12 0,18	Tem	perat	turber	reich 0,10 0,15 reich 0,09 0,14	I, II 2) Ber δνο δνο (V _E	$\delta_{\text{Vo}} = \delta_{\text{Vo}}$ $\delta_{\text{o}} = \delta_{\text{Vo}}$ δ_{ed} : Be)-Faktor ∞-Faktor mess	0,11 0,16 0,07 0,11 er eff · V _{Ed} · V _{Ed} ungsv	ektive		rschie	0,1 0,1 0,0 0,0	12	
anker FF Verschie Ungeriss $\delta_{No\text{-Faktor}}$ Verschie Ungeriss $\delta_{Vo\text{-Faktor}}$ $\delta_{Vo\text{-Faktor}}$ $\delta_{Vo\text{-Faktor}}$ $\delta_{No\text{-Faktor}}$	chungs-Fakto sener oder ge $[mm/(N/mm^2)]$ chungs-Fakto sener oder ge $[mm/kN]$ chnung der eff $\delta_{N0\text{-Faktor}} \cdot \tau_{\text{Ed}}$ $\delta_{N\infty\text{-Faktor}} \cdot \tau_{\text{Ed}}$	risser ren fü risser ektive	ir Zug ner B 0 0 ir Que ner B 0 0	glast ¹⁾ 8eton; 0,09 0,13 8etlast 8eton; 0,12 0,18	Tem	perat	turber	reich 0,10 0,15 reich 0,09 0,14	I, II 2) Ber δνο δνο (V _E	$\delta_{V0} = \delta_{V0}$ $\delta_{V0} = \delta_{V0}$)-Faktor ∞-Faktor mess	0,11 0,16 0,07 0,11 er eff · V _{Ed} · V _{Ed} ungsv	ektive		rschie	0,1 0,1 0,0 0,0	12	
Anker FF Verschie Ungeriss δ_{N0} -Faktor Verschie Ungeriss δ_{V0} -Faktor δ_{V0} -Faktor 1) Berec $\delta_{N0} = 0$ $\delta_{N\infty} = 0$ $\delta_{N\infty} = 0$	Ebungs-Fakto sener oder ge [mm/(N/mm²) bungs-Fakto sener oder ge [mm/kN] chnung der eff δ _{N0-Faktor} · τ _{Ed} δ _{N∞-Faktor} · τ _{Ed} Semessungsw	risser ren fü risser ektive	ir Zug ner B 0 0 ir Que ner B 0 0	glast ¹⁾ 8eton; 0,09 0,13 8etlast 8eton; 0,12 0,18	Tem	perat	turber	reich 0,10 0,15 reich 0,09 0,14	I, II 2) Ber δνο δνο (V _E	$\delta_{\text{Vo}} = \delta_{\text{Vo}}$ $\delta_{\text{o}} = \delta_{\text{Vo}}$ δ_{ed} : Be)-Faktor ∞-Faktor mess	0,11 0,16 0,07 0,11 er eff · V _{Ed} · V _{Ed} ungsv	ektive		rschie	0,1 0,1 0,0 0,0	12	
Anker FF Verschie Ungeriss δ_{N0} -Faktor Verschie Ungeriss δ_{V0} -Faktor δ_{V0} -Faktor 1) Berec $\delta_{N0} = 0$ $\delta_{N\infty} = 0$ $\delta_{N\infty} = 0$	Ebungs-Fakto sener oder ge [mm/(N/mm²) bungs-Fakto sener oder ge [mm/kN] chnung der eff δ _{N0-Faktor} · τ _{Ed} δ _{N∞-Faktor} · τ _{Ed} Semessungsw	risser ren fü risser ektive	ir Zug ner B 0 0 ir Que ner B 0 0	glast ¹⁾ 8eton; 0,09 0,13 8etlast 8eton; 0,12 0,18	Tem	perat	turber	reich 0,10 0,15 reich 0,09 0,14	I, II 2) Ber δνο δνο (V _E	$\delta_{\text{Vo}} = \delta_{\text{Vo}}$ $\delta_{\text{o}} = \delta_{\text{Vo}}$ δ_{ed} : Be)-Faktor ∞-Faktor mess	0,11 0,16 0,07 0,11 er eff · V _{Ed} · V _{Ed} ungsv	ektive		rschie	0,1 0,1 0,0 0,0	12	
Anker FF Verschie Ungeriss δ_{N0} -Faktor Verschie Ungeriss δ_{V0} -Faktor δ_{V0} -Faktor 1) Berec $\delta_{N0} = 0$ $\delta_{N\infty} = 0$ $\delta_{N\infty} = 0$	Ebungs-Fakto sener oder ge [mm/(N/mm²) bungs-Fakto sener oder ge [mm/kN] chnung der eff δ _{N0-Faktor} · τ _{Ed} δ _{N∞-Faktor} · τ _{Ed} Semessungsw	risser ren fü risser ektive	ir Zug ner B 0 0 ir Que ner B 0 0	glast ¹⁾ 8eton; 0,09 0,13 8etlast 8eton; 0,12 0,18	Tem	perat	turber	reich 0,10 0,15 reich 0,09 0,14	I, II 2) Ber δνο δνο (V _E	$\delta_{\text{Vo}} = \delta_{\text{Vo}}$ $\delta_{\text{o}} = \delta_{\text{Vo}}$ δ_{ed} : Be)-Faktor ∞-Faktor mess	0,11 0,16 0,07 0,11 er eff · V _{Ed} · V _{Ed} ungsv	ektive		rschie	0,1 0,1 0,0 0,0	12	
