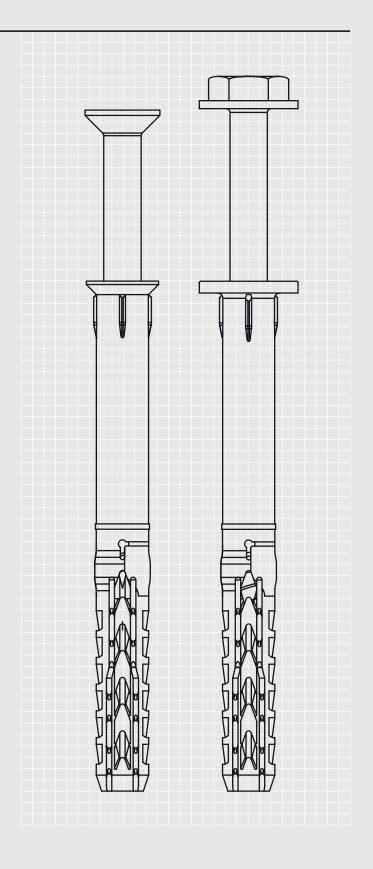
Europäische Technische Zulassung ETA-07/0121

fischer Langschaftdübel SXR

als Mehrfachbefestigung von nicht tragenden Systemen zur Verankerung in Beton und Mauerwerk



Technical Report TR 020

Zul.-Nr. ETA-07/0121 Geltungsdauer bis 19. Dez. 2012.

Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit ETAG 020 Leitlinie für die europäische technische Zulassung für "Kunststoffdübel als Mehrfachbefestigung von nichttragenden Systemen zur Verankerung im Beton und Mauerwerk", Anhang C.

Lieferprogramm fischer Langschaftdübel SXR

Technical Report TR 020

Zul.-Nr. ETA-07/0121 Geltungsdauer bis 19. Dezember 2012.

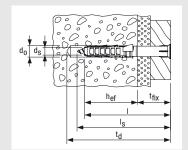
Befestigungssätze mit fischer Sicherheitsschraube, galvanisch verzinkt bzw. Edelstahl A4

SXR-Z bzw. SXR-T

mit galv. verzinkter fischer Sicherheitsschraube für Pozi-Bit bzw. Torx-Bit

SXR-T

mit vormontierter fischer Sicherheitsschraube mit Senkkopf für Torx-Bit

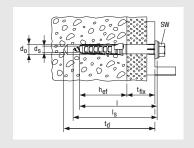


SXR-FUS

mit vormontierter fischer Sicherheitsschraube mit 6-kant-Kopf für Torx-Bit und angeprägter U-Scheibe

SXR-Z mit galv. verz. fischer Sicherheitsschrauben für Pozi-Bit

Тур	ArtNr.	Bohrer- durchmesser	min. Bohrlochtiefe bei Durchsteck- montage	min. Verankerungs- tiefe	Dübellänge	max. Nutzlänge	Schrauben- abmessung	Antrieb	Verpackung
		d_0	t _d	h _{ef}	1	t fix	$d_s x I_s$	4	
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	Bit	[Stück]
SXR 8 x 60 Z	503346	8	70	50	60	10	6 x 65	PZ3	50
SXR 8 x 80 Z	503350	8	90	50	80	30	6 x 85	PZ3	50
SXR 8 x 100 Z	503351	8	110	50	100	50	6 x 105	PZ3	50
SXR 8 x 120 Z	503353	8	130	50	120	70	6 x 125	PZ3	50

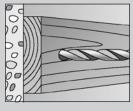

SXR-T mit galv. verz. fischer Sicherheitsschrauben mit Senkkopf

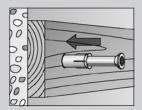
SXR-T A4 mit fischer Sicherheitsschrauben mit Senkkopf aus nicht rostendem Stahl A4

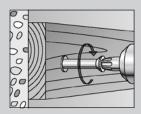
Тур	ArtNr. Bohre durchme		min. Bohrlochtiefe bei Durchsteck- montage	min. Verankerungs- tiefe	Dübellänge	max. Nutzlänge	Schrauben- abmessung	Antrieb	Verpackung
		d_0	t _d	h _{ef}	1	t fix	$d_s \times I_s$	\bigcirc	
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	Bit	[Stück]
SXR 8 x 60 T	502999	8	70	50	60	10	6 x 65	T30	50
SXR 8 x 80 T	503000	8	90	50	80	30	6 x 85	T30	50
SXR 8 x 100 T	503001	8	110	50	100	50	6 x 105	T30	50
SXR 8 x 120 T	503002	8	130	50	120	70	6 x 125	T30	50
SXR 10 x 80 T	46263	10	90	50	80	30	7 x 87	T40	50
SXR 10 x 100 T	46264	10	110	50	100	50	7 x 107	T40	50
SXR 10 x 120 T	46265	10	130	50	120	70	7 x 127	T40	50
SXR 10 x 140 T	46266	10	150	50	140	90	7 x 147	T40	50
SXR 10 x 160 T	46267	10	170	50	160	110	7 x 167	T40	50
SXR 10 x 180 T	46268	10	190	50	180	130	7 x 187	T40	50
SXR 10 x 200 T	46269	10	210	50	200	150	7 x 207	T40	50
SXR 10 x 230 T	46270	10	240	50	230	180	7 x 237	T40	50
SXR 10 x 260 T	46271	10	270	50	260	210	7 x 267	T40	50
SXR 10 x 80 T A4	46272	10	90	50	80	30	7 x 87	T40	50
SXR 10 x 100 T A4	46274	10	110	50	100	50	7 x 107	T40	50
SXR 10 x 120 T A4	46278	10	130	50	120	70	7 x 127	T40	50
SXR 10 x 140 T A4	46279	10	150	50	140	90	7 x 147	T40	50
SXR 10 x 160 T A4	46283	10	170	50	160	110	7 x 167	T40	50
SXR 10 x 180 T A4	46285	10	190	50	180	130	7 x 187	T40	50
SXR 10 x 200 T A4	46286	10	210	50	200	150	7 x 207	T40	50
SXR 10 x 230 T A4	46287	10	240	50	230	180	7 x 237	T40	50
SXR 10 x 260 T A4	46288	10	270	50	260	210	7 x 267	T40	50

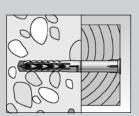
SXR-FUS mit galv. verz. fischer Sicherheits-6-kant-Schrauben für Torx-Bit mit angeprägter U-Scheibe SXR-FUS A4 mit fischer Sicherheits-6-kant-Schrauben für Torx-Bit mit angeprägter Scheibe aus nicht rostendem Stahl A4

Тур		ArtNr.	Bohrer- durchmesser	min. Bohrlochtiefe bei Durchsteck- montage	min. Verankerungs- tiefe	Dübellänge	max. Nutzlänge	Schrauben- abmessung	Antrieb	Verpackung
			d_0	t _d	h _{ef}	1	t _{fix}	$d_s \times I_s$	Bit 🔘	
			[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	SW 🔘	[Stück]
SXR 10 x 52 FUS LS	1)	502456	10	42	50	52	2	7 x 61	T40/SW13	50
SXR 10 x 60 FUS		46329	10	70	50	60	10	7 x 69	T40/SW13	50
SXR 10 x 80 FUS		46330	10	90	50	80	30	7 x 89	T40/SW13	50
SXR 10 x 100 FUS		46331	10	110	50	100	50	7 x 109	T40/SW13	50
SXR 10 x 120 FUS		46332	10	130	50	120	70	7 x 129	T40/SW13	50
SXR 10 x 140 FUS		46333	10	150	50	140	90	7 x 149	T40/SW13	50
SXR 10 x 160 FUS		46334	10	170	50	160	110	7 x 169	T40/SW13	50
SXR 10 x 180 FUS		46335	10	190	50	180	130	7 x 189	T40/SW13	50
SXR 10 x 200 FUS		46336	10	210	50	200	150	7 x 209	T40/SW13	50
SXR 10 x 230 FUS		46337	10	240	50	230	180	7 x 239	T40/SW13	50
SXR 10 x 260 FUS		46338	10	270	50	260	210	7 x 269	T40/SW13	50
SXR 10 x 60 FUS A4		46339	10	70	50	60	10	7 x 69	T40/SW13	50
SXR 10 x 80 FUS A4		46340	10	90	50	80	30	7 x 89	T40/SW13	50
SXR 10 x 100 FUS A4		46342	10	110	50	100	50	7 x 109	T40/SW13	50
SXR 10 x 120 FUS A4		46343	10	130	50	120	70	7 x 129	T40/SW13	50
SXR 10 x 140 FUS A4		46344	10	150	50	140	90	7 x 149	T40/SW13	50
SXR 10 x 160 FUS A4		46345	10	170	50	160	110	7 x 169	T40/SW13	50
SXR 10 x 180 FUS A4		46361	10	190	50	180	130	7 x 189	T40/SW13	50
SXR 10 x 200 FUS A4		46362	10	210	50	200	150	7 x 209	SW13	50
SXR 10 x 230 FUS A4		46363	10	240	50	230	180	7 x 239	SW13	50
SXR 10 x 260 FUS A4		46364	10	270	50	260	210	7 x 269	SW13	50

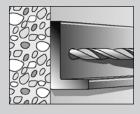

GBS Porenbetonstößel

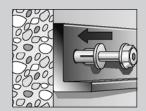


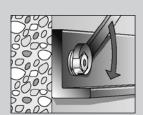

Тур		ArtNr.	Bohrloch	min. Bohrlochtiefe bei Durchsteckmontage	passend zu	Verpackung
			d_0	t_d		
			[Ø mm]	[mm]		[Stück]
GBS 10 x 80	1)	050590	9	85	SXR 10 x 52, SXR 10 x 60, SXR 10 x 80	1
GBS 10 x 100	1)	050591	9	105	SXR 10 x 100	1
GBS 10 x 135	1)	050591	9	140	SXR 10 x 120	1
GBS 10 x 160	1)	050594	9	165	SXR 10 x 140, SXR 10 x 160	1
GBS 10 x 185	1)	050595	9	190	SXR 10 x 180	1
GBS 10 x 230	1)	050596	9	235	SXR 10 x 200, SXR 10 x 230	1

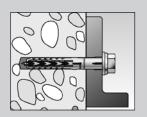

 $^{^{11}}$ Für Befestigungen in Porenbeton mit einem Nennwert der Druckfestigkeit $f_{ck} < 4 \text{ N/mm}^2$ ist das Bohrloch mit dem zugehörigen Porenbetonstößel herzustellen.

Für Holzkonstruktionen









Für Metallkonstruktionen

¹⁾ nicht vormontiert

Deutsches Institut für Bautechnik

Anstalt des öffentlichen Rechts

Kolonnenstr. 30 L 10829 Berlin Deutschland

Tel.: +49(0)30 787 30 0 Fax: +49(0)30 787 30 320 E-mail: dibt@dibt.de Internet: www.dibt.de

Mitglied der EOTA

Member of EOTA

Europäische Technische Zulassung ETA-07/0121

Handelsbezeichnung

Trade name

Zulassungsinhaber Holder of approval

Zulassungsgegenstand und Verwendungszweck

Generic type and use of construction product

Geltungsdauer: vom Validity: from

bis to

Herstellwerk

Manufacturing plant

fischer Rahmendübel SXR

fischer long shaft fixing SXR

fischerwerke GmbH & Co. KG Weinhalde 14-18 72178 Waldachtal DEUTSCHLAND

Kunststoffdübel als Mehrfachbefestigung von nichttragenden Systemen zur Verankerung im Beton und Mauerwerk

Plastic anchor for multiple use in concrete and masonry for non-structural applications

13. Oktober 2009

19. Dezember 2012

fischerwerke GmbH & Co. KG Weinhalde 14-18 72178 Waldachtal DEUTSCHLAND

Diese Zulassung umfasst This Approval contains 29 Seiten einschließlich 17 Anhänge 29 pages including 17 annexes

Diese Zulassung ersetzt This Approval replaces ETA-07/0121 mit Geltungsdauer vom 30.01.2009 bis 19.12.2012 ETA-07/0121 with validity from 30.01.2009 to 19.12.2012

Europäische Organisation für Technische Zulassungen European Organisation for Technical Approvals