Anker FF Verschie Ungeriss δ_{N0} -Faktor Verschie Ungeriss δ_{V0} -Faktor δ_{V0} -Faktor 1) Berec $\delta_{N0} = 0$ $\delta_{N\infty} = 0$ $\delta_{N\infty} = 0$	Ebungs-Fakto sener oder ge [mm/(N/mm²) bungs-Fakto sener oder ge [mm/kN] chnung der eff δ _{N0-Faktor} · τ _{Ed} δ _{N∞-Faktor} · τ _{Ed} Semessungsw	risser ren fü risser ektive	ir Zug ner B 0 0 ir Que ner B 0 0	glast ¹⁾ 8eton; 0,09 0,13 8etlast 8eton; 0,12 0,18	Tem	perat	turber	reich 0,10 0,15 reich 0,09 0,14	I, II 2) Ber δνο δνο (V _E	$\delta_{\text{Vo}} = \delta_{\text{Vo}}$ $\delta_{\text{o}} = \delta_{\text{Vo}}$ δ_{ed} : Be)-Faktor ∞-Faktor mess	0,11 0,16 0,07 0,11 er eff · V _{Ed} · V _{Ed} ungsv	ektive		rschie	0,1 0,1 0,0 0,0	12	
Anker FF Verschie Ungeriss δ_{N0} -Faktor Verschie Ungeriss δ_{V0} -Faktor δ_{V0} -Faktor 1) Berec $\delta_{N0} = 0$ $\delta_{N\infty} = 0$ $\delta_{N\infty} = 0$	Ebungs-Fakto sener oder ge [mm/(N/mm²) bungs-Fakto sener oder ge [mm/kN] chnung der eff δ _{N0-Faktor} · τ _{Ed} δ _{N∞-Faktor} · τ _{Ed} Semessungsw	risser ren fü risser ektive	ir Zug ner B 0 0 ir Que ner B 0 0	glast ¹⁾ 8eton; 0,09 0,13 8etlast 8eton; 0,12 0,18	Tem	perat	turber	reich 0,10 0,15 reich 0,09 0,14	I, II 2) Ber δνο δνο (V _E	$\delta_{\text{Vo}} = \delta_{\text{Vo}}$ $\delta_{\text{o}} = \delta_{\text{Vo}}$ δ_{ed} : Be)-Faktor ∞-Faktor mess	0,11 0,16 0,07 0,11 er eff · V _{Ed} · V _{Ed} ungsv	ektive		rschie	0,1 0,1 0,0 0,0	12	
Anker FF Verschie Ungeriss δ_{N0} -Faktor Verschie Ungeriss δ_{V0} -Faktor δ_{V0} -Faktor 1) Berec $\delta_{N0} = 0$ $\delta_{N\infty} = 0$ $\delta_{N\infty} = 0$	Ebungs-Fakto sener oder ge [mm/(N/mm²) bungs-Fakto sener oder ge [mm/kN] chnung der eff δ _{N0-Faktor} · τ _{Ed} δ _{N∞-Faktor} · τ _{Ed} Semessungsw	risser ren fü risser ektive	ir Zug ner B 0 0 ir Que ner B 0 0	glast ¹⁾ 8eton; 0,09 0,13 8etlast 8eton; 0,12 0,18	Tem	perat	turber	reich 0,10 0,15 reich 0,09 0,14	I, II 2) Ber δνο δνο (V _E	$\delta_{\text{Vo}} = \delta_{\text{Vo}}$ $\delta_{\text{o}} = \delta_{\text{Vo}}$ δ_{ed} : Be)-Faktor ∞-Faktor mess	0,11 0,16 0,07 0,11 er eff · V _{Ed} · V _{Ed} ungsv	ektive		rschie	0,1 0,1 0,0 0,0	12	
anker FF Verschie Ungeriss $\delta_{No\text{-Faktor}}$ Verschie Ungeriss $\delta_{Vo\text{-Faktor}}$ $\delta_{Vo\text{-Faktor}}$ $\delta_{Vo\text{-Faktor}}$ $\delta_{No\text{-Faktor}}$	Ebungs-Fakto sener oder ge [mm/(N/mm²) bungs-Fakto sener oder ge [mm/kN] chnung der eff δ _{N0-Faktor} · τ _{Ed} δ _{N∞-Faktor} · τ _{Ed} Semessungsw	risser ren fü risser ektive	ir Zug ner B 0 0 ir Que ner B 0 0	glast ¹⁾ 8eton; 0,09 0,13 8etlast 8eton; 0,12 0,18	Tem	perat	turber	reich 0,10 0,15 reich 0,09 0,14	I, II 2) Ber δνο δνο (V _E	$\delta_{\text{Vo}} = \delta_{\text{Vo}}$ $\delta_{\text{o}} = \delta_{\text{Vo}}$ δ_{ed} : Be)-Faktor ∞-Faktor mess	0,11 0,16 0,07 0,11 er eff · V _{Ed} · V _{Ed} ungsv	ektive		rschie	0,1 0,1 0,0 0,0	12	
Anker FF Verschie Ungeriss δNo-Faktor Verschie Ungeriss δVo-Faktor 1) Berec δNo = δNo = (τEd: I einwi	Ebungs-Fakto sener oder ge [mm/(N/mm²) bungs-Fakto sener oder ge [mm/kN] chnung der eff δ _{N0-Faktor} · τ _{Ed} δ _{N∞-Faktor} · τ _{Ed} Semessungsw	ren fürisser ektiver	ir Zug ner B 0 ir Que ner B 0 0 n Vers	glast ¹⁾ seton; 0,09 0,13 erlast seton; 0,12 0,18 rschieb	Tem	perat	turber	reich 0,10 0,15 reich 0,09 0,14	I, II 2) Ber δνο δνο (V _E	$\delta_{\text{Vo}} = \delta_{\text{Vo}}$ $\delta_{\text{o}} = \delta_{\text{Vo}}$ δ_{ed} : Be)-Faktor ∞-Faktor mess	0,11 0,16 0,07 0,11 er eff · V _{Ed} · V _{Ed} ungsv	ektive		rschie	0,1 0,1 0,0 0,0	12	

Tabelle C11.1: Leistungsmerkmale für die Stahltragfähigkeit von fischer Ankerstangen und Standard-Gewindestangen für die seismische Leistungskategorie C1 oder C2

oder (C2											
Anker- / Gewindestange				M10	M12	M14	M16	M20	M22	M24	M27	M30
Zugtragfähigkeit, Stahlve	ersagen ¹⁾											
fischer Ankerstangen un	d Standard-	Gev	vindes	stange	n, Leist	ungska	ategori	e C1				
្នុំ ក្ន Stahl verzinkt		5.8		29	43	58	79	123	152	177	230	281
No. Stahl verzinkt		8.8		47	68	92	126	196	243	282	368	449
Nichtrostender	Festigkeits- klasse	50	[kN]	29	43	58	79	123	152	177	230	281
Charakt: Widerakt: Widerakt: Wichtrostender Stahl A4 und Hochkorrosions-	Riadoo	70		41	59	81	110	172	212	247	322	393
beständiger Stahl C		80		47	68	92	126	196	243	282	368	449
fischer Ankerstangen un	d Standard-	Gev	vinde	stange	n, Leist	ungska	ategori	e C2				
L or Otable cominder		5.8		-	39	-	72	108	-	177	-	-
Stahl verzinkt		8.8		-	61	-	116	173	-	282	-	-
THE Nichtrostender Stahl A4 und	Festigkeits- klasse	50	[-]	-	39	-	72	108	-	177	-	-
Character Stahl Value of Stahl Value	Nia O O O	70		-	53	-	101	152	-	247	-	-
beständiger Stahl C		80		-	61	-	116	173	-	282	-	-
Quertragfähigkeit, Stahlv	ersagen oh	ne F	lebela	arm ¹⁾								
fischer Ankerstangen, Le	eistungskate	egor	ie C1									
ច់ ៦ Stahl verzinkt		5.8		15	21	29	39	61	76	89	115	141
5 Stahl verzinkt		8.8		23	34	46	63	98	122	141	184	225
Nichtrostender	Festigkeits- klasse	50	[kN]	15	21	29	39	61	76	89	115	141
Nichtrostender Pusts Stahl A4 und Hochkorrosions- hoctgadiger Stahl C		70		20	30	40	55	86	107	124	161	197
beständiger Stahl C		80		23	34	46	63	98	122	141	184	225
Standard-Gewindestange	en, Leistung	gska	tegor	ie C1								
ច់ ៦ Stahl verzinkt		5.8		11	15	20	27	43	53	62	81	99
Stahl verzinkt		8.8		16	24	32	44	69	85	99	129	158
	Festigkeits- klasse	50	[kN]	11	15	20	27	43	53	62	81	99
Type Postandinar Stabl C		70		14	21	28	39	60	75	87	113	138
beständiger Stahl C		80		16	24	32	44	69	85	99	129	158
fischer Ankerstangen un	d Standard-	Gev	vindes	stange	n, Leist	ungska	ategori	e C2				
ູ່ ອ ເຮັ Stahl verzinkt		5.8		-	14	-	27	43	-	62	-	-
Stahl verzinkt		8.8		-	22	-	44	69	-	99	-	-
	Festigkeits- klasse	50	[-]	-	14	-	27	43	-	62	-	-
Type Stahl A4 und Hochkorrosions- hoctgrigger Stahl C		70		-	20	-	39	60	-	87	-	-
beständiger Stahl C		80		-	22	-	44	69	-	99	-	-
1) Teilsicherheitsbeiwerte									2;			