I RECHTSGRUNDLAGEN UND ALLGEMEINE BESTIMMUNGEN

- Diese europäische technische Zulassung wird vom Deutschen Institut für Bautechnik erteilt in Übereinstimmung mit:
 - der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte¹, geändert durch die Richtlinie 93/68/EWG des Rates² und durch die Verordnung (EG) Nr. 1882/2003 des Europäischen Parlaments und des Rates³:
 - dem Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, zuletzt geändert durch die Verordnung vom 31. Oktober 2006⁵:
 - den Gemeinsamen Verfahrensregeln für die Beantragung, Vorbereitung und Erteilung von europäischen technischen Zulassungen gemäß dem Anhang zur Entscheidung 94/23/EG der Kommission⁶;
 - der Leitlinie für die europäische technische Zulassung für "Kunststoffdübel als Mehrfachbefestigung von nichttragenden Systemen zur Verankerung im Beton und Mauerwerk - Teil 1: Allgemeines", ETAG 020-01.
- Das Deutsche Institut für Bautechnik ist berechtigt zu prüfen, ob die Bestimmungen dieser europäischen technischen Zulassung erfüllt werden. Diese Prüfung kann im Herstellwerk erfolgen. Der Inhaber der europäischen technischen Zulassung bleibt jedoch für die Konformität der Produkte mit der europäischen technischen Zulassung und deren Brauchbarkeit für den vorgesehenen Verwendungszweck verantwortlich.
- Diese europäische technische Zulassung darf nicht auf andere als die auf Seite 1 aufgeführten Hersteller oder Vertreter von Herstellern oder auf andere als die auf Seite 1 dieser europäischen technischen Zulassung genannten Herstellwerke übertragen werden.
- Das Deutsche Institut für Bautechnik kann diese europäische technische Zulassung widerrufen, insbesondere nach einer Mitteilung der Kommission aufgrund von Art. 5 Abs. 1 der Richtlinie 89/106/EWG.
- Diese europäische technische Zulassung darf auch bei elektronischer Übermittlung nur ungekürzt wiedergegeben werden. Mit schriftlicher Zustimmung des Deutschen Instituts für Bautechnik kann jedoch eine teilweise Wiedergabe erfolgen. Eine teilweise Wiedergabe ist als solche zu kennzeichnen. Texte und Zeichnungen von Werbebroschüren dürfen weder im Widerspruch zu der europäischen technischen Zulassung stehen noch diese missbräuchlich verwenden.
- Die europäische technische Zulassung wird von der Zulassungsstelle in ihrer Amtssprache erteilt. Diese Fassung entspricht der in der EOTA verteilten Fassung. Übersetzungen in andere Sprachen sind als solche zu kennzeichnen.

_

¹ Amtsblatt der Europäischen Gemeinschaften L 40 vom 11. Februar 1989, S. 12

² Amtsblatt der Europäischen Gemeinschaften L 220 vom 30. August 1993, S. 1

³ Amtsblatt der Europäischen Union L 284 vom 31. Oktober 2003, S. 25

⁴ Bundesgesetzblatt Teil I 1998, S. 812

⁵ Bundesgesetzblatt Teil I 2006, S. 2407, 2416

⁶ Amtsblatt der Europäischen Gemeinschaften L 17 vom 20. Januar 1994, S. 34

II BESONDERE BESTIMMUNGEN DER EUROPÄISCHEN TECHNISCHEN ZULASSUNG

1 Beschreibung des Produkts und des Verwendungszwecks

1.1 Beschreibung des Bauprodukts

Der fischer Langschaftdübel in den Größen SXR 8 und SXR 10 ist ein Kunststoffdübel bestehend aus einer Dübelhülse aus Polyamid und einer zugehörigen Spezialschraube aus galvanisch verzinktem Stahl, aus galvanisch verzinktem Stahl mit zusätzlicher Duplex-Beschichtung oder nichtrostendem Stahl.

Die Dübelhülse wird durch das Eindrehen der Spezialschraube, die die Hülse gegen die Bohrlochwandung presst, verspreizt.

Im Anhang 1 ist der Dübel im eingebauten Zustand dargestellt.

1.2 Verwendungszweck

Der Dübel ist für Verwendungen vorgesehen, bei denen Anforderungen an die Nutzungssicherheit im Sinne der wesentlichen Anforderung 4 der Richtlinie 89/106/EWG zu erfüllen sind und bei denen ein Versagen des zu befestigenden Bauteils eine unmittelbare Gefahr für Leben oder Gesundheit von Menschen darstellt.

Der Dübel darf nur für die Verwendung als Mehrfachbefestigung von nichttragenden Systemen in Beton und Mauerwerk verwendet werden. Der Verankerungsgrund darf aus bewehrtem oder unbewehrtem Normalbeton der Festigkeitsklasse von mindestens C12/15 nach EN 206-1:2000-12 und aus Mauerwerkswänden nach Anhang 6, 7, 8, 9 und 10 bestehen. Der Dübel darf im gerissenen oder ungerissenen Beton verwendet werden. Der Mörtel des Mauerwerks muss mindestens der Druckfestigkeitsklasse M 2,5 gemäß EN 998-2:2003 entsprechen.

Der Dübeltyp SXR 10 darf auch in Mauerwerkswänden aus (ungerissenen) Porenbeton Blöcken (AAC) gemäß Anhang 16 und 17 verwendet werden.

Bei der Verwendung von Dübeln für Mehrfachbefestigungen wird davon ausgegangen, dass im Falle von übermäßigem Schlupf oder Versagen eines Dübels die Last auf benachbarte Dübel übertragen werden kann und hierbei nicht wesentlich von den Anforderungen an das zu befestigende Bauteil bezüglich des Grenzzustandes der Gebrauchstauglichkeit und der Tragfähigkeit abgewichen wird.

Die Mehrfachbefestigung kann durch die Anzahl n_1 von Befestigungsstellen zur Befestigung des Bauteils und die Anzahl n_2 von Dübeln je Befestigungsstelle spezifiziert werden. Außerdem ist durch die Festlegung des Bemessungswertes der Einwirkungen N_{Sd} einer Befestigungsstelle auf einen Wert $\leq n_3$ (kN) sichergestellt, dass die Anforderungen an die Festigkeit und Steifigkeit des zu befestigenden Bauteils eingehalten sind und die Lastübertragung bei übermäßigem Schlupf oder Versagen eines Dübels in der Bemessung des zu befestigenden Bauteils nicht berücksichtigt werden muss.

Für n₁, n₂ und n₃ dürfen die folgenden Grenzwerte verwendet werden:

$$n_1 \ge 4$$
; $n_2 \ge 1$ und $n_3 \le 4,5 \text{ kN}$ oder $n_1 \ge 3$; $n_2 \ge 1$ und $n_3 \le 3,0 \text{ kN}$.

Der Dübel darf in Beton gemäß Abschnitt 4.2.1.2 mit Anforderungen an den Brandschutz verwendet werden.

Die Spezialschraube aus galvanisch verzinktem Stahl oder galvanisch verzinktem Stahl mit zusätzlicher Duplex-Beschichtung darf nur in Bauteilen unter den Bedingungen trockener Innenräume verwendet werden.

Z37380.09 Deutsches Institut für Bautechnik 8.06.04-23/09

Die Spezialschraube aus nichtrostendem Stahl darf in Bauteilen unter den Bedingungen trockener Innenräume sowie auch im Freien (einschließlich Industrieatmosphäre und Meeresnähe) oder in Feuchträumen verwendet werden, wenn keine besonders aggressiven Bedingungen vorliegen. Zu diesen besonders aggressiven Bedingungen gehören z. B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Die Spezialschraube aus galvanisch verzinktem Stahl oder galvanisch verzinktem Stahl mit zusätzlicher Duplex-Beschichtung darf auch im Freien verwendet werden, wenn nach sorgfältigem Einbau der Befestigungseinheit der Bereich des Schraubenkopfes gegen Feuchtigkeit und Schlagregen so geschützt wird, dass ein Eindringen von Feuchtigkeit in den Dübelschaft nicht möglich ist. Dafür ist vor dem Schraubenkopf eine Fassadenbekleidung oder eine vorgehängte hinterlüftete Fassade zu befestigen und der Schraubenkopf selbst mit einer weichplastischen dauerelastischen Bitumen-Öl-Kombinationsbeschichtung (z. B. Kfz-Unterboden- bzw. Hohlraumschutz) anzustreichen.

Der Dübel darf in den folgenden Temperaturbereichen verwendet werden:

Temperaturbereich b): -40 °C bis +80 °C (max. Langzeit-Temperatur +50 °C und

max. Kurzzeit-Temperatur +80 °C)

Temperaturbereich c): -40 °C bis +50 °C (max. Langzeit-Temperatur +30 °C und

max. Kurzzeit-Temperatur +50 °C)

Die Anforderungen dieser europäischen technischen Zulassung beruhen auf der Annahme einer vorgesehenen Nutzungsdauer des Dübels von 50 Jahren. Die Angaben über die Nutzungsdauer können nicht als Herstellergarantie ausgelegt werden, sondern sind lediglich als Hilfsmittel zur Auswahl des richtigen Produkts angesichts der erwarteten wirtschaftlich angemessenen Nutzungsdauer des Bauwerks zu betrachten.

2 Merkmale des Produkts und Nachweisverfahren

2.1 Merkmale des Produkts

Der Dübel entspricht den Zeichnungen und Angaben der Anhänge 2 und 3. Die in diesen Anhängen nicht angegebenen Werkstoffkennwerte, Abmessungen und Toleranzen des Dübels müssen den in der technischen Dokumentation⁷ dieser europäischen technischen Zulassung festgelegten Angaben entsprechen.

Die charakteristischen Kennwerte für die Bemessung der Verankerungen sind in den Anhängen 3 und 4, 6 bis 10 und 16 angegeben.

Jeder Dübel ist gemäß Anhang 2 mit dem Werkzeichen, dem Dübeltyp, dem Durchmesser und der Länge des Dübels zu kennzeichnen.

Die Mindestverankerungstiefe ist zu markieren.

Der Dübel darf nur als Befestigungseinheit verpackt und geliefert werden.

7

Die technische Dokumentation dieser europäischen technischen Zulassung ist beim Deutschen Institut für Bautechnik hinterlegt und, soweit diese für die Aufgaben der in das Verfahren der Konformitätsbescheinigung eingeschalteten zugelassenen Stellen bedeutsam ist, den zugelassenen Stellen auszuhändigen.

2.2 Nachweisverfahren

Die Beurteilung der Brauchbarkeit des Dübels für den vorgesehenen Verwendungszweck hinsichtlich der Anforderungen an die Nutzungssicherheit im Sinne der wesentlichen Anforderung 4 erfolgte in Übereinstimmung mit der "Leitlinie für die europäische technische Zulassung für Kunststoffdübel als Mehrfachbefestigung von nichttragenden Systemen zur Verankerung im Beton und Mauerwerk" ETAG 020,

- Teil 1: "Allgemeines",
- Teil 2: "Kunststoffdübel zur Verwendung in Beton",
- Teil 3: "Kunststoffdübel zur Verwendung in Vollsteinen" und
- Teil 4: "Kunststoffdübel zur Verwendung in Hohl- oder Lochsteinen"
- Teil 5: "Kunststoffdübel zur Verwendung in Porenbeton"

auf der Grundlage der Nutzungskategorien a, b, c und d.

In Ergänzung zu den spezifischen Bestimmungen dieser Europäischen Technischen Zulassung, die sich auf gefährliche Stoffe beziehen, können die Produkte im Geltungsbereich dieser Zulassung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Bauproduktenrichtlinie zu erfüllen, müssen ggf. diese Anforderungen ebenfalls eingehalten werden.

3 Bewertung und Bescheinigung der Konformität und CE-Kennzeichnung

3.1 System der Konformitätsbescheinigung

Gemäß Entscheidung 97/463/EG der Europäischen Kommission⁸ ist das System 2(ii) (System 2+ zugeordnet) der Konformitätsbescheinigung anzuwenden.

Dieses System der Konformitätsbescheinigung ist im Folgenden beschrieben.

System 2+: Konformitätserklärung des Herstellers für das Produkt aufgrund von:

- (a) Aufgaben des Herstellers:
 - (1) Erstprüfung des Produkts;
 - (2) werkseigener Produktionskontrolle;
 - (3) Prüfung von im Werk entnommenen Proben nach festgelegtem Prüfplan.
- (b) Aufgaben der zugelassenen Stelle:
 - (4) Zertifizierung der werkseigenen Produktionskontrolle aufgrund von:
 - Erstinspektion des Werkes und der werkseigenen Produktionskontrolle:
 - laufender Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle.

3.2 Zuständigkeiten

3.2.1 Aufgaben des Herstellers

3.2.1.1 Werkseigene Produktionskontrolle

Der Hersteller muss eine ständige Eigenüberwachung der Produktion durchführen. Alle vom Hersteller vorgegebenen Daten, Anforderungen und Vorschriften sind systematisch in Form schriftlicher Betriebs- und Verfahrensanweisungen festzuhalten. Die werkseigene Produktionskontrolle hat sicherzustellen, dass das Produkt mit dieser Europäischen Technischen Zulassung übereinstimmt.

Der Hersteller darf nur Ausgangsstoffe verwenden, die in der technischen Dokumentation dieser Europäischen Technischen Zulassung aufgeführt sind.