^{&#}x27;' Teilsicherheitsbeiwerte für die Leistungskategorie C1 oder C2 siehe Tabelle C12.2 für fischer Ankerstangen FIS A / RGM beträgt der Duktilitätsfaktor für Stahl 1,0

fischer Injektionssystem FIS EM Plus

Leistungsdaten

Leistungsmerkmale für die Stahltragfähigkeiten von fischer Ankerstangen und Standard-Gewindestangen unter seismischer Einwirkung (Leistungskategorie C1 / C2)

Anhang C 11

Tabelle C12.1: Leistungsmerkmale für die Stahltragfähigkeit von Betonstahl (B500B) für die seismische Leistungskategorie C1

Zugtragfähigkeit, Stahlversagen¹⁾

Betonstabstahl B500B nach DIN 488-2:2009-08, Leistungskategorie C1

Charakteristischer Widerstand N_{Rks,C1} [kN] 44 63 85 111 140 173 209 249 270 292 339 389 443

Quertragfähigkeit, Stahlversagen ohne Hebelarm¹⁾

Betonstabstahl B500B nach DIN 488-2:2009-08, Leistungskategorie C1

Charakteristischer Widerstand V⁰_{Rk,s,C1} [kN] 15 22 30 39 49 61 74 88 95 102 119 137 155

Tabelle C12.2: Widerstandsbeiwerte von fischer Ankerstangen, Standard-Gewindestangen und Betonstahl (B500B) für die seismische Leistungskategorie C1 oder C2

Ank	Anker- / Gewindestange							M10 M12		M	116	M20	M	22	M24	M2	7	M30
Stabnenndurchmesser φ							12	14	16	18	20	22	24	25	26	28	30	32
Zug	gtragfähigke	eit, Stahlve	ersagen ¹⁾															
ərt	Stahl verz		5.8	.8 1,50														
eiwe	Starii verz	ZITIKL		8.8		1,50												
qsp	40	Nichtrostender Stahl A4 und Hochkorrosions- beständiger Stahl C Betonstahl		eits-50			2,86											
Widerstandsbeiwert	Stahl A4 u			70	[-]						1,5	$50^{2)} / 1$,87					
ider				80		1,60												
>	Betonstah			500B								1,40						
Que	ertragfähigk	eit, Stahlv	ersagen ¹⁾															
ərt	Stabl vor	Ohalala sa walsalat		5.8		1,25												
eiwe	Starii verz	Stahl verzinkt		8.8								1,25						
qsp	10	Nichtrostender		50	. 1	2,38												
stan		Stahl A4 und Hochkorrosions-	klasse	70	[-]	1,25 ²⁾ / 1,56												
Widerstandsbeiwert		beständiger Stahl C		80								1,33						
8	Betonstah	Betonstahl		B500B								1,50						

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

fischer Injektionssystem FIS EM Plus

Leistungsdaten

Leistungsmerkmale der Stahltragfähigkeiten von Betonstahl unter seis-mischer Einwirkung (Leistungskat. C1) sowie Teilsicherheitsbeiwerte (Leistungskat. C1 / C2)

Anhang C 12

¹⁾ Widerstandsbeiwerte für die Leistungskategorie C1 siehe Tabelle C12.2

²⁾ Nur zulässig für Stahl C, mit f_{vk} / $f_{uk} \ge 0.8$ und $A_5 > 12$ % (z.B. fischer Ankerstangen)

Tabelle C13.1: Leistungsmerkmale für die Tragfähigkeit von fischer Ankerstangen und
Standard-Gewindestangen für die seismische Leistungskategorie C1 im
hammergebohrten Bohrloch

Anker- / Gewindestange						M12	M14	M16	M20	M22	M24	M27	M30	
Charakte	eristi	sche Verbundtr	agfähig	keit, koml	binierte	s Vers	agen d	urch H	erauszi	ehen u	nd Bet	onausb	ruch	
Hammer	Hammerbohren mit Standard- oder Hohlbohrer (trockener oder nasser Beton)													
Tempe-	l:	35 °C / 60 °C	_	[N/mm²]	7,0	7,0	6,7	6,0	5,7	6,7	6,7	6,7	6,7	
ratur- bereich	II:	50 °C / 72 °C	τ _{Rk,C1}		7,0	7,0	6,7	5,7	5,7	6,7	6,7	6,7	6,7	
Hammer	Hammerbohren mit Standard- oder Hohlbohrer (wassergefülltes Bohrloch)													
Tempe-	l:	: 35 °C / 60 °C	_	[N/mm²]	7,5	7,5	6,5	5,7	5,7	5,7	5,7	5,7	5,7	
ratur- bereich	II:	50 °C / 72 °C	τ _{Rk,C1}		6,8	6,8	6,5	5,7	5,7	5,7	5,7	5,7	5,7	
Montage	sens	sitivitätsfaktorei	า											
Zugtragf	ähig	keit												
Trockene	er ode	er nasser Beton		r 1					1,0					
Wassergefülltes Bohrloch γins			γinst	[-]		1	,2		1,4					
Quertrag	fähi	gkeit												
Alle Einbaubedingungen γ _{inst}				[-]	1,0									

Tabelle C13.2: Leistungsmerkmale für die **Tragfähigkeit** von **Betonstahl** für die seismische Leistungskategorie **C1** im hammergebohrten Bohrloch