Amtsblatt der Europäischen Gemeinschaften L 198 vom 25.07.1997.

Die werkseigene Produktionskontrolle muss mit dem Kontrollplan vom 30. Januar 2009, der Teil der technischen Dokumentation dieser Europäischen Technischen Zulassung ist, übereinstimmen. Der Kontrollplan ist im Zusammenhang mit dem vom Hersteller betriebenen werkseigenen Produktionskontrollsystem festgelegt und beim Deutschen Institut für Bautechnik hinterlegt.⁹

Die Ergebnisse der werkseigenen Produktionskontrolle sind festzuhalten und in Übereinstimmung mit den Bestimmungen des Kontrollplans auszuwerten.

3.2.1.2 Sonstige Aufgaben des Herstellers

Der Hersteller hat auf der Grundlage eines Vertrags eine Stelle, die für die Aufgaben nach Abschnitt 3.1 für den Bereich der Dübel zugelassen ist, zur Durchführung der Maßnahmen nach Abschnitt 3.3 einzuschalten. Hierfür ist der Kontrollplan nach den Abschnitten 3.2.1.1 und 3.2.2 vom Hersteller der zugelassenen Stelle vorzulegen.

Der Hersteller hat eine Konformitätserklärung abzugeben mit der Aussage, dass das Bauprodukt mit den Bestimmungen dieser Europäischen Technischen Zulassung übereinstimmt.

3.2.2 Aufgaben der zugelassenen Stellen

Die zugelassene Stelle hat die folgenden Aufgaben in Übereinstimmung mit den im Kontrollplan durchzuführen:

- Erstinspektion des Werks und der werkseigenen Produktionskontrolle.
- laufende Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle.

Die zugelassene Stelle hat die wesentlichen Punkte ihrer oben angeführten Maßnahmen festzuhalten und die erzielten Ergebnisse und die Schlussfolgerungen in einem schriftlichen Bericht zu dokumentieren.

Die vom Hersteller eingeschaltete zugelassene Zertifizierungsstelle hat ein EG-Konformitätszertifikat mit der Aussage zu erteilen, dass die werkseigene Produktionskontrolle mit den Bestimmungen dieser Europäischen Technischen Zulassung übereinstimmt.

Wenn die Bestimmungen der Europäischen Technischen Zulassung und des zugehörigen Kontrollplans nicht mehr erfüllt sind, hat die Zertifizierungsstelle das Konformitätszertifikat zurückzuziehen und unverzüglich das Deutsche Institut für Bautechnik zu informieren.

3.3 CE-Kennzeichnung

Die CE-Kennzeichnung ist auf jeder Verpackung der Dübel anzubringen. Hinter den Buchstaben "CE" sind ggf. die Kennnummer der zugelassenen Zertifizierungsstelle anzugeben sowie die folgenden zusätzlichen Angaben zu machen:

- Name und Anschrift des Herstellers (für die Herstellung verantwortliche juristische Person),
- die letzten beiden Ziffern des Jahres, in dem die CE-Kennzeichnung angebracht wurde,
- Nummer des EG-Konformitätszertifikats für die werkseigene Produktionskontrolle,
- Nummer der Europäischen Technischen Zulassung,
- Nummer der Leitlinie für die Europäische Technische Zulassung,
- Nutzungskategorie a, b, c und d ("d" nur f
 ür D
 übeltyp SXR 10).

_

Der Kontrollplan ist ein vertraulicher Bestandteil der Dokumentation dieser Europäischen Technischen Zulassung und wird nur der in das Konformitätsbescheinigungsverfahren eingeschalteten zugelassenen Stelle ausgehändigt. Siehe Abschnitt 3.2.2.

4 Annahmen, unter denen die Brauchbarkeit des Produkts für den vorgesehenen Verwendungszweck positiv beurteilt wurde

4.1 Herstellung

Die Europäische Technische Zulassung wurde für das Produkt auf der Grundlage abgestimmter Daten und Informationen erteilt, die beim Deutschen Institut für Bautechnik hinterlegt sind und der Identifizierung des beurteilten und bewerteten Produkts dienen. Änderungen am Produkt oder am Herstellungsverfahren, die dazu führen könnten, dass die hinterlegten Daten und Informationen nicht mehr korrekt sind, sind vor ihrer Einführung dem Deutschen Institut für Bautechnik mitzuteilen. Das Deutsche Institut für Bautechnik wird darüber entscheiden, ob sich solche Änderungen auf die Zulassung und folglich auf die Gültigkeit der CE-Kennzeichnung auf Grund der Zulassung auswirken oder nicht, und ggf. feststellen, ob eine zusätzliche Beurteilung oder eine Änderung der Zulassung erforderlich ist.

4.2 Einbau

4.2.1 Bemessung der Verankerungen

4.2.1.1 Allgemeines

Der Dübel darf nur für die Verwendung als Mehrfachbefestigung von nichttragenden Systemen verwendet werden.

Bei der Verwendung von Dübeln für Mehrfachbefestigungen wird davon ausgegangen, dass im Falle von übermäßigem Schlupf oder Versagen eines Dübels die Last auf benachbarte Dübel übertragen werden kann und hierbei nicht wesentlich von den Anforderungen an das zu befestigende Bauteil bezüglich des Grenzzustandes der Gebrauchstauglichkeit und der Tragfähigkeit abgewichen wird.

Die Mehrfachbefestigung kann durch die Anzahl n_1 von Befestigungsstellen zur Befestigung des Bauteils und die Anzahl n_2 von Dübeln je Befestigungsstelle spezifiziert werden. Außerdem ist durch die Festlegung des Bemessungswertes der Einwirkungen N_{Sd} einer Befestigungsstelle auf einen Wert $\leq n_3$ (kN) sichergestellt, dass die Anforderungen an die Festigkeit und Steifigkeit des zu befestigenden Bauteils eingehalten sind und die Lastübertragung bei übermäßigem Schlupf oder Versagen eines Dübels in der Bemessung des zu befestigenden Bauteils nicht berücksichtigt werden muss.

Für n₁, n₂ und n₃ dürfen die folgenden Grenzwerte verwendet werden:

```
n_1 \ge 4; n_2 \ge 1 und n_3 \le 4,5 \text{ kN} oder n_1 \ge 3; n_2 \ge 1 und n_3 \le 3,0 \text{ kN}.
```

Die Brauchbarkeit des Dübels ist unter folgenden Voraussetzungen gegeben:

- Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit ETAG 020 Leitlinie für die europäische technische Zulassung für "Kunststoffdübel als Mehrfachbefestigung von nichttragenden Systemen zur Verankerung im Beton und Mauerwerk", Anhang C unter der Verantwortung eines auf dem Gebiet der Verankerungen erfahrenen Ingenieurs. Dieses Bemessungsverfahren gilt für Kunststoffdübel unter vorwiegend ruhender oder quasi-ruhender Belastung für Zug, Querlast, Schrägzug und/oder Biegung; es ist nicht anwendbar für Kunststoffdübel, die einer Druckbeanspruchung und/oder Ermüdungs-, Stoß- oder Erdbebenlasten ausgesetzt sind.
- Unter Berücksichtigung der zu verankernden Lasten, der Art und Festigkeit des Verankerungsgrundes, der Bauteilabmessungen und Toleranzen sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen.

Eine Biegebeanspruchung des Dübels infolge Querlast darf nur dann unberücksichtigt bleiben, wenn die beiden folgenden Bedingungen eingehalten werden:

Das Anbauteil muss aus Metall bestehen und im Bereich der Verankerung direkt am Verankerungsgrund entweder ohne Zwischenlage oder mit einer Mörtel-Ausgleichsschicht mit einer Dicke ≤ 3 mm befestigt werden. Das Anbauteil muss mit seiner ganzen Dicke an der Dübelhülse anliegen. (Hierfür muss der Durchmesser des Durchgangslochs im Anbauteil d_f gleich oder kleiner als der Wert gemäß Anhang 3, Tabelle 3 sein.)

Werden diese beiden Bedingungen nicht erfüllt, so ist der Hebelarm gemäß ETAG 020, Anhang C zu berechnen. Das charakteristische Biegemoment ist in Anhang 3, Tabelle 4 angegeben.

4.2.1.2 Tragfähigkeit im Beton (Nutzungskategorie "a")

Die charakteristischen Werte der Tragfähigkeit des Dübels im Beton sind in Anhang 3, Tabelle 4 und Anhang 4, Tabelle 5 und 6, angegeben. Das Bemessungsverfahren gilt für gerissenen und ungerissenen Beton.

Gemäß Technical Report TR 020 "Beurteilung der Feuerwiderstandsfähigkeit von Verankerungen im Beton" kann angenommen werden, dass für die Befestigung von Fassadensystemen die Tragfähigkeit des fischer Langschaftdübels SXR 10 einen ausreichenden Feuerwiderstand von mindestens 90 Minuten (R90) besitzt, wenn die zulässige Last $[F_{Rk}/(\gamma_M \cdot \gamma_F)] \le 0.8$ kN ist (keine dauernde zentrische Zuglast).

4.2.1.3 Tragfähigkeit im Mauerwerk aus Vollsteinen (Nutzungskategorie "b")

Die charakteristischen Werte der Tragfähigkeit des Dübels im Mauerwerk aus Vollsteinen sind in Anhang 3, Tabelle 4 und Anhang 6, 8 und 10 angegeben. Diese Werte sind unabhängig von der Lastrichtung (Zug, Querlast, Schrägzug) und der Versagensart.

Die in Anhang 6, 8 und 10 angegebenen charakteristischen Werte im Mauerwerk aus Vollsteinen gelten für den Verankerungsgrund und die Steine gemäß dieser Tabelle oder größere Steine und größere Druckfestigkeiten des Mauerwerks.

Sind auf der Baustelle kleinere Steinformate vorhanden oder wenn die Mörteldruckfestigkeit kleiner als der erforderliche Wert ist, darf die charakteristische Tragfähigkeit des Dübels über Versuche am Bauwerk gemäß Abschnitt 4.2.3 ermittelt werden.

4.2.1.4 Tragfähigkeit im Mauerwerk aus Hohlblöcken oder Lochsteinen (Nutzungskategorie "c")

Die in Anhang 7, 9 und 10 angegebenen charakteristischen Werte im Mauerwerk aus Hohlblöcken oder Lochsteinen gelten bezüglich Verankerungsgrund, Steingröße, Druckfestigkeit und Lochbild nur für die Steine und Blöcke dieser Tabelle.

Diese Werte sind unabhängig von der Lastrichtung (Zug, Querlast, Schrägzug) und der Versagensart und gelten nur für $h_{nom} = 50$ mm.

Der Einfluss von größeren Einbindetiefen (h_{nom} ≥ 50 mm) und/oder abweichenden Steinen und Blöcken (gemäß Anhang 7, 9 und 10 bezüglich Verankerungsgrund, Steingröße, Druckfestigkeit und Lochbild) ist durch Versuche am Bauwerk gemäß Abschnitt 4.2.3 zu ermitteln.

4.2.1.5 Tragfähigkeit in (ungerissenen) Porenbeton Blöcken (AAC, Nutzungskategorie "d")

Die charakteristischen Werte der Tragfähigkeit des Dübeltyps SXR 10 im Mauerwerk aus Porenbeton Blöcken (AAC) sind in Anhang 16, Tabelle 14 angegeben. Diese Werte sind unabhängig von der Lastrichtung (Zug, Querlast, Schrägzug) und der Versagensart.

Der Dübel darf nicht in wassergesättigtem Porenbeton eingebaut und verwendet werden.

4.2.1.6 Besondere Bedingungen für das Bemessungsverfahren im Mauerwerk aus Voll- und Lochsteinen oder Hohlblöcken und Porenbeton Blöcken

Der Mörtel des Mauerwerks muss mindestens der Druckfestigkeitsklasse M 2,5 gemäß EN 998-2:2003 entsprechen.

Die charakteristische Tragfähigkeit F_{Rk} für einen einzelnen Kunststoffdübel kann auch für eine Gruppe aus zwei oder vier Kunststoffdübeln angesetzt werden, deren Achsabstand mindestens so groß wie der Mindestachsabstand s_{min} ist.

Der Abstand zwischen einzelnen Kunststoffdübeln bzw. einer Gruppe von Dübeln sollte s ≥ 250 mm betragen.

Wenn die senkrechten Fugen der Wand planmäßig nicht mit Mörtel verfüllt werden sollen, ist der Bemessungswert der Tragfähigkeit N_{Rd} auf 2,0 kN zu begrenzen um sicherzustellen, dass ein Herausziehen eines Steins aus der Wand verhindert wird. Auf diese Begrenzung kann verzichtet werden, wenn für die Wand verzahnte Steine verwendet oder die Fugen planmäßig mit Mörtel verfüllt werden.

Wenn die Fugen des Mauerwerks nicht sichtbar sind, ist die charakteristische Tragfähigkeit F_{Rk} mit den Faktor α_j = 0,5 zu reduzieren.

Wenn die Fugen des Mauerwerks sichtbar sind (z. B. bei einer unverputzten Wand), ist Folgendes zu berücksichtigen:

- Die charakteristische Tragfähigkeit F_{Rk} darf nur angesetzt werden, wenn die Fugen der Wand planmäßig mit Mörtel verfüllt werden.
- Wenn die Fugen der Wand nicht planmäßig mit Mörtel verfüllt werden, darf die charakteristische Tragfähigkeit F_{Rk} nur dann angesetzt werden, wenn der Mindestrandabstand c_{min} zu den senkrechten Fugen eingehalten wird. Wenn dieser Mindestrandabstand c_{min} nicht eingehalten werden kann, ist die charakteristische Festigkeit F_{Rk} um den Faktor $α_i$ = 0,5 zu verringern.

4.2.1.7 Kennwerte, Abstände und Bauteilabmessungen

Die Mindestabstände und Bauteilabmessungen nach Anhang 5, 11 und 17 sind abhängig vom Verankerungsgrund einzuhalten.

4.2.1.8 Verschiebungsverhalten

Die Verschiebungen unter Zug und Querlast in Beton und Mauerwerk sind in Anhang 5, Tabelle 7 und Anhang 17, Tabelle 16 angegeben.

4.2.2 Einbau des Dübels

Von der Brauchbarkeit des Dübels kann nur dann ausgegangen werden, wenn folgende Einbaubedingungen eingehalten sind:

- Einbau des Dübels durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile.
- Einbau des Dübels nach den Angaben des Herstellers, den Konstruktionszeichnungen und mit den in dieser europäischen technischen Zulassung angegebenen Werkzeugen.
- Überprüfung vor dem Setzen des Dübels, ob der Verankerungsgrund, in den der Dübel gesetzt werden soll, dem entspricht für den die charakteristischen Tragfähigkeiten gelten.
- Beachtung des Bohrverfahrens gemäß Anhang 6 bis 10 (Bohrlöcher in bestimmtem Mauerwerk aus Hohlblöcken oder Lochsteinen dürfen nur mit Bohrmaschinen im Drehgang hergestellt werden. Von dieser Regelung darf nur abgewichen werden, wenn durch Versuche am Bauwerk nach Abschnitt 4.2.3 der Einfluss des Bohrens mit Schlag- bzw. Hammerwirkung auf das Dübeltragverhalten beurteilt wird.).
- Für die Befestigung des Dübeltyps SXR 10 in Porenbeton Blöcken mit einem Nennwert der Druckfestigkeit fck < 4 N/mm² ist das Bohrloch mit dem zugehörigen Porenbetonstößel gemäß Anhang 16, Tabelle 15 herzustellen. Der Porenbetonstößel wird mit Hammerwirkung der Bohrmaschine in den Porenbeton eingetrieben. Zur Kontrolle der korrekten Anwendung des Porenbetonstößels wird auf der Oberfläche des Anbauteils eine Markierungsrille sichtbar.</p>

Bohrlöcher in Porenbeton Blöcken mit einer Druckfestigkeit $f_{ck} \ge 4 \text{ N/mm}^2$ sind im Drehgang mit Hartmetall-Hammerbohrern herzustellen.

- Anordnung der Bohrlöcher ohne Beschädigung der Bewehrung.
- Der Dübel darf nicht in wassergesättigtem Porenbeton (AAC) eingebaut und verwendet werden.
- Das Bohrmehl ist aus dem Bohrloch zu entfernen.

- Bei Fehlbohrungen: Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird.
- Die Dübelhülse wird durch das Anbauteil hindurch mit leichten Hammerschlägen eingeschlagen und die Spezialschraube wird eingedreht bis der Schraubenkopf die Hülse berührt. Der Dübel ist richtig verankert, wenn nach dem vollen Eindrehen der Schraube weder ein Drehen der Dübelhülse auftritt, noch ein leichtes Weiterdrehen der Schraube möglich ist.
- Setzen des Dübels bei einer Temperatur ≥ -5 °C (Kunststoffhülse und Verankerungsgrund).
- UV-Belastung durch Sonneneinstrahlung des ungeschützten Dübels ≤ 6 Wochen.

4.2.3 Versuche am Bauwerk gemäß ETAG 020, Anhang B

4.2.3.1 Allgemeines

Liegen keine nationalen Anforderungen vor, kann die charakteristische Tragfähigkeit des Kunststoffdübels durch Versuche am Bauwerk ermittelt werden, wenn für den Kunststoffdübel bereits charakteristische Tragfähigkeiten in Anhang 6 bis 10 für den gleichen Verankerungsgrund wie am Bauwerk vorhanden ausgewiesen werden.

Weiterhin sind Versuche am Bauwerk im Mauerwerk aus (abweichenden) Vollsteinen nur möglich, wenn bereits charakteristische Tragfähigkeiten für Mauerwerk aus Vollsteinen in Anhang 6, 8 und 10 angegeben werden.

Versuche am Bauwerk im Mauerwerk aus (abweichenden) Hohlblöcken und Lochsteinen sind nur möglich, wenn bereits charakteristische Tragfähigkeiten für Mauerwerk aus Hohlblöcken und Lochsteinen in Anhang 7, 9 und 10 ausgewiesen werden.

Versuche am Bauwerk sind ebenso möglich wenn von dem in Anhang 7, 9 und 10 angegebenen Bohrverfahren abgewichen wird.

Die für den Kunststoffdübel anzusetzende charakteristische Tragfähigkeit ist mit Hilfe von mindestens 15 Ausziehversuchen am Bauwerk mit einer auf den Kunststoffdübel wirkenden zentrischen Zuglast zu ermitteln. Diese Versuche sind unter denselben Bedingungen auch in einer Prüfstelle möglich.

Ausführung und Auswertung der Versuche sowie Erstellung des Prüfberichts und Ermittlung der charakteristischen Tragfähigkeit sollte von der Person, die für die Ausführung der Arbeiten auf der Baustelle verantwortlich ist, überwacht und von einer fachkundigen Person durchgeführt werden.

Anzahl und Position der zu prüfenden Kunststoffdübel sind den jeweiligen speziellen Bedingungen des betreffenden Bauwerks anzupassen und z.B. bei verdeckten oder größeren Flächen so zu vergrößern, dass zuverlässige Angaben über die charakteristische Tragfähigkeit des im betreffenden Verankerungsgrund eingesetzten Kunststoffdübels abgeleitet werden können. Die Versuche müssen die ungünstigsten Bedingungen der praktischen Ausführung berücksichtigen.

4.2.3.2 Montage

Der zu prüfende Kunststoffdübel ist so zu montieren (z. B. Vorbereitung des Bohrloches, zu verwendendes Bohrwerkzeug, Bohrer, Bohrverfahren Hammer- oder Drehbohren, Anbauteildicke) und hinsichtlich der Rand- und Achsabstände genau so zu verteilen, wie es für den vorgesehenen Verwendungszweck geplant ist.

Je nach Bohrwerkzeug, beziehungsweise gemäß ISO 5468, sind Hartmetallhammerbohrer oder Hartmetallschlagbohrer zu verwenden. Für eine Versuchsreihe sollten neue Bohrer oder Bohrer mit $d_{\text{cut},m} = 8,25$ mm < $d_{\text{cut}} \le 8,45$ mm = $d_{\text{cut},max}$ (SXR 8) beziehungsweise mit $d_{\text{cut},m} = 10,25$ mm < $d_{\text{cut}} \le 10,45$ mm = $d_{\text{cut},max}$ (SXR 10) verwendet werden.

4.2.3.3 Durchführung der Versuche

Die verwendete Versuchsvorrichtung für die Auszieh-Versuche muss einen steten langsamen Lastanstieg ermöglichen, der durch eine geeichte Kraftmessdose gesteuert wird. Die Last muss senkrecht auf die Oberfläche des Verankerungsgrunds einwirken und auf den Kunststoffdübel mittels eines Gelenks übertragen werden. Die Reaktionskräfte müssen so auf den Verankerungsgrund übertragen werden, dass ein mögliches Ausbrechen des Mauerwerks nicht behindert wird. Diese Bedingung wird erfüllt, wenn die Auflagerkräfte entweder in benachbarte Steine des Mauerwerks oder mit einem Mindestabstand von 150 mm zu den Kunststoffdübeln übertragen werden. Die Last muss stetig gesteigert werden, so dass die Bruchlast nach einer Minute erreicht ist. Das Aufzeichnen der Last erfolgt bei Erreichen der Bruchlast (N₁).

Wenn kein Herausziehen auftritt, werden andere Versuchsmethoden benötigt, z. B. Probebelastungen.

4.2.3.4 Prüfbericht

Der Prüfbericht muss alle Angaben enthalten, die für die Beurteilung der Tragfähigkeit des geprüften Kunststoffdübels notwendig sind. Er muss der Person, die für die Bemessung der Befestigung verantwortlich ist, ausgehändigt und den Bauunterlagen beigefügt werden. Die folgenden Mindestangaben sind notwendig:

- Name des Produkts
- Bauwerk, Bauherr; Datum und Ort der Versuche, Lufttemperatur
- Versuchsvorrichtung
- Art des zu Anbauteils
- Mauerwerk (Ziegelart, Festigkeitsklasse, alle Ziegelabmessungen, Mörtelgruppe wenn möglich), Beurteilung des Mauerwerks durch Augenscheinnahme (Vollfuge, Fugenzwischenraum, Regelmäßigkeit)
- Kunststoffdübel und Spezialschraube
- Schneidendurchmesser der Hartmetallhammerbohrer, Messwert vor und nach dem Bohren, wenn keine neuen Bohrer verwendet werden
- Versuchsergebnisse einschließlich der Angabe des Wertes N₁, Versagensart
- Durchführung oder Überwachung der Versuche durch; Unterschrift

4.2.3.5 Auswertung der Versuchsergebnisse

Die charakteristische Last F_{Rk1} erhält man aus dem Messwert N₁ wie folgt:

 $F_{Rk1} = 0.5 \cdot N_1$

Die charakteristische Tragfähigkeit F_{Rk1} muss kleiner oder gleich der charakteristische Tragfähigkeit F_{Rk} sein, die in der ETA für gleichartiges Mauerwerk (Steine oder Blöcke) angegeben ist.

N₁ = Mittelwert der fünf kleinsten Messwerte bei Bruchlast

Wenn keine nationalen Vorschriften vorhanden sind, kann der Teilsicherheitsbeiwert für die Tragfähigkeit des Kunststoffdübel im Mauerwerk mit γ_M = 2,5 angenommen werden.

5 Vorgaben für den Hersteller

5.1 Verpflichtungen des Herstellers

Es ist Aufgabe des Herstellers, dafür zu sorgen, dass alle Beteiligten über die Besonderen Bestimmungen nach den Abschnitten 1 und 2 einschließlich der Anhänge, auf die verwiesen wird, sowie den Abschnitten 4.2.1, 4.2.2 und 5 unterrichtet werden. Diese Information kann durch Wiedergabe der entsprechenden Teile der europäischen technischen Zulassung erfolgen. Darüber hinaus sind alle Einbaudaten sowie der Anwendungsbereich und die Nutzungskategorie auf der Verpackung und/oder einem Beipackzettel, vorzugsweise bildlich, anzugeben.

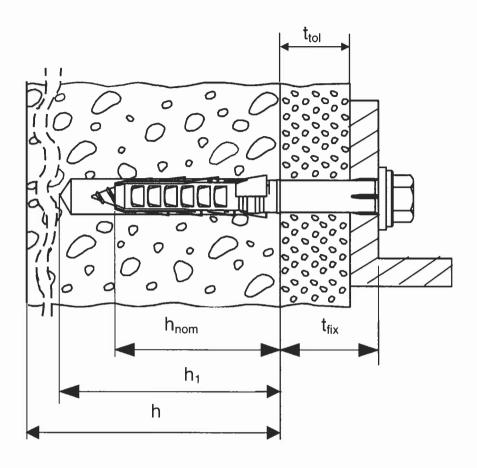
Es sind mindestens folgende Angaben zu machen:

- Verankerungsgrund für den Verwendungszweck,
- Umgebungstemperatur des Verankerungsgrundes während der Montage,
- Bohrerdurchmesser,
- Gesamtlänge des Kunststoffdübels im Verankerungsgrund,
- Mindest-Bohrlochtiefe,
- Angaben über den Einbauvorgang,
- Identifizierung des Herstellungsloses.

Alle Angaben müssen in deutlicher und verständlicher Form erfolgen.

5.2 Empfehlungen zu Verpackung, Beförderung und Lagerung

Der Dübel darf nur als Befestigungseinheit verpackt und geliefert werden.


Der Dübel ist unter normalen klimatischen Bedingungen in der lichtundurchlässigen Originalverpackung zu lagern. Er darf vor dem Einbau weder außergewöhnlich getrocknet noch gefroren sein.

Dipl.-Ing. Erich Jasch Präsident des Deutschen Instituts für Bautechnik Berlin, 13. Oktober 2009 Beglaubigt

für Bautechnik

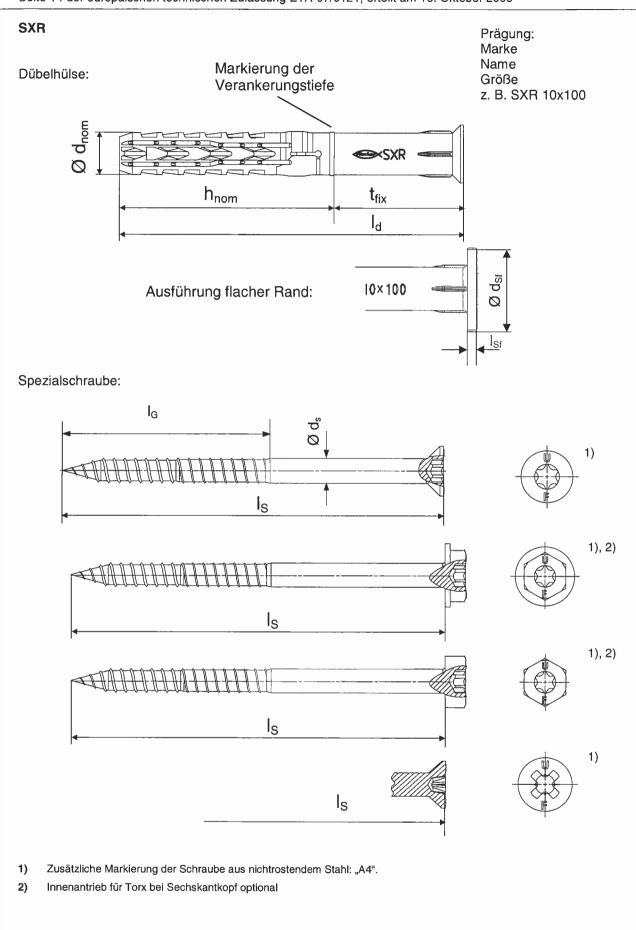
5

SXR

Anwendungsbereich

Verankerung in Beton, verschiedenen Mauerwerksarten und Porenbeton (AAC)

Legende


h_{nom} = Gesamtlänge des Kunststoffdübels im Verankerungsgrund

h₁ = Tiefe des Bohrlochs bis zum tiefsten Punkt

 $\begin{array}{lll} h & = & \text{Dicke des Bauteils (Wand)} \\ t_{\text{fix}} & = & t_{\text{tol}} + \text{Dicke des Anbauteils} \end{array}$

 t_{tol} = Dicke der Toleranzausgleichsschicht oder der nichttragenden Schicht

fischer Langschaftdübel SXR	Anhang 1
Einbauzustand	der europäischen technischen Zulassung
	FTA-07/0121

fischer Langschaftdübel SXR	Anhang 2
Dübeltyp, Spezialschraube, Abmessungen	der europäischen technischen Zulassung
	ETA-07/0121

Tabelle 1: Abmessungen [mm]

Dübeltyp			Spezialschraube						
	h _{nom} [mm]	Ø d _{nom} [mm]	t _{fix} [mm]	I _d [mm]	I _{Sf} [mm]	Ø d _{sf} [mm]	Ø d _s [mm]	I _G [mm]	l _s [mm]
SXR 8	50	8	≥ 1	51-360	1,8	15,0	6,0	≥ 55	≥ 57 ²⁾
SXR 10	50	10	≥ 1	51-360	2,2	18,5	7,0	≥ 56	≥ 58 ¹⁾

- 1) Um sicherzustellen, dass die Schraube die Dübelhülse durchdringt, muss $I_s = I_d + I_{SI}^{3} + 7$ mm betragen
- 2) Um sicherzustellen, dass die Schraube die Dübelhülse durchdringt, muss $I_s = I_d + I_{SI}^{(3)} + 6 \text{ mm}$
- 3) Gilt nur bei Ausführung mit flachem Rand

Tabelle 2: Werkstoffe

Name	Material
Dübelhülse	Polyamid, PA6, Farbe grau
Spezialschraube	Stahl ($f_{yk} \ge 480 \text{ N/mm}^2$; $f_{uk} \ge 600 \text{ N/mm}^2$) gvz A2G oder A2F nach EN ISO 4042 oder gvz A2G or A2F acc. to EN ISO 4042 + Duplex-Beschichtung Typ Delta-Seal in drei Schichten (Gesamtschichtdicke $\ge 6 \mu \text{m}$) oder Nichtrostender Stahl nach EN 10 088 ($f_{yk} \ge 450 \text{ N/mm}^2$; $f_{uk} \ge 580 \text{ N/mm}^2$)

Tabelle 3: Montagekennwerte

Dübeltyp				SXR 8	SXR 10
Bohrlochdurchmesser	d ₀	=	[mm]	8	10
Schneidendurchmesser der Bohrer	d_{cut}	≤	[mm]	8,45	10,45
Tiefe des Bohrlochs bis zum tiefsten Punkt 1)	h ₁	≥	[mm]	60	60
Gesamtlänge des Kunststoffdübels im Verankerungsgrund 1) 2)	h _{nom}	≥	[mm]	50	50
Durchmesser des Durchgangslochs im Anbauteil	d _f	≤	[mm]	8,5	10,5

¹⁾ Siehe Anhang 1

Tabelle 4: Charakteristisches Biegemoment der Schraube bei Anwendung in Beton, Mauerwerk und Porenbeton

Dübeltyp		SX	R 8	SXR 10		
Werkstoff		gvz		gvz	nichtrostender Stahl	
Charakteristisches Biegemoment	M _{Rk,s} [Nm]	12,4	10,4	17,7	17,1	
Teilsicherheitsbeiwert	γ _{Ms} 1)	1,25	1,29	1,25	1,29	

1) In Abwesenheit anderer nationaler Regelungen

fischer Langschaftdübel SXR	Anhang 3
Abmessungen, Werkstoffe, Montagekennwerte,	der europäischen technischen Zulassung
charakteristisches Biegemoment	ETA-07/0121

²⁾ Im Mauerwerk aus Hohlblöcken oder Lochsteinen ist der Einfluss von h_{nom} ≥ 50 mm durch Versuche am Bauwerk gemäß Abschnitt 4.2.1.4 und 4.2.3 zu ermitteln.

Tabelle 5: Charakteristische Tragfähigkeit der Schraube bei Anwendung in Beton

Ar Enterior and State		S	(R 8	SXR 10		
Versagen des Spreizelements (Sc	hraube	e)	gvz	nicht- rostender Stahl	gvz	nicht- rostender Stahl
Charakteristische Zugtragfähigkeit	N _{Rk,s}	[kN]	14,8	12,3	18,7	18,1
Teilsicherheitsbeiwert	γ _{Ms} 1)		1,50	1,55	1,50	1,55
Charakteristische Quertragfähigkeit	V _{Rk,s}	[kN]	7,4	6,2	9,4	9,0
Teilsicherheitsbeiwert	γ _{Ms} 1)		1,25	1,29	1,25	1,29

1) In Abwesenheit anderer nationaler Regelungen

Tabelle 6: Charakteristische Tragfähigkeit bei Anwendung in Beton

Versagen durch Herausziehen (Kunststoffhülse)		SX	R 8	SXR 10		
Temperaturbereich			30/50 °C	50/80 °C	30/50 °C	50/80 °C
Beton ≥ C12/15						
Charakteristische Zugtragfähigkeit	N _{Rk,p}	[kN]	2,5	2,5	5,0	4,5
Teilsicherheitsbeiwert	γ _{Mc} 1)		1,8			

Betonausbruch und Betonkantenbruch für Einzeldübel und Dübelgruppen

Zuglast 2)

$$\label{eq:normalization} \left| N_{\text{Rk,c}} = 7.2 \cdot \sqrt{f_{\text{ck,cube}}} \cdot h_{\text{ef}}^{1.5} \cdot \frac{c}{c_{\text{cr,N}}} \right| = \left| N_{\text{Rk,p}} \cdot \frac{c}{c_{\text{cr,N}}} \right|$$

mit: $h_{el}^{1.5} = \frac{N_{Rk,p}}{7,2 \cdot \sqrt{f_{ck,cube}}}$ $\frac{c}{c_{cr,N}} \le 1$

Querlast 2)

$$V_{Rk,c} = 0.45 \cdot \sqrt{d_{nom}} \cdot \left(h_{nom}/d_{nom}\right)^{0.2} \cdot \sqrt{f_{ck,cube}} \cdot c_1^{1.5} \cdot \left(\frac{c_2}{1.5 \, c_1}\right)^{0.5} \cdot \left(\frac{h}{1.5 \, c_1}\right)^{0.5} \quad \text{mit:} \qquad \left(\frac{c_2}{1.5 \, c_1}\right)^{0.5} \leq 1$$

c₁ Minimaler Randabstand in Lastrichtung

c₂ Randabstand vertikal zu Lastrichtung 1

Nominelle charakteristische Betondruckfestigkeit (Würfel), maximal Werte für C50/60

Teilsicherheitsbeiwer	t γ _{Mc} 1)	1,8	

- 1) In Abwesenheit anderer nationaler Regelungen
- 2) Das Bemessungsverfahren nach ETAG 020, Anhang C, ist anzuwenden

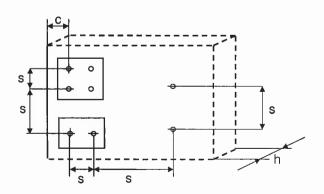
fischer Langschaftdübel SXR Charakteristische Tragfähigkeit in Beton (Nutzungskategorie "a") Anhang 4 der europäischen technischen Zulassung ETA-07/0121

Tabelle 7: Verschiebung unter Zuglast und Querlast in Beton¹⁾ und Mauerwerk¹⁾

Dübeltyp		Zuglast		Querlast		
	F ²⁾ [kN]	δ _{NO} [mm]	δ _{N∞} [mm]	F ²⁾ [kN]	δ _{vo} [mm]	δ _{V∞} [mm]
SXR 8	1,0	0,59	1,19	1,0	0,89	1,33
SXR 10	2,0	1,29	2,58	2,0	1,15	1,74

- 1) Gültig für alle Temperaturbereiche
- 2) Zwischenwerte dürfen interpoliert werden

Tabelle 8: Minimale Bauteildicke, Randabstand und Achsabstand in Beton


SXR 8: Besteht ein Befestigungspunkt aus mehr als einem Dübel mit Achsabständen s \leq 60 mm, wird dieser Befestigungspunkt als Gruppe betrachtet, mit einer maximalen charakteristischen Zugtragfähigkeit $N_{Rk,p}$ nach Tabelle 6. Für s > 60 mm werden die Dübel immer als Einzeldübel betrachtet, von denen jeder eine charakteristische Zugtragfähigkeit $N_{Rk,p}$ nach Tabelle 6 hat.

SXR 10: Besteht ein Befestigungspunkt aus mehr als einem Dübel mit Achsabständen s \leq 90 mm, wird dieser Befestigungspunkt als Gruppe betrachtet, mit einer maximalen charakteristischen Zugtragfähigkeit $N_{Rk,p}$ nach Tabelle 6. Für s > 90 mm werden die Dübel immer als Einzeldübel betrachtet, von denen jeder eine charakteristische Zugtragfähigkeit $N_{Rk,p}$ nach Tabelle 6 hat.

Dübelty	p	Mindestdicke des Bauteils h _{min} [mm]	Charakteristischer Randabstand c _{cr,N} [mm]	Minimale zulässige Achs- und Randabstände 1) [mm]
	Beton ≥ C16/20		50	$s_{min} = 50 \text{ für } c_{min} \ge 50$
SXR 8	Beton C12/15		70	$s_{min} = 70 \text{ für } c_{min} \ge 70$
	Beton ≥ C16/20	100	100	$s_{min} = 70 \text{ für } c_{min} \ge 60$ $s_{min} = 50 \text{ für } c_{min} \ge 150$
SXR 10	Beton C12/15		140	$s_{min} = 100$ für $c_{min} \ge 85$ $s_{min} = 70$ für $c_{min} \ge 210$

1) Zwischenwerte dürfen interpoliert werden

Anordnung der Dübel im Beton

fischer Langschaftdübel SXR

Verschiebungen
Minimale Bauteildicke
Minimale Achs- und Randabstände in Beton

Anhang 5

der europäischen technischen Zulassung

ETA-07/0121

Tabelle 9.1: SXR 8 Charakteristische Tragfähigkeit F_{Rk} in [kN] in Mauerwerk aus Vollsteinen (Nutzungskategorie "b")

Verankerungsgrund [Hersteller <i>Name</i>]	Min. Format oder min. Größe (L x W x H)	Roh- dichte- klasse	Mindest- druck- festigkeit	Bohrver- fahren	charakt. Tragfähigkeit F _{RK} 1 ⁹ SXR 8 [kN]
	[mm]	[kg/dm ³]	[N/mm²]		50/80 °C
Mauerziegel Mz z. B gemäß DIN 105,	3 DF	≥ 1,8	20	H ²⁾	2,5
DIN EN 771-1 e.g. Schlagmann, <i>Mz</i>	(240x175x113)	_ ,,,	10		2,0
Mauerziegel Mz	NF	> 4.0	20	H ²⁾	2,5
z. B gemäß DIN 105, DIN EN 771-1	(240x115x71)	≥ 1,8	10	7 7 7	2,0
Mauerziegel Mz	5.5		28		2,5
z. B gemäß DIN 105, DIN EN 771-1 + A1:2005, z. B. Wienerberger DK , <i>MS</i>	DF (240x115x52)	≥ 1,8	20	H 2)	2,0
			10	1 [1,5
Kalksandvollstein	NF	≥ 1,8	20		2,5
z. B gemäß DIN 106, KS DIN EN 771-2	(240x115x71)		10	H ²⁾	2,0
z. B KS Wemding , <i>KS</i>	(175x500x235)	≥ 2,0	20		2,5
	(10		
Leichtbeton Vollstein,	(240x115x113)	≥ 1,2	2		0,9
z. B gemäß DIN 18152 DIN EN 771-3	(240x490x115)	≥ 1,0	2		1,2
z. B. KLB <i>V</i>	(250x240x245)	≥ 1,8	8	H ²⁾	2,5
	(200,240,240)	2 1,0	4		1,2
	(240x490x115)	≥ 1,4	6		0,9
	(240,430,113)	∠ 1,44	4		0,6 (0,75) 4)
Vollstein Normalbeton VBN			12		2,5
gemäß DIN 18153, DIN EN 771-3	(246x240x245)	≥ 1,8	8	H ²⁾	1,5
z. B. Adolf Blatt , <i>VBN</i>			4		1,0 (0,75) 4)
Teilsicherheitsbeiwert ³⁾				γ̃Μm	2,5

1) Charakteristische Tragfähigkeit F_{RK} für Zug, Querlast oder Schrägzug

Die charakteristische Tragfähigkeit gilt für Einzeldübel oder eine Dübelgruppe aus zwei oder vier Dübeln mit einem Achsabstand der Dübel größer oder gleich dem minimalen Achsabstand s_{min} nach Tabelle 11. Die besonderen Bedingungen für die Bemessung nach Abschnitt 4.2.1.5 der ETA sind zu berücksichtigen

- 2) H = Hammerbohren, D = Drehbohren
- 3) In Abwesenheit anderer nationaler Regelungen
- 4) Klammerwerte (F_{RK}) gelten nur für Temperaturbereich c) 30/50 °C (siehe Kapitel 1.2 ETA).

fischer Langschaftdübel SXR	Anhang 6
Dübeltyp SXR 8: Charakteristische Tragfähigkeit in Vollsteinen	der europäischen technischen Zulassung
(Nutzungskategorie "b")	ETA-07/0121

Tabelle 9.2: SXR 8 Charakteristische Tragfähigkeit F_{Rk} in [kN] in Mauerwerk aus Hohl- bzw. Lochsteinen (Nutzungskategorie "c")

Verankerungsgrund [Hersteller Name]	Min. Format oder min. Größe (L x W x H)	Roh- dichte- klasse	Mindest- druck- festigkeit	Bohrver- fahren	Geometrie Anhang (Bild)	Charakt. Tragfähigkeit F _{RK} 1) SXR 8 [kN]
	[mm]	[kg/dm ³]	[N/mm ²]			50/80 °C
Hochlochziegel Form B, HLz gemäß	2 DF (240x115x113)	≥ 1,2	20	R ²⁾	13 (1)	1,2
DIN 105, DIN EN 771-1 z. B. Wienerberger <i>HIz</i>	(240) (15)		8		(1)	0,5
Hochlochziegel HLz	DF		28		15	2,5
gemäß DIN 105, DIN EN 771-1+A1:2005,	(240x110x52)	≥ 1,5	20	H ²⁾	15 (17)	1,2 (1,5) 4)
z. B. Wienerberger BS	, ,		10			0,6 (0,9) 4)
Hochlochziegel	2 DF	≥ 1,0	12	H ²⁾	15	0,6
z. B gemäß DIN 105, DIN EN 771-1	(240x115x113)	2 1,0	8] ''	(22)	0,4
Hochlochziegel	40.05		8		45	0,90
Form B, HLz gemäß DIN 105, DIN EN 771-1	12 DF (380x240x240)	≥ 0,9	6	R ²⁾	15 (20)	0,6
z. B. Schlagmann	(4		(/	0,4
Hochlochziegel Form B,	12 DF (380x240x240)	≥ 0,7	6	R ²⁾	13 (2)	1,2
HLz gemäß DIN 105, DIN EN 771-1, Schlag-			4			0,75
mann Planfüllziegel			2			0,4
Kalksandlochstein gemäß	5 DF	≥ 1,4	16	H ²⁾	13	2,0
DIN 106, DIN EN 771-2 z. B. KS Wemding , <i>KSL</i>	(300x240x115)	_ ,,	6		(4)	0,75
3,	P10 (495x98x248)	≥ 1,2	6		13 (5)	1,2 (1,5) ⁴⁾
	3 DF		20	-	15	0,4 (0,5) ⁴⁾ 1,2 (1,5) ⁴⁾
	(240x175x113)	≥ 1,4	8	1	(21)	0,5 (0,6) 4)
Kalksandlochstein gem.	2 DF		12	2)	13	2,0
DIN 106, DIN EN 771-2 z. B. KS Wemding ,K <i>SL</i>	(240x115x113)	≥ 1,4	6	– H ²⁾	(8)	1,0
Hohlblockstein aus Leichtbeton, z. B. gemäß NF-P 14-301, EN 771-3, z. B. Sepa <i>Parpaing</i>	(500x200x200)	≥ 0,9	4	R ²⁾	14 (10)	0,3 (0,4) 4)
Hohlblockstein aus Leichtbeton, z.B. gemäß DIN 18151,DIN EN 771-3, z.B. KLB , <i>Hbl</i>	(240x240x360)	≥ 1,0	6	H 2)	15 (19)	1,5
Hohlblockstein aus Leichtbeton, z. B. gemäß	(440x210x215)	≥1,2	10	- R ²⁾	15	2,5
DIN EN 771-3, z. B. <i>Roadstone masonry</i>	(440,210,215)	< 1,2	6		(18)	1,5
Teilsicherheitsbeiwert 3)					γMm	2,5

Fußnoten 1), 2), 3) und 4) siehe Anhang 6, Tabelle 9.1!

fischer Langschaftdübel SXR	Anhang 7
Dübeltyp SXR 8: Charakteristische Tragfähigkeit in Mauerwerk aus Hohl- bzw.	der europäischen technischen Zulassung
Lochsteinen (Nutzungskategorie "c")	ETA-07/0121

Tabelle 10.1 SXR 10 Charakteristische Tragfähigkeit F_{Rk} in [kN] in Mauerwerk aus Vollsteinen (Nutzungskategorie "b")

Verankerungsgrund [Hersteller <i>Name</i>]	Min, Format Roh- oder dicht- min, Größe (L x W x H)		Mindest- druck- festigkeit	Bohrver- fahren	Charakt. Tragfähigkeit F _{RK} ¹⁾ SXR 10 [kN]	
	[mm]	[kg/dm ³]	[N/mm²]		50/80 °C	30/50 °C
Mauerziegel Mz	NF	≥ 1,8	20 [10] ⁴⁾	H ²⁾	3,0	3,5
z. B gemäß DIN 105, Mz DIN EN 771-1 z. B. Vollmeter ,	(240x115x71)	∠ 1,0	36		5,0	5,0
Schlagmann, <i>Mz</i>	3 DF (240x175x113)	≥ 1,8	20 [10] 4)	H ²⁾	2,0 4,0 ⁵⁾	2,0 4,5 ⁵⁾
Mauerziegel Mz, z.B. gemäß DIN EN 771-1	DF		20 [10] ⁴⁾	H ²⁾	2,0	2,0
+ A1:2005, e.g. Wienerberger <i>MS</i>	(240x115x52)	≥ 1,8	28	"	3,0	3,0
Mauerziegel,Mz z.B. gemäß DIN 105, DIN EN 771-1	NF (240x115x71)	1,8	20 [10] 4)	H ²⁾	3,0	3,0
Kalksandvollstein z. B gemäß DIN 106, KS	NF (240x115x71)	≥ 1,8	20 [10] 4)	H ²⁾	2,5 4,0 ⁵⁾	2,5 4,0 ⁵⁾
DIN EN 771-2 z. B KS Wemding, <i>KS</i>	NF	≥ 2,0	20 [10] 4)	H ²⁾	3,0	3,5
3,	(240x115x71)	2 2,0	36	''	5,0	5,0
	(175x500x235)	≥ 2,0	20 [10] ⁴⁾	H ²⁾	4,5	4,5
		,	28		5,0	5,0
Leichtbeton Vollstein, z. B gemäß DIN 18152 DIN EN 771-3	2 DF (240x115x113)	≥ 1,2	2	H ²⁾	0,75 0,9 ⁵⁾	0,75 0,9 ⁵⁾
z. B. KLB <i>V</i>	(240x490x115)	≥ 1,2	2	H ²⁾	1,2	1,2
	(250x240x245)	≥ 1,6	6	H ²⁾	2,5	2,5
	(240x490x115)	≥ 1,6	8	H ²⁾	3,0	3,0
Vollstein Normalbeton VN gemäß DIN 18153, DIN EN 771-3 z.B. Adolf Blatt , <i>VN</i>	(246x240x245)	≥ 1,8	20 [10] 4)	H ²⁾	4,5	4,5
Teilsicherheitsbeiwert ³⁾		γMm	2,5			

1) Charakteristische Tragfähigkeit F_{RK} für Zug, Querlast oder Schrägzug

Die charakteristische Tragfähigkeit gilt für Einzeldübel oder eine Dübelgruppe aus zwei oder vier Dübeln mit einem Achsabstand der Dübel größer oder gleich dem minimalen Achsabstand s_{min} nach Tabelle 11. Die besonderen Bedingungen für die Bemessung nach Abschnitt 4.2.1.5 der ETA sind zu berücksichtigen

- 2) H = Hammerbohren, D = Drehbohren
- 3) In Abwesenheit anderer nationaler Regelungen
- 4) Für 10 N/mm² \leq f_b < 20 N/mm² : F_{RK} = 0,7 \cdot F_{RK}
- 5) Gilt nur für Randabstand c ≥ 200 mm; Zwischenwerte dürfen interpoliert werden

fischer Langschaftdübel SXR Dübeltyp SXR 10: Charakteristische Tragfähigkeit in Vollsteinen (Nutzungskategorie "b") Anhang 8 der europäischen technischen Zulassung ETA-07/0121

Tabelle 10.2: SXR 10 Charakteristische Tragfähigkeit F_{Rk} in [kN] in Mauerwerk aus Hohl- bzw. Lochsteinen (Nutzungskategorie "c")

Verankerungsgrund [Hersteller <i>Name</i>]	Min, Format oder min, Größe (L x W x H)	Roh- dichte- klasse	Mindest- druck- festigkeit	Bohrver- fahren	Geometrie Anhang (Bild)	char Tragfä F _{RI} SXF	higkeit (1) (1) (1)
	[mm]	[kg/dm ³]	[N/mm ²]			50/80 °C	30/50 °C
Hochlochziegel Form B, HLz gemäß	2 DF	≥ 1,0	20 [10] ⁴⁾	R ²⁾	13	2,0	2,0
DIN 105, DIN EN 771-1 z. B. Wienerberger <i>HIz</i>	(240x115x113)	≥ 1,2	20[10]		(1)	2,5	3,0 ⁵⁾
Hochlochziegel Form B, HLz gemäß DIN 105, DIN EN 771-1, Schlag- mann <i>Planfüllziegel</i>	12 DF (380x240x240)	≥ 0,7	6	R ²⁾	13 (2)	2,0	2,0
Hochlochziegel Form B, HLz gemäß DIN 105, DIN EN 771-1, Schlag- mann Poroton T14	(300x240x240)	≥ 0,7	6	R ²⁾	13 (3)	0,3	0,4
Hochlochziegel HLz	2 DF	>10	12	R 2)	15	0,9	0,9
z.B. gemäß DIN EN 771-1	(240x115x113)	≥ 1,0	10 8	"	(22)	0,75	0,75 0,6
Hochlochziegel, HLz gemäß DIN EN 771-1+A1:	DF	. 4.5	28	H ²⁾	15	2,5	2,5
2005, z.B. Wienerberger <i>BS</i>	(240x110x52)	≥ 1,5	20 [10] 4)		(17)	2,0	2,0
Kalksandlochstein gemäß	5 DF (300x240x115)	≥ 1,4	16 [10]	H ²⁾	13 (4)	3,0	3,5 ⁵⁾
DIN 106, DIN EN 771-2 z. B. KS Wemding , <i>KSL</i>	P10 (495x98x248)	≥ 1,2	6	H 2)	13 (5)	°C 2,0 2,5 2,0 0,3 0,9 0,75 0,6 2,5 2,0	1,5 2,5 ⁵⁾
Kalksandlochstein gemäß	2 DF		12	3)	13		2,5
DIN 106, DIN EN 771-2 z. B. KS Wemding , <i>KSL</i>	(240x115x113)	≥ 1,4	10	H ²⁾	(8)	Tragfä F _R SXF [k 50/80 °C 2,0 2,5 2,0 0,3 0,9 0,75 0,6 2,5 2,0 3,0 1,5 2,0 5) 2,0 1,5 1,5 2,0 2,0 2,5 2,0 2,0 2,0 2,0 2,5	2,0
			8		10		1,5
Hohlblockstein aus Leichtbeton gemäß DIN 18151,		≥ 1,2	2	R 2)	13 (6)	15	1,5
DIN EN 771-3, z. B. KLB , <i>Hbl</i>		21,2	2	n	12 (Table)	1,5	1,5
Hohlblockstein aus Leichtbeton gemäß	10 DF	≥ 1,2	8	H ²⁾	15	2,5	2,5
DIN EN 771-3, z.B. Roadstone masonry	(440x210x215)	< 1,C	6		(18)	2,0	2,0
Hohlblockstein aus Normalbeton, z.B. gemäß DIN EN 771-3,DIN 18153, z.B. Adolf Blatt , <i>Hbn</i>		≥ 1,6	6	H ²⁾	13 (7)	2,5	2,5
Teilsicherheitsbeiwert 3)					γMm	2	,5

Für Fußnoten 1), 2), 3) und 4) siehe Anhang 8, Tabelle 10.1

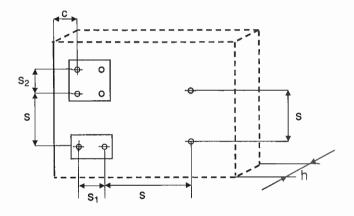
fischer Langschaftdübel SXR	Anhang 9	
Dübeltyp SXR 10: Charakteristische Tragfähigkeit in Mauerwerk aus Hohl- bzw.	der europäischen technischen Zulassung	
Lochsteinen (Nutzungskategorie "c")	ETA-07/0121	

Tabelle 10.3: SXR 10 charakteristische Tragfähigkeit F_{Rk} in [kN] in Vollsteinen, Hohlblöcken oder Lochsteinen (Nutzungskategorie "b" + "c")

Verankerungsgrund [Hersteller <i>Name</i>]	Min. Format oder min. Größe (L x W x H)	Roh- dichte- klasse	Mindest- druck- festigkeit	Bohrver- fahren	Geometrie Anhang (Bild)	Tragfä F _R SXF [k	higkeit
	[mm]	[kg/dm ³]	[N/mm²]			50/80 °C	30/50 °C
Vollstein aus Normalbeton VBN, z. B. Tarmac	(440x215x100)	≥ 1,8	20 [10] ⁴⁾	H ²⁾	-	4,0	4,5
Vollstein aus Leichtbeton VBL, z. B. Tarmac	(440x215x100)	≥ 1,4	6	H ²⁾	-	2,0 2,5 ⁵⁾	2,0 2,5 ⁵⁾
Wärmedämmblock z. B. Gisoton <i>WDB</i>	(390x240x250)	≥ 0,7	2	H ²⁾	14 (9)	1,5	1,5
Hohlbaustein aus Leichtbeton gemäß	(500x200x200)	≥ 0,9	4	R ²⁾	14	0,9	0,9
NF-P 14-301 EN 771-3, z. B. Sepa <i>Parpaing</i>		,-			(10)	1,2 ⁵⁾	1,5 ⁵⁾
Hochlochziegel, HLz gemäß NF-P 13-301 EN 771-1, z. B. Imerys <i>Gelimatic</i>	(270x200x500)	≥ 0,6	6	R ²⁾	14 (11)	0,6	0,6 0,75
Hochlochziegel, HLz gemäß NF-P 13-301 EN 771-1, z. B. Terreal <i>Calibric</i>	(500x200x314)	≥ 0,7	8	R ²⁾	14 (12)	0,6	0,6 0,75 ⁵⁾
Hochlochziegel Form B, HLz gem. NF-P 13-301, EN 771-1, z. B. Imerys <i>Optibric</i>	(560x200x274)	≥ 0,6	10	R ²⁾	14 (13)	1,2	1,2
Hochlochziegel, HLz gemäß NF-P 13-301, EN 771-1, z. B. Bouyer Leroux <i>BGV</i>	(570x200x314)	≥ 0,6	6	R ²⁾	14 (14)	0,75 0,9 ⁵⁾	0,75 1,2 ⁵⁾
Hochlochziegel, HLz gemäß NF-P 13 301, EN 771-1, z. B. Wiener- berger <i>Porotherm 30 R</i>	(370x300x249)	≥ 0,7	10	R ²⁾	14 (15)	0,5 0,6 ⁵⁾	0,5 0,6 ⁵⁾
Hochlochziegel Form B, HLz gem. NF-P 13-301 EN 771-1, z. B. Wiener- berger <i>Porotherm GFR20</i>	(500x200x299)	≥ 0,7	10	R ²⁾	14 (16)	0,6 0,75 ⁵⁾	0,6 0,75 ⁵⁾
Teilsicherheitsbeiwert 3)					γ̃Mm	2	,5

1) Charakteristische Tragfähigkeit F_{RK} für Zug, Querlast oder Schrägzug

Die charakteristische Tragfähigkeit gilt für Einzeldübel oder eine Dübelgruppe aus zwei oder vier Dübeln mit einem Achsabstand der Dübel größer oder gleich dem minimalen Achsabstand smin nach Tabelle 11. Die besonderen Bedingungen für die Bemessung nach Abschnitt 4.2.1.5 der ETA sind zu berücksichtigen


- 2) H = Hammerbohren, R = Drehbohren
- 3) In Abwesenheit anderer nationaler Regelungen
- 4) Für 10 N/mm² $\leq \beta < 20$ N/mm² : $F_{RK}' = 0.7 \cdot F_{RK}$
- 5) Gilt nur für Randabstand c ≥ 200 mm; Zwischenwerte dürfen interpoliert werden

fischer Langschaftdübel SXR Dübeltyp SXR 10: Charakteristische Tragfähigkeit in Vollsteinen, Hohlblöcken oder Lochsteinen (Nutzungskategorie "b" + "c") Anhang 10 der europäischen technischen Zulassung ETA-07/0121

Tabelle 11: Minimale Bauteildicke, Randabstand und Achsabstand in Mauerwerk

Dübeltyp			SXR 8	SXR 10
Mindestdicke des Bauteils	h _{min}	[mm]	100	100
Einzeldübel				
Minimaler zulässiger Achsabstand	S _{min}	[mm]	250	250
Minimaler zulässiger Randabstand	C _{min}	[mm]	100	100
Dübelgruppe				
Minimaler zulässiger Achsabstand vertikal zum freien Rand	S _{1,min}	[mm]	100	100
Minimaler zulässiger Achsabstand parallel zum freien Rand	S _{2,min}	[mm]	100	100
Minimaler zulässiger Randabstand	C _{min}	[mm]	100	100

Anordnung der Dübel im Mauerwerk

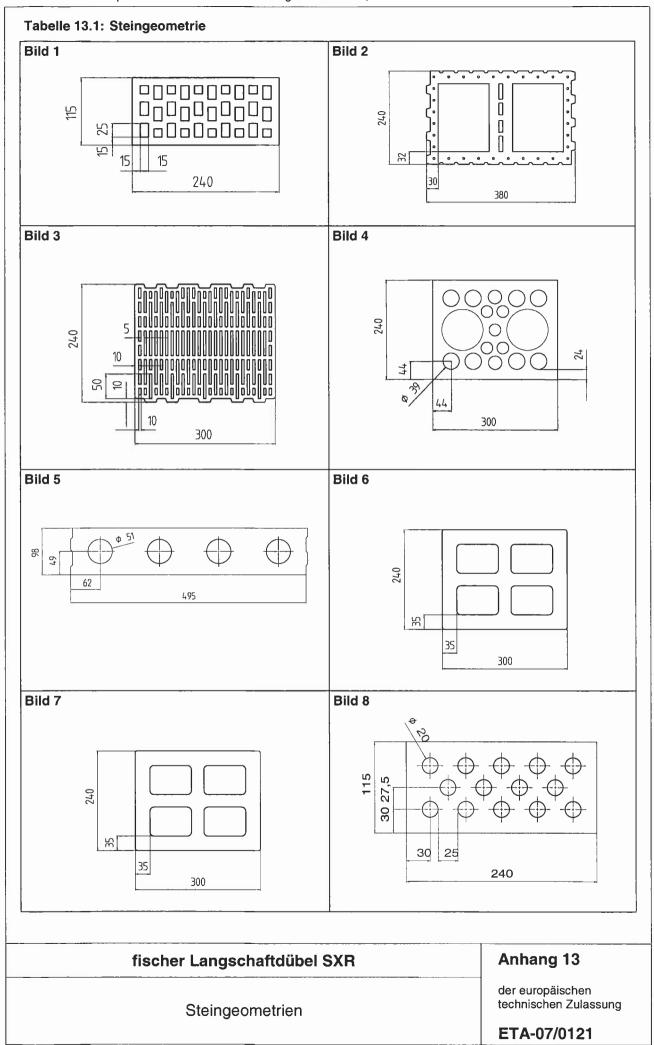
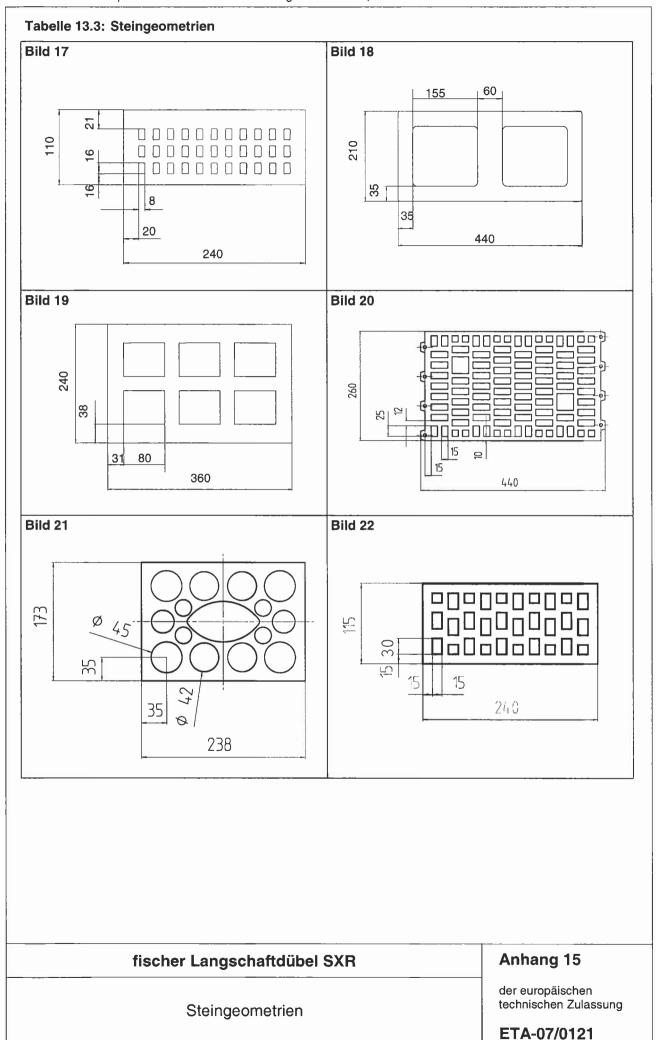

fischer Langschaftdübel SXR	Anhang 11
Minimale Bauteildicke,	der europäischen technischen Zulassung
minimale Achs- und Randabstände in Mauerwerk	ETA-07/0121

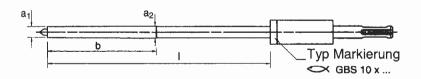
Tabelle 12: Zuordnung des Dübeltyps – Steingeometrie für Hohlblöcke aus Leichtbeton gemäß DIN 18151 bzw. DIN EN 771-3

Geometrie	Steinbreite d [mm]	Stegdicke in Längsrichtung a [mm]	Dübeltyp SXR 10 SXR 8
a G	175	50	•
a G	240 300	50	•
	240 300 365	35	•
a G G G G G G G G G G G G G G G G G G G	240 300 365	30	•

 $\label{eq:continuous} \mbox{Der D\"{u}bel ist so zu setzen, dass das Spreizteil im Steg des Steines verankert wird.}$

fischer Langschaftdübel SXR	Anhang 12
Zuordnung des Dübeltyps bei Hohlblocksteinen	der europäischen technischen Zulassung
	ETA-07/0121




Tabelle 14: SXR 10 Charakteristische Tragfähigkeit F_{Rk} in [kN] in Porenbeton (AAC) (Nutzungskategorie "d")

Verankerungsgrund	Rohdicht- klasse	Mindest- druck- festigkeit	Bohrverfahren	Charakt. Tragfähigkeit F _{RK} 1) SXR 10 [kN]	
	[kg/m³]	[N/mm²]		50/80 °C	30/50 °C
Porenbetonsteine, z.B. PP gemäß DIN V 4165-100:2005-10,	≥ 350	2	Porenbetonstößel ²⁾ mit Hammerwirkung der Bohrmaschine	0,4	0,5
EN 771-4	≥ 500	4 Hammerbohrer im Drehgang		0,75	0,9
Teilsicherheitsbeiwert 3)			γмаас	2,	0

- 1) Charakteristische Tragfähigkeit F_{RK} für Zug, Querlast oder Schrägzug
 - Die charakteristische Tragfähigkeit gilt für Einzeldübel oder eine Dübelgruppe aus zwei oder vier Dübeln mit einem Achsabstand der Dübel größer oder gleich dem minimalen Achsabstand s_{min} nach Tabelle 17. Die besonderen Bedingungen für die Bemessung nach Abschnitt 4.2.1.5 der ETA sind zu berücksichtigen
- 2) Für Befestigungen in Porenbeton mit einem Nennwert der Druckfestigkeit f_{ck} < 4 N/mm² ist das Bohrloch mit dem zugehörigen Porenbeton Stößel gemäß Tabelle 15 herzustellen.
- 3) In Abwesenheit anderer nationaler Regelungen

Table 15: Abmessungen Porenbetonstößel-Typ – Dübeltyp (Länge)

Porenbetonstößel					Dübeltyp		
Тур	a ₁	a ₂	b		(Länge)		
GBS 10 x 80		10	80	85	SXR 10 x 52 SXR 10 x 60 SXR 10 x 80		
GBS 10 x 100			10		105	SXR 10 x 100	
GBS 10 x 135	9			0 10		140	SXR 10 x 120
GBS 10 x 160	9			90	165	SXR 10 x 140 SXR 10 x 160	
GBS 10 x 185				190	SXR 10 x 180		
GBS 10 x 230				235	SXR 10 x 200 SXR 10 x 230		

fischer Langschaftdübel SXR

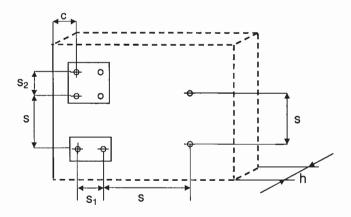
Dübeltyp SXR 10: Charakteristische Tragfähigkeit in Porenbeton (AAC - Nutzungskategorie "d"), Abmessungen Porenbetonstößel-Typ – Dübelyp (Länge)

Anhang 16

der europäischen technischen Zulassung

ETA-07/0121

Tabelle 16: Verschiebungen unter Zuglast und Querlast in Porenbeton (AAC) 1)


Dübeltyp	Zuglast			Querlas		
	F ²⁾ [kN]	δ _{NO} [mm]	δ _{N∞} [mm]	F ²⁾ [kN]	δ _{vo} [mm]	δ _{V∞} [mm]
SXR 10	1,8	0,16	0,32	1,8	1,18	1,76

- 1) Gültig für alle Temperaturbereiche
- 2) Zwischenwerte dürfen interpoliert werden

Tabelle 17: Minimale Achs- und Randabstände in Porenbeton (AAC)

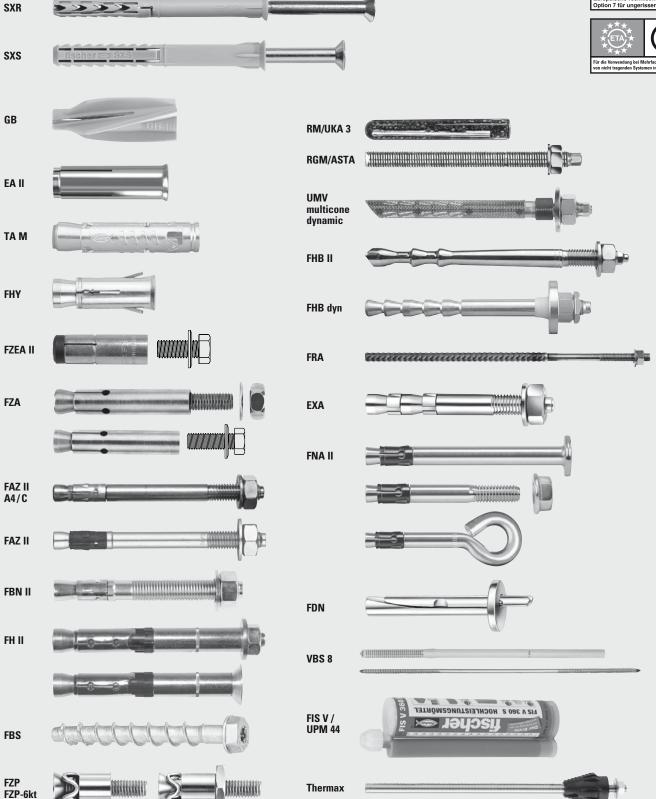
Dübeltyp			SXR 10
Mindestdicke des Bauteils	h _{min}	[mm]	100
Einzeldü bel			
Minimaler zulässiger Achsabstand	S _{min}	[mm]	250
Minimaler zulässiger Randabstand	C _{min}	[mm]	100
Dübelgruppe			
Minimaler zulässiger Achsabstand vertikal zum freien Rand	S _{1,min}	[mm]	200
Minimaler zulässiger Achsabstand parallel zum freien Rand	S _{2,min}	[mm]	400
Minimaler zulässiger Randabstand	C _{min}	[mm]	100

Anordnung der Achs- und Randabstände in Porenbeton (AAC)

fischer Langschaftdübel SXR	Anhang 17
Dübeltyp SXR 10: Minimale Bauteildicke,	der europäischen technischen Zulassung
minimale Achs- und Randabstände in Porenbeton (AAC)	ETA-07/0121

fischer mit allgemeiner bauaufsichtlicher Zulassung und Europäischer Technischer Zulassung, Stand 11/2009

Zulassungsbescheide können bei der Anwendungstechnik der fischer Deutschland Vertriebs GmbH angefordert werden: Telefon 0180 5 202900 bzw. 07443 12-4000, Fax 07443 12-4568


FUR

Service-Center

Waldachtal
Weinhalde 14–18
72178 Waldachtal
Tel. 07443 12-0
Fax 07443 12-4500
E-Mail: ordermanagement
©fischer de

Brehna Rudolf-Diesel-Straße 7 06796 Brehna Tel. 034954 640-1400 Fax 034954 640-1414 E-Mail: sc-brehna@fischer.de

Anwendungstechnik

fischer Deutschland Vertriebs GmbH

Hotline 0180 5202900, Telefon 07443 12-4000, Fax 07443 12-4568 E-Mail: Anwendungstechnik@fischer.de · www.fischer.de

Technische Berater und Technische Verkäufer im Außendienst:

01 Arne Saggau Staatl. gepr. Bautechniker Mobil 0170 2271844 Fax 07443 128684 E-Mail Arne.Saggau @fischer.de

02 Frank-Jörn Maier Dipl.-Ingenieur Mobil 0170 3306403 Fax 07443 128667 E-Mail Frank-Joern.Maier @fischer.de

O3 Uwe Herding
Staatl. gepr. Maschinenbautechniker
Mobil 0170 2271731
Fax 07443 128647
E-Mail Uwe.Herding
@fischer.de

23a Hans-Joachim Szumalla Technischer Verkäufer Mobil 0170 3306445 Fax 07443 128690

Mobil 0170 3306445 Fax 07443 128690 E-Mail Hans-Joachim. Szumalla@fischer.de

Olaf Schinkel
Dipl.-Ingenieur
Technischer Berater
Mobil 0170 2271763
Fax 07443 128687
E-Mail Olaf.Schinkel
@fischer.de

23b Peter Schöpe
Technischer Verkäufer
Mobil 0170 2271723
Fax 07443 128636
E-Mail Peter Schoepe

Olaf Schinkel
Dipl.-Ingenieur
Technischer Berater
Mobil 0170 2271763
Fax 07443 128687
E-Mail Olaf.Schinkel

23c Michael Peyler
Technischer Verkäufer
Mobil 0170 3306431
Fax 07443 128675
E-Mail Michael.Peyler
@fischer.de

@fischer.de

Olaf Schinkel
Dipl.-Ingenieur
Technischer Berater
Mobil 0170 2271763
Fax 07443 128687
E-Mail Olaf.Schinkel
@fischer.de

26a Herbert Reimers
Dipl.-Ingenieur (FH)
Technischer Verkäufer
Mobil 0170 2271758
Fax 07443 128680
E-Mail Herbert.Reimers
@fischer.de

Kerstin Großmann

Dipl.-Ingenieur (FH)
Technische Beraterin
Mobil 0170 3306412
Fax 07443 128640
E-Mail Kerstin.Grossman
@fischer.de

26b Ralf Quellmalz Technischer Verkäufer Mobil 0170 3306432 Fax 07443 128677 E-Mail Ralf.Quellmalz @fischer.de

> Kerstin Großmann Dipl.-Ingenieur (FH) Technische Beraterin Mobil 0170 3306412 Fax 07443 128640 E-Mail Kerstin.Grossmann @fischer.de

26c Andre Höfer Technischer Verkäufer Mobil 0170 2271734 Fax 07443128650 E-Mail Andre.Hoefer @fischer.de

> Kerstin Großmann Dipl.-Ingenieur (FH) Technische Beraterin Mobil 0170 3306412 Fax 07443 12840 E-Mail Kerstin.Grossmann @fischer.de

26d Steffen Unterdörfer Dipl.-Ingenieur Technischer Verkäufer Mobil 0170 2271771 Fax 07443 128691

E-Mail Steffen.Unterdoerfer @fischer.de **Kerstin Großmann** Dipl.-Ingenieur (FH) Technische Beraterin Mobil 0170 3306412

07443 128640

E-Mail Kerstin.Grossmann @fischer.de Ulrich Zaum Dipl.-Ingenieur (FH) Mobil 0170 2271732 Fax 07443 128648

E-Mail Ulrich.Zaum

@fischer.de

42 Roberto Weyda
Dipl.-Ingenieur (FH)
Mobil 0170 2271900
Fax 07443 128188
E-Mail Roberto.Weyda
@fischer.de

43 Leonhard Gaumann Staatl. gepr. Techniker Mobil 0170 3306410 Fax 07443 128638 E-Mail Leonhard. Gaumann @fischer.de 4 Gerhard Reimers
Staatl. gepr. Bautechniker
Mobil 0170 2271757
Fax 07443 128186
E-Mail Gerhard.Reimers

Staatl. gepr. Maschinenbautechniker Mobil 0170 2271740 Fax 07443 128659 E-Mail Reiner.Kleer@fischer.de Herbert Wiechmann
Staatl. gepr. Bautechniker
Mobil 0170 2271772
Fax 07443 128694
E-Mail Herbert.Wiechmann

Staatl. gepr. Maschinenbautechniker Mobil 0170 2271703 Fax 07443 128624 E-Mail Peter.Arnold@fischer.de 3 Thomas Held Mobil 0170 3306416 Fax 07443 128646 E-Mail Thomas.Held @fischer.de

5 Michael Stuis Dipl.-Ingenieur (FH) Mobil 0170 2271728 Fax 07443 128187 E-Mail Michael Stuis @fischer.de 66 Christian Felch Dipl.-Ingenieur (FH) Mobil 0170 3306423 Fax 07443 128252 E-Mail Christian.Felch