Stabnenndurchmesser	ф	10	12	14	16	18	20	22	24	25	26	28	30	32	
Charakteristische Verbundtra	agfähigl	keit, koml	oinie	rtes \	/ersa	igen	durc	h He	rausz	iehe	n und	d Bet	onau	ısbru	ch
Hammerbohren mit Standard- oder Hohlbohrer (trockener oder nasser Beton)															
Tempe- I: 35 °C / 60 °C		[N/mm²] -	7,0	7,0	6,7	5,7	5,7	5,7	6,7	6,7	6,7	6,7	6,7	6,7	4,8
bereich II: 50 °C / 72 °C	τ _{Rk,C1}		7,0	7,0	6,7	5,7	5,7	5,7	6,7	6,7	6,7	6,7	6,7	6,7	4,8
Hammerbohren mit Standard- oder Hohlbohrer (wassergefülltes Bohrloch)															
Tempe- I: 35 °C / 60 °C	_	[N/mm ²]	7,5	6,5	6,5	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	4,8
bereich II: 50 °C / 72 °C	τ _{Rk,C1}		6,5	6,5	5,8	5,8	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	4,8
Montagesensitivitätsfaktoren	1														
Zugtragfähigkeit															
Trockener oder nasser Beton		1,0													
Wassergefülltes Bohrloch	γ inst	[-]	1,2					1,4							
Quertragfähigkeit															
Alle Einbaubedingungen	γ inst	[-]							1,0						

fischer Injektionssystem FIS EM Plus	
Leistungen Leistungsmerkmale unter seismischer Einwirkung (Leistungskategorie C1) für fischer Ankerstangen, Standard-Gewindestangen und Betonstahl	Anhang C 13

Tabelle C14.1: Leistungsmerkmale für die Tragfähigkeit von fischer Ankerstangen und
Standard-Gewindestangen für die seismische Leistungskategorie C2 im
hammergebohrten Bohrloch

Anker- / (Gewindestange			M12	M16	M20	M24				
Charakte	eristische Verbundtra	gfähigl	ceit, kom	biniertes Versagen durch Herausziehen und Betonausbru							
Hammerl	bohren mit Standard	oder F	lohlbohre	er (trockener od	ler nasser Betoi	1)					
Tempe-	I: 35 °C / 60 °C		[N/mm²]	2,2	3,5	1,8	2,4				
ratur bereich	II: 50 °C / 72 °C	τ _{Rk,C2}	[M/MM]	2,2	3,5	1,8	2,4				
Hammerl	bohren mit Standard	oder F	lohlbohre	er (wassergefül	ltes Bohrloch)						
Tempe-	I: 35 °C / 60 °C	_	[N]/23	2,3	3,5	1,8	2,1				
ratur bereich	II: 50 °C / 72 °C	τ _{Rk,C2}	[N/mm²]	2,3	3,5	1,8	2,1				
Montagesensitivitätsfaktoren											
Zugtragf	ähigkeit										
Trockene	r oder nasser Beton	.,	[_]	1,0							
Wasserge	efülltes Bohrloch	γ̃inst	[-]	1	,2	1,	1,4				
Quertrag	fähigkeit										
Alle Einba	aubedingungen	γ_{inst}	[-]	1,0							
Verschie	bungen unter Zuglas	t ¹⁾									
$\delta_{N,(DLS) ext{-}Fak}$	tor	[mm/	(N1/mm ²)]	0,09	0,10	0,11	0,12				
$\delta_{ extsf{N,(ULS)-Fak}}$	tor		(N/mm ²)]	0,15	0,17	0,17	0,18				
Verschie	bungen unter Querla	st ²⁾									
$\delta_{V,(DLS) ext{-}Faktor}$			m/kNI	0,18	0,10	0,07	0,06				
$\delta_{ m V,(ULS)-Fakt}$		[m	m/kN]	0,25	0,14	0,11	0,09				

1) Berechnung der effektiven Verschiebung:

$$\begin{split} \delta_{\text{N,(DLS)}} &= \delta_{\text{N,(DLS)-Faktor}} \cdot \tau_{\text{Ed}} \\ \delta_{\text{N,(ULS)}} &= \delta_{\text{N,(ULS)-Faktor}} \cdot \tau_{\text{Ed}} \end{split}$$

(τ_{Ed}: Bemessungswert der einwirkenden Zugspannung) $\delta_{\text{V,(DLS)}} = \delta_{\text{V,(DLS)-Faktor}} \cdot V_{\text{Ed}}$

 $\delta_{\text{V,(ULS)}} = \delta_{\text{V,(ULS)-Faktor}} \cdot \textbf{V}_{\text{Ed}}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

fischer Injektionssystem FIS EM Plus

Leistungen

Leistungsmerkmale unter seismischer Einwirkung (Leistungskategorie C2) für fischer Ankerstangen und Standard-Gewindestangen

Anhang C 14

²⁾ Berechnung der effektiven Verschiebung: