

LEISTUNGSERKLÄRUNG

DoP 0238

für fischer Injektionssystem FIS V Zero (Verbunddübel für den Einsatz in Beton)

DE

Es= 210 000 MPa

 $\tau_{Rk,100}$ = NPD

Eindeutiger Kenncode des Produkttyps:
 DoP 0238

2. Verwendungszweck(e): Nachträgliche Befestigung in gerissenem oder ungerissenem Beton, siehe Anhang, insbesondere

die Anhänge B1 - B10.

3. Hersteller: fischerwerke GmbH & Co. KG, Otto-Hahn-Straße 15, 79211 Denzlingen, Deutschland

4. Bevollmächtigter: -

5. AVCP - System/e: 1

6. Europäisches Bewertungsdokument: EAD 330499-01-0601, Edition 04/2020

Europäische Technische Bewertung: ETA-20/0572; 2021-04-28

Technische Bewertungsstelle: DIBt- Deutsches Institut für Bautechnik

Notifizierte Stelle(n): 2873 TU Darmstadt

7. Erklärte Leistung(en):

Mechanische Festigkeit und Standsicherheit (BWR 1)

Charakteristischer Widerstand bei Zugbelastung (statische und quasi-statische Belastung):

Widerstand für Stahlversagen: Anhänge C1 - C3

Widerstand für kombiniertes Versagen Herausziehen und Betonausbruch: Anhänge C4 - C7

Widerstand für kegelförmigen Betonausbruch: Anhang C4

Randabstand zur Vermeidung von Spaltversagen bei Belastung: Anhang C4

Robustheit: Anhänge C4 - C7

Maximales Montagedrehmoment: Anhänge B3, B4, B6 Minimaler Rand- und Achsabstand: Anhänge B3 - B6

Charakteristischer Widerstand bei Querzugbelastung (statische und quasi-statische Belastung):

Widerstand für Stahlversagen: Anhänge C1 - C3 Widerstand für Pry-out Versagen: Anhang C4 Widerstand Betonkantenbruch: Anhang C4

Charakteristische Widerstände und Verschiebungen für die seismischen Leistungskategorien C1 und C2:

Widerstand Zugbelastung, Verschiebungen, Kategorie C1: NPD Widerstand Zugbelastung, Verschiebungen, Kategorie C2: NPD Widerstand Querzugbelastung, Verschiebungen, Kategorie C1: NPD Widerstand Querzugbelastung, Verschiebungen, Kategorie C2: NPD

Faktor Ringspalt: NPD

Verschiebungen unter kurz- und langzeitiger Belastung:

Verschiebungen unter kurz- und langzeitiger Belastung: Anhänge C8, C9

Hygiene, Gesundheit und Umwelt (BWR 3)

Emission und/ oder Freisetzung von gefährlichen Stoffen: NPD

8. <u>Angemessene Technische Dokumentation und/oder Spezifische Technische Dokumentation:</u>

Die Leistung des vorstehenden Produkts entspricht der erklärten Leistung/den erklärten Leistungen. Für die Erstellung der Leistungserklärung im Einklang mit der Verordnung (EU) Nr. 305/2011 ist allein der obengenannte Hersteller verantwortlich.

Unterzeichnet für den Hersteller und im Namen des Herstellers von:

Dr. Oliver Geibig, Geschäftsführer Business Units & Engineering

Tumlingen, 2021-05-12

Jürgen Grün, Geschäftsführer Chemie & Qualität

Diese Leistungserklärung wurde in mehreren Sprachen erstellt. Für alle Streitigkeiten, die sich aus der Auslegung ergeben, ist die Fassung in englischer Sprache maßgeblich.

Der Anhang enthält freiwillige und ergänzende Informationen in englischer Sprache, die über die (sprachneutral festgelegten) gesetzlichen Anforderungen hinausgehen.

Fischer DATA DOP_ECs_V34.xlsm 1/1

Besonderer Teil

1 Technische Beschreibung des Produkts

Das fischer Injektionssystem FIS V Zero ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionsmörtel FIS V Zero und einem Stahlteil gemäß Anhang A besteht.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

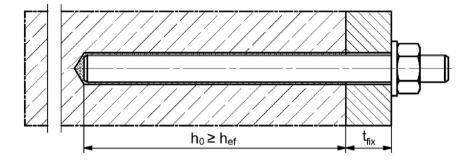
3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand für Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 1 bis C 7, B 3 bis B 6
Charakteristischer Widerstand für Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C1 bis C 4
Verschiebungen für Kurzzeit- und Langzeiteinwirkungen	Siehe Anhang C 8 bis C 9
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C1 und C2	Leistung nicht bewertet

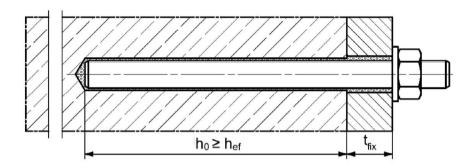
3.2 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

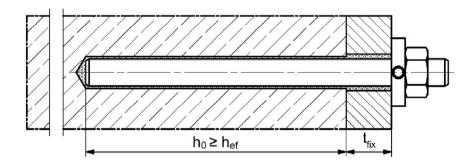
4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage


Gemäß EAD 330499-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1


Einbauzustände Teil 1

fischer Ankerstange


Vorsteckmontage

Durchsteckmontage (Ringspalt mit Mörtel verfüllt)

Vor- oder Durchsteckmontage mit nachträglich verpresster fischer Verfüllscheibe (Ringspalt mit Mörtel verfüllt)

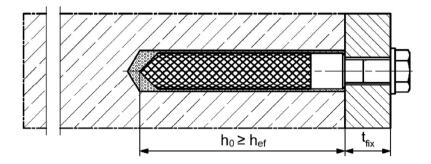
Abbildungen nicht maßstäblich

 h_0 = Bohrlochtiefe

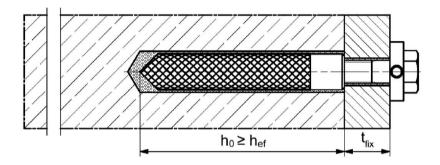
h_{ef} = Effektive Verankerungstiefe

t_{fix} = Dicke des Anbauteils

fischer Injektionssystem FIS V Zero


Produktbeschreibung Einbauzustände Teil 1 Anhang A 1

Appendix 2 / 26


Einbauzustände Teil 2

fischer Innengewindeanker RG M I

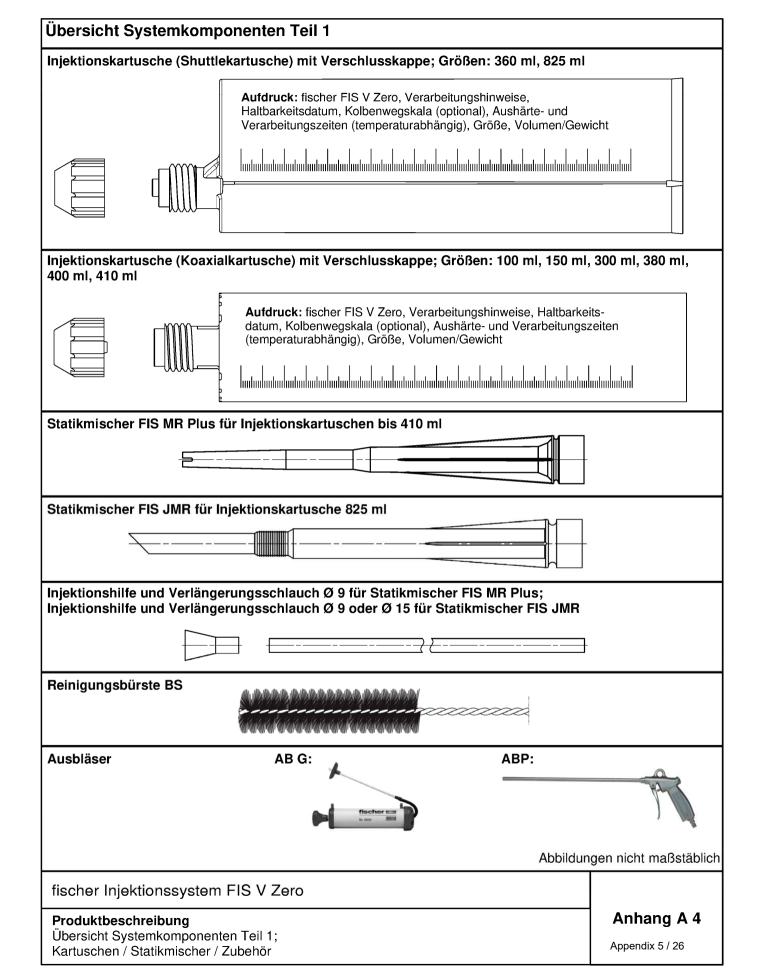
Vorsteckmontage

Vorsteckmontage mit nachträglich verpresster fischer Verfüllscheibe (Ringspalt mit Mörtel verfüllt)

Abbildungen nicht maßstäblich

h₀ = Bohrlochtiefe

h_{ef} = Effektive Verankerungstiefe


 t_{fix} = Dicke des Anbauteils

fischer Injektionssystem FIS V Zero

Produktbeschreibung Einbauzustände Teil 2 Anhang A 2

Appendix 3 / 26

Einbauzustände Teil 3 Betonstahl $h_0 \ge h_{ef}$ fischer Bewehrungsanker FRA Vorsteckmontage $h_0 \ge h_{nom}$ Durchsteckmontage (Ringspalt mit Mörtel verfüllt) t_{fix} $h_0 \ge h_{nom}$ Abbildungen nicht maßstäblich h_{ef} = Effektive Verankerungstiefe h_0 = Bohrlochtiefe t_{fix} = Dicke des Anbauteils Gesamteinbindetiefe des Dübels im Beton fischer Injektionssystem FIS V Zero Anhang A 3 Produktbeschreibung Einbauzustände Teil 3 Appendix 4 / 26

Übersicht Systemkomponenten Teil 2 fischer Ankerstange Größen: M8, M10, M12, M16, M20, M24 fischer Innengewindeanker RG M I Größen: M8, M10, M12, M16 Schraube / Gewindestange / Scheibe / Mutter fischer Verfüllscheibe mit Injektionsadapter Betonstahl Nenndurchmesser: $\phi 8$, $\phi 10$, $\phi 12$, $\phi 14$, $\phi 16$, $\phi 20$, $\phi 22$, $\phi 24$, $\phi 25$ fischer Bewehrungsanker FRA Größen: M12, M16, M20, M24 Abbildungen nicht maßstäblich fischer Injektionssystem FIS V Zero Anhang A 5 Produktbeschreibung Übersicht Systemkomponenten Teil 2;

Stahlteile, Injektionsadapter

Appendix 6 / 26

	elle A6.1: Werksto	nie								
	Bezeichnung		Material							
1	Injektionskartusche	_	Mörtel, Härter, Füllstoffe	Hochkorrosions-						
		Stahl	Nichtrostender Stahl R	beständiger Stahl HCR						
	Stahlart	verzinkt	gemäß EN 10088-1:2014 der Korrosionswiderstands- klasse CRC III nach EN 1993-1-4:2015	gemäß EN 10088-1:2014 der Korrosionswiderstands- klasse CRC V nach EN 1993-1-4:2015						
2	Ankerstange	Festigkeitsklasse 4.8, 5.8 oder 8.8; EN ISO 898-1:2013 galv. verzinkt \geq 5 μ m, ISO 4042:2018/Zn5/An(A2K) oder feuerverzinkt \geq 40 μ m EN ISO 10684:2004 $f_{uk} \leq$ 1000 N/mm ² $A_5 >$ 8% Bruchdehnung	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462; EN 10088-1:2014 f _{uk} ≤ 1000 N/mm² A ₅ > 8% Bruchdehnung	Festigkeitsklasse 50 oder 80 EN ISO 3506-1:2009 oder Festigkeitsklasse 70 mit f_{yk} = 560 N/mm² 1.4565; 1.4529; EN 10088-1:2014 $f_{uk} \le$ 1000 N/mm² $A_5 >$ 8% Bruchdehnung						
3	Unterlegscheibe ISO 7089:2000	galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) oder feuerverzinkt ≥ 40 μm EN ISO 10684:2004	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565; 1.4529; EN 10088-1:2014						
4	Sechskantmutter	Festigkeitsklasse 4, 5 oder 8; EN ISO 898-2:2012 galv. verzinkt ≥ 5 µm, ISO 4042:2018/Zn5/An(A2K) oder feuerverzinkt ≥ 40 µm EN ISO 10684:2004	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014						
5	fischer Innengewindeanker RG M I	Festigkeitsklasse 5.8 ISO 898-1:2013 galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K)	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014						
6	Handelsübliche Schraube oder Gewindestange für fischer Innengewinde- anker RG M I	Festigkeitsklasse 5.8 oder 8.8; EN ISO 898-1:2013 galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) A₅ > 8 % Bruchdehnung	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014 A ₅ > 8 % Bruchdehnung	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014 A ₅ > 8 % Bruchdehnung						
7	fischer Verfüllscheibe ähnlich DIN 6319-G	galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) oder feuerverzinkt ≥ 40 μm EN ISO 10684:2004	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565;1.4529; EN 10088-1:2014						
8	Betonstahl EN 1992-1-1:2004 und AC:2010, Anhang C	Stäbe und Betonstahl vom Rir gemäß NDP oder NCL der ge $f_{uk} = f_{tk} = k \cdot f_{yk} (A_5 > 8\%)$	ng, Klasse B oder C mit f _{yk} und mäß EN 1992-1-1:2004/NA	k						
9	## Stäbe und Betonstahlteil: Stäbe und Betonstahl vom Ring Klasse Bewehrungsanker Stäbe und k gemäß									
fisc	her Injektionssystem	ı FIS V Zero								

Produktbeschreibung Werkstoffe Anhang A 6

Spezifizierung des Verwendungszwecks (Teil 1)

Tabelle B1.1: Übersicht Nutzungs- und Leistungskategorien

						FIS \	/ Zero mit					
			Ankers	stange		her ewinde- RG M I	Betor		fisc Bewehru FF	RĂ		
Hammerbohren Standardbohrer	mit	B-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8				alle G	rößen					
Hammerbohren Hohlbohrer	mit			Bohrernenndurchmesser (d ₀)								
(fischer "FHD", H Expert"; Bosch " Hilti "TE-CD, TE	Spe	ed Clean";			БОП		is 30 mm	(d ₀)				
Statische und quasi-statische Belastung, im	l	ungerissenen Beton	Alle Größen	Tabelle: C1.1 C4.1 C5.1	Alle Größen	Tabelle: C2.1 C4.1 C6.1	Alle Größen	Tabelle: C3.1 C4.1 C7.1 C9.1	Alle Größen	Tabelle C3.2 C4.1 C7.2 C9.2		
belastung, iiii	gerissene Beton			C8.1	Alle Größen	C8.2	X-	1)	X	1)		
Seismische Leistungs-	-	C1 ¹⁾	_	1)	-	1)	_1)			1)		
kategorie		C2 ¹⁾										
Nutzungs-	l1	Trockener oder nasser Beton	alle G	rößen	alle G	rößen	alle G	rößen	alle Größen			
kategorie	12	Wasser- gefülltes Bohrloch ²⁾	alle G	rößen	alle G	rößen	alle G	rößen	alle G	rößen		
Einbaurichtung			D3 (hori	zontale un	ıd vertikale	e Montage	nach unte	en, sowie l	Überkopfm	nontage)		
Einbautemperat	ur			Für die ü			s T _{i,max} = + eränderunç		m Einbau			
	_	Temperatur- bereich I	-40	°C bis +40) °C	`	e Kurzzeitt e Langzeit					
Gebrauchs- temperatur- bereiche		Temperatur- bereich II	-40	°C bis +80	O °C		e Kurzzeitt e Langzeit					
23.310110	•	Temperatur- bereich III	-40 °	°C bis +12	0 °C		e Kurzzeitt e Langzeit					

¹⁾ Keine Leistung bewertet

fischer Injektionssystem FIS V Zero

Verwendungszweck
Spezifikationen (Teil 1)

Anhang B 1

Appendix 8 / 26

²⁾ Keine Leistung für Hammerbohren mit Hohlbohrer im gerissenen Beton oder wassergefüllten Bohrloch bewertet

Spezifizierung des Verwendungszwecks (Teil 2)

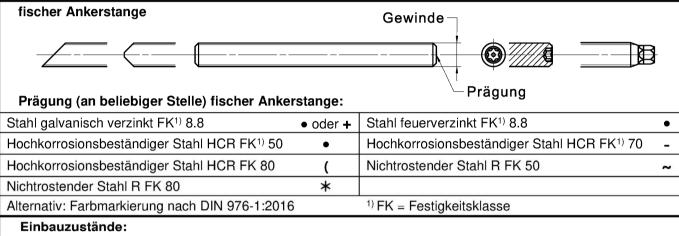
Verankerungsgrund:

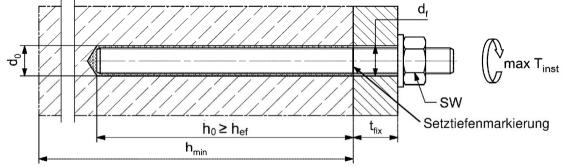
 Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern der Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206:2013+A1:2016

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Für alle anderen Bedingungen gemäß EN 1993-1-4:2015 entsprechend der Korrosionswiderstandsklassen nach Anhang A 6 Tabelle A6.1.

Bemessung:

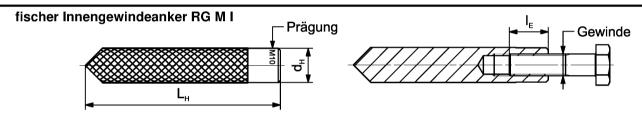

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Stahlbetonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. Auf den Konstruktionszeichnungen ist die Lage der Dübel angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern).
- Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit: EN 1992-4:2018 und EOTA Technical Report TR 055, Fassung Februar 2018.


Einbau:

- Einbau des Dübels durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters
- Im Fall von Fehlbohrungen sind diese zu vermörteln
- · Effektive Verankerungstiefe markieren und einhalten
- Überkopfmontage erlaubt (notwendiges Zubehör siehe Montageanleitung)

fischer Injektionssystem FIS V Zero

Tabelle B3.1:	Montageken	nwerte f	ür Anke ı	rstange	n						
Ankerstangen		(Gewinde	M8	M10	M12	M16	M20	M24		
Schlüsselweite		SW		13	17	19	24	30	36		
Bohrernenndurchn	nesser	d_0		10	12	14	18	22	28		
Bohrlochtiefe		h_0				h ₀ =	= h _{ef}				
Effektive		h _{ef, min}		60	60	70	80	90	96		
Verankerungstiefe		h _{ef, max}		160	200	240	320	400	480		
Minimaler Achs- ui Randabstand	nd	Smin = Cmin	[mm]	40	45	55	65	85	105		
Durchmesser des	Vorsteck- montage	df		9	12	14	18	22	26		
Durchgangsloch im Anbauteil	Durchsteck- montage	df		12	14	16	20	24	30		
Minimale Dicke de	s Betonbauteils	h_{min}		he	f + 30 (≥10	00)		h _{ef} + 2d ₀			
Maximales Montag	gedrehmoment	max T _{inst}	[Nm]	10	20	40	60	120	150		

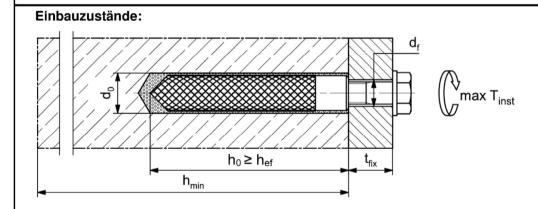

Handelsübliche Gewindestangen, Unterlegscheiben und Sechskantmuttern dürfen ebenfalls verwendet werden, wenn die folgenden Anforderungen erfüllt werden:

- Materialien, Abmessungen und mechanische Eigenschaften gemäß Anhang A 6, Tabelle A6.1
- Prüfzeugnis 3.1 gemäß EN 10204:2004, die Dokumente müssen aufbewahrt werden
- Markierung der Verankerungstiefe

Abbildungen nicht maßstäblich

fischer Injektionssystem FIS V Zero Anhang B 3 Verwendungszweck Montagekennwerte Ankerstangen Appendix 10 / 26

Tabelle B4.1: Montage	kennwert	e für fi	scher Inneng	jewindeankei	RGMI	
Innengewindeanker RG M I	Ge	ewinde	M8	M10	M12	M16
Hülsendurchmesser	$d_{nom} = d_H$		12	16	18	22
Bohrernenndurchmesser	d₀		14	18	20	24
Bohrlochtiefe	h ₀			$h_0 = h$	ef = L H	
Effektive Verankerungstiefe $(h_{ef} = L_H)$	h _{ef}		90	90	125	160
Minimaler Achs- und Randabstand	Smin = Cmin	[mm]	55	65	75	95
Durchmesser des Durch- gangsloch im Anbauteil	df		9	12	14	18
Mindestdicke des Betonbauteils	h _{min}		120	125	165	205
Maximale Einschraubtiefe	$I_{E,max}$		18	23	26	35
Minimale Einschraubtiefe	$I_{E,min}$		8	10	12	16
Maximales Montagedrehmoment	max T _{inst}	[Nm]	10	20	40	80



Prägung: Ankergröße z.B.: M10

Nichtrostender Stahl → zusätzlich R; z.B.: M10 R

Hochkorrosionsbeständiger Stahl → zusätzlich HCR; z.B.: M10 HCR

Befestigungsschraube oder Ankerstangen / Gewindestangen (einschließlich Mutter und Unterlegscheibe) müssen den zugehörigen Materialien und Festigkeitsklassen gemäß Anhang A 6, Tabelle A6.1 entsprechen

Abbildungen nicht maßstäblich

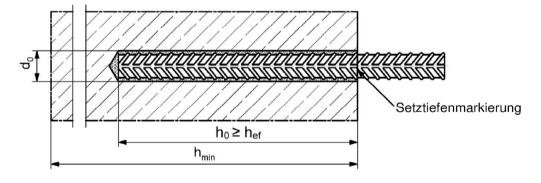
fischer Injektionssystem FIS V Zero

Verwendungszweck

Montagekennwerte fischer Innengewindeanker RG M I

Anhang B 4

Appendix 11 / 26


Tabelle B5.1: Montage	cennwert	te für I	Beton	stahl							
Stabnenndurchmesser		ф	8 ¹⁾	10 ¹⁾	12 ¹⁾	14	16	20	22	24	25
Bohrernenndurchmesser	d ₀		10 12	12 14	14 16	18	20	25	28	30	30
Bohrlochtiefe	h ₀						$h_0 = h_{ef}$				
Effective Venezales was retiefe	h _{ef,min}		60	60	70	75	80	90	94	98	100
Effektive Verankerungstiefe	h _{ef,max}		160	200	240	280	320	400	440	480	500
Minimaler Achs- und Randabstand	Smin = Cmin	[mm]	40	45	55	60	65	85	95	105	110
Mindestdicke des Betonbauteils			ef + 30 2 100)				h _{ef} + 2	?d ₀			

¹⁾ Beide Bohrernenndurchmesser sind möglich

Betonstahl

- Mindestwert der bezogenen Rippenfläche f_{R,min} gemäß Anforderung aus EN 1992-1-1:2004 + AC:2010
- Die Rippenhöhe muss im folgenden Bereich liegen: 0,05 · φ ≤ h_{rib} ≤ 0,07 · φ
 (φ = Stabnenndurchmesser, h_{rib} = Rippenhöhe)

Einbauzustände:

Abbildungen nicht maßstäblich

fischer Injektionssystem FIS V Zero

Verwendungszweck

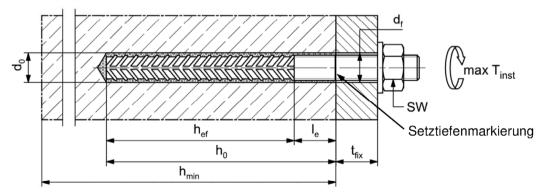
Montagekennwerte Betonstahl

Anhang B 5

Appendix 12 / 26

Bewehrungsanke	er FRA	Ge	ewinde	M1:	2 ¹⁾	M16	M20	M24
Stabnenndurchme	sser	ф		12	2	16	20	25
Schlüsselweite		SW		19)	24	30	36
Bohrernenndurchr	nesser	d ₀		14	16	20	25	30
Bohrlochtiefe		h ₀		•		h _{ef}	+ l _e	
Effolisies Voranko	uun antinfa	h _{ef,min}		70)	80	90	96
Effektive Veranker	ungstiele	h _{ef,max}		14	0	220	300	380
Abstand Betonobe Schweißstelle	erfläche zur	le	[]			1	00	
Minimaler Achs- und Randabstand		Smin = Cmin	[mm]	55	5	65	85	105
Durchmesser des	Vorsteck- montage	≤ d _f		14	1	18	22	26
Durchgangsloch im Anbauteil	Durchsteck- montage	≤ d _f		18	3	22	26	32
Mindestdicke des Betonbauteils		h _{min}		h ₀ + 30			h ₀ + 2d ₀	
Maximales Montagedrehmom	ent	max T _{inst}	[Nm]	40)	60	120	150

¹⁾ Beide Bohrernenndurchmesser sind möglich


fischer Bewehrungsanker FRA

Prägung stirnseitig z.B.:

FRA (für nichtrostenden Stahl);
FRA HCR (für hochkorrosionsbeständigen Stahl)

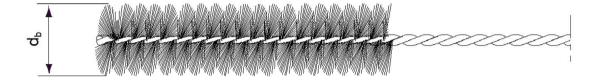
Einbauzustände:

Abbildungen nicht maßstäblich

fischer Injektionssystem FIS V Zero

Verwendungszweck

Montagekennwerte fischer Bewehrungsanker FRA


Anhang B 6

Appendix 13 / 26

Tabelle B7.1: Kennwerte der **Reinigungsbürsten** BS (Stahlbürste mit Stahlborsten)

Die Größe der Reinigungsbürste bezieht sich auf den Bohrernenndurchmesser

Bohrernenn- durchmesser	d₀	[mm]	10	12	14	16	18	20	22	24	25	28	30
Stahlbürsten- durchmesser BS	dь	[mm]	11	14	16	2	0	2	5	26	27	30	40

Tabelle B7.2: Bedingungen zur **Verwendung** eines Statikmischers ohne **Verlängerungs- schlauch**

Bohrernenn- durchmesser	d ₀	[mm]	10	12	14	16	18	20	22	24	25	28	30
Bohrlochtiefe hobei	FIS MR Plus	[mm]	≤9	90	≤120	≤140	≤150	≤160	≤170	≤190		≤210	
Verwendung	FIS JMR	[mm]	-	1	≤90	≤160	≤180	≤190	≤210	≤2	20	≤2:	50

Tabelle B7.3 Maximale Verarbeitungszeit des Mörtels und **minimale Aushärtezeit** (Die Temperatur im Beton darf während der Aushärtung des Mörtels den angegebenen Mindestwert nicht unterschreiten)

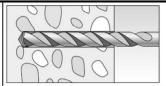
Temperatur im Verankerungsgrund	Maximale Verarbeitungszeit t _{work}	Minimale Aushärtezeit ¹⁾ t _{cure}
[°C]	FIS V Zero	FIS V Zero
-10 bis -5 ²⁾	6 h	72 h
> -5 bis 0 ²⁾	2 h	24 h
> 0 bis 5 ²⁾	45 min	12 h
> 5 bis 10	20 min	6 h
> 10 bis 15	8 min	3 h
> 15 bis 20	5 min	2 h
> 20 bis 25	3 min	1 h
> 25 bis 30	2 min	45 min
> 30 bis 40	1 min	30 min

¹⁾ Im nassen Beton oder wassergefüllten Bohrlöchern sind die Aushärtezeiten zu verdoppeln

fischer Injektionssystem FIS V Zero

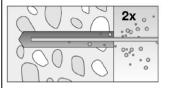
Verwendungszweck

Kennwerte der Reinigungsbürsten Verarbeitungs- und Aushärtezeiten

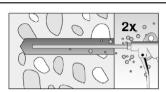

Anhang B 7

²⁾ Minimale Kartuschentemperatur +5°C

Montageanleitung Teil 1

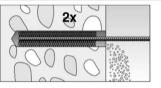

Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Standardbohrer)

1

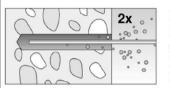


Bohrloch erstellen. Bohrlochdurchmesser d_0 und Bohrlochtiefe h_0 siehe **Tabellen B3.1, B4.1, B5.1, B6.1**

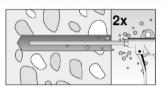
2



Bohrloch reinigen: Bei $h_{ef} \le 12d$ und $d_0 < 18$ mm Bohrloch zweimal von Hand ausblasen


Bei $h_{ef} > 12d$ und / oder $d_0 \ge 18$ mm Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)

3



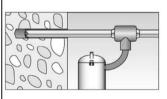
Bohrloch zweimal ausbürsten. Für Bohrlochdurchmesser d₀ ≥ 18 mm und / oder hef > 12d eine Bohrmaschine benutzen. Bei tiefen Bohrlöchern Verlängerung verwenden. Entsprechende Bürsten siehe **Tabelle B7.1**

4

Bohrloch reinigen: Bei $h_{\text{ef}} \le 12d$ und $d_0 < 18$ mm Bohrloch zweimal von Hand ausblasen

Bei h_{ef} > 12d und / oder d₀ ≥ 18 mm Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)

Mit Schritt 5 fortfahren


Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Hohlbohrer)

1

Einen geeigneten Hohlbohrer (siehe **Tabelle B1.1**) auf Funktion der Staubabsaugung prüfen

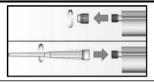
2

Verwendung eines geeigneten Staubabsaugsystems wie z.B. fischer FVC 35 M oder eines Staubabsaugsystems mit vergleichbaren Leistungsdaten

Bohrloch mit Hohlbohrer erstellen. Das Staubabsaugsystem muss den Bohrstaub konstant während des gesamten Bohrvorgangs absaugen und auf maximale Leistung eingestellt sein. Bohrlochdurchmesser **d**₀ und Bohrlochtiefe **h**₀ siehe **Tabellen B3.1**, **B4.1**, **B5.1**, **B6.1**

Mit Schritt 5 fortfahren

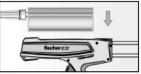
fischer Injektionssystem FIS V Zero


Verwendungszweck Montageanleitung Teil 1 Anhang B 8

Appendix 15 / 26

Montageanleitung Teil 2

Kartuschenvorbereitung


5

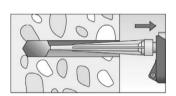
Verschlusskappe abschrauben

Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein)

6

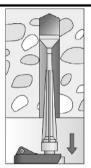
Kartusche in die Auspresspistole legen.

7



Einen etwa 10 cm langen Strang auspressen, bis der Mörtel gleichmäßig grau gefärbt ist. Nicht gleichmäßig grauer Mörtel ist zu verwerfen.

Mit Schritt 8 fortfahren


Mörtelinjektion

8

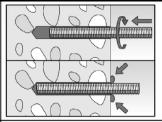
Ca. 2/3 des Bohrlochs mit Mörtel füllen. Immer am Bohrlochgrund beginnen und Blasen vermeiden Die Bedingungen für die Mörtelinjektion ohne Verlängerungsschlauch sind **Tabelle B7.2** zu entnehmen.

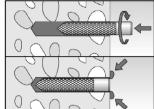
Bei größeren Bohrlochtiefen als den in **Tabelle B7.2** genannten ist ein passender Verlängerungsschlauch zu verwenden.

Bei Überkopfmontage, tiefen Bohrlöchern (h₀ > 250 mm) oder großen Bohrlochdurchmessern (d₀ = 30 mm) Injektionshilfe verwenden

Mit Schritt 9 fortfahren

fischer Injektionssystem FIS V Zero


Verwendungszweck Montageanleitung Teil 2 Anhang B 9


Appendix 16 / 26

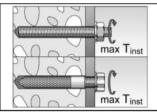
Montageanleitung Teil 3

Montage Ankerstange und fischer Innengewindeanker RG M I

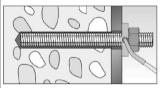
9

Nur saubere und ölfreie Stahlteile verwenden. Setztiefe des Stahlteiles markieren. Die Ankerstange oder den fischer Innengewindeanker RG M I mit leichten Drehbewegungen in das Bohrloch schieben. Nach dem Setzen des Stahlteiles muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein.

Bei Überkopfmontage das Stahlteil mit Keilen (z.B. fischer Zentrierkeile) oder fischer Überkopf-Clips fixieren

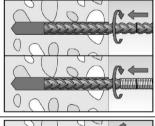

Bei Durchsteckmontage den Ringspalt mit Mörtel verfüllen

10


Aushärtezeit abwarten, t_{cure} siehe **Tabelle B7.3**

11

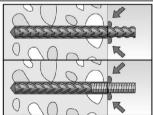
Montage des Anbauteils, max T_{inst} siehe **Tabellen B3.1 und B4.1**


Option

Nachdem die Aushärtezeit erreicht ist, kann der Bereich zwischen Stahlteil und Anbauteil (Ringspalt) über die fischer Verfüllscheibe mit Mörtel befüllt werden. Druckfestigkeit ≥ 50 N/mm² (z.B. fischer Injektionsmörtel FIS V Zero, FIS HB, FIS SB, FIS V, FIS V Plus, FIS EM Plus).

ACHTUNG: Bei Verwendung der fischer Verfüllscheibe reduziert sich t_{fix} (Nutzlänge des Anker)

Montage Betonstahl und fischer Bewehrungsanker FRA

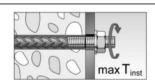


Nur sauberen und ölfreien Betonstahl oder fischer Bewehrungsanker FRA verwenden. Die Setztiefe markieren. Den Bewehrungsstab oder den fischer Bewehrungsanker FRA kräftig bis zur Setztiefenmarkierung in das gefüllte Bohrloch schieben.

Empfehlung:

Erleichterung des Setzvorgangs durch hin und her drehende Bewegungen des Betonstahls / fischer Bewehrungsankers

9


Nach dem Erreichen der Setztiefenmarkierung muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein.

10

Aushärtezeit abwarten, t_{cure} siehe **Tabelle B7.3**

11

Montage des Anbauteils, max T_{inst} siehe **Tabelle B6.1**

fischer Injektionssystem FIS V Zero

Verwendungszweck Montageanleitung Teil 3 Anhang B 10

Appendix 17 / 26

Tabelle C1.1: Charakteristische Werte für die **Stahltragfähigkeit** unter Zug- / Querzug- beanspruchung von **fischer Ankerstangen** und **Standard-Gewindestangen**

Anker	r- / Gewindestange				M8	M10	M12	M16	M20	M24
	agfähigkeit, Stahlversa	agen ³⁾								
			4.8		15(13)	23(21)	33	63	98	141
. Z	Stahl verzinkt	ά	5.8		19(17)	29(27)	43	79	123	177
얼 얼 음		eit Se	8.8		29(27)	47(43)	68	126	196	282
Charakt. Widerstand N _{Rk,s}	Nichtrostender Stahl R	Festigkeits- klasse	50	[kN]	19	29	43	79	123	177
G C	und Hochkorrosions-	Ë	70		26	41	59	110	172	247
ا≷ا	beständiger Stahl HCR		80		30	47	68	126	196	282
Teilsi	cherheitsbeiwerte 1)								1	•
			4.8				1,	50		
eits _{Ms,N}	Stahl verzinkt	\$	5.8				1,	50		
t d		keil Sse	8.8	., [1,	50		
eilsicherheits beiwert γ _{Ms,N}	Nichtrostender Stahl R	Festigkeits- klasse	50	[-]				86		
eils	und Hochkorrosions-	70				1,50 ²⁾	/ 1,87			
-	beständiger Stahl HCR		80				1,	60		
Querti	ragfähigkeit, Stahlversa	gen 3)								
Ohne	Hebelarm									
k,s			4.8		9(8)	14(13)	20	38	59	85
؛ ^ٿ و _{. ب}	Stahl verzinkt	its-	5.8		11(10)	17(16)	25	47	74	106
Charakt.		Festigkeits- klasse	8.8	[kN]	15(13)	23(21)	34	63	98	141
Sha rsta -	Nichtrostender Stahl R	stic Klar	50	[גוא]	9	15	21	39	61	89
၂ မ	und Hochkorrosions-	щ	_70		13	20	30	55	86	124
≥	beständiger Stahl HCR		80		15	23	34	63	98	141
	tätsfaktor		k ₇	[-]			1	,0		
	ebelarm									ı
RK,s			4.8		15(13)	30(27)	52	133	259	448
' ≥ ° ≥ ;	Stahl verzinkt	its-	5.8		19(16)	37(33)	65	166	324	560
Charakt. rstand N		stigkeit klasse	8.8 50	[Nm]	30(26)	60(53)	105	266	519	896
Cha rsta	Nichtrostender Stahl R	Festigkeits- klasse			19	37	65	166	324	560
့မွာ ျ	und Hochkorrosions-	Щ	70		26	52	92	232	454	784
	beständiger Stahl HCR		80		30	60	105	266	519	896
Teilsi	cherheitsbeiwerte 1)		, _ 1							
s >			4.8					25		
heits Ms,v	Stahl verzinkt	eits-	5.8					25		
Stahl verzinkt Nichtrostender Stahl R Nichtrostender Stahl R R R R R R Stahl verzinkt Nichtrostender Stahl R Stakler Nichtrostender Stahl R Stakler Nichtrostender Stahl R Stakler Nichtrostender Stahl R Stakler S								25		
Nichtrostender Stahl R						2,38				
Tei Pe	und Hochkorrosions- beständiger Stahl HCR	Щ	70				-	/ 1,56		
	ocsiandiger Stani HON		80				1,	33		

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

Leistungen

Charakteristische Werte für die Stahltragfähigkeit unter Zug- / Querzugbeanspruchung von fischer Ankerstangen und Standard-Gewindestangen

Anhang C 1

Appendix 18 / 26

²⁾ Nur zulässig für hochkorrosionsbest. Stahl HCR, mit f_{yk} / $f_{uk} \ge 0.8$ und $A_5 > 12$ % (z.B. fischer Ankerstangen)

³⁾ Die Werte in Klammern gelten für unterdimensionierte Standard-Gewindestangen mit geringerem Spannungsquerschnitt As für feuerverzinkte Gewindestangen gemäß EN ISO 10684:2004+AC:2009.

Tabelle C2.1: Charakteristische Werte für die Stahltragfähigkeit unter Zug-/
Querzugbeanspruchung von fischer Innengewindeankern RG M I

				140	B#40	B#40	B#40		
		<u> </u>		MR	MIU	M12	M16		
t, Stah	Iversagen					T	ı		
	Festigkeits-	5.8		19	29	43	79		
Ma		8.8	[LAI]	29	47	68	108		
INHK,S	Festigkeits-	R	[KIN]	26	41	59	110		
	Klasse 70	HCR		26	41	59	110		
eiwert	e ¹⁾								
	Festigkeits-	5.8			1,	50			
	klasse	8.8		1,50					
γMs,N	Festigkeits-	R	[-]		1,	87			
	Klasse 70	HCR		1,87					
eit, Sta	hlversagen								
		5.8		9,2	14,5	21,1	39,2		
V0	klasse	8.8	[[.]	14,6	23,2	33,7	54,0		
V ≅Rk,s	Festigkeits- Klasse 70	R	[KIN]	12,8	20,3	29,5	54,8		
		HCR		12,8	20,3	29,5	54,8		
		k ₇	[-]		1	,0			
	Festigkeits-	5.8		20	39	68	173		
N 40	klasse	8.8	[[]	30	60	105	266		
IVI≃Rk,s	Festigkeits-	R	נואווון	26	52	92	232		
	Klasse 70	HCR		26	52	92	232		
eiwert	e ¹⁾	•							
	Festigkeits-	5.8			1,	25			
	klasse	8.8	r 1		1,	25			
γMs,V	Festigkeits-	R	[-]		1,	56			
	Klasse 70	HCR			1,	56			
	N _{Rk,s} eiwert γ _{Ms,N} eit, Sta	Testigkeits- klasse γMs,N Festigkeits- klasse 70 eiwerte¹) Festigkeits- klasse Festigkeits- klasse 70 eit, Stahlversagen Festigkeits- klasse Festigkeits- klasse Festigkeits- klasse 70 Festigkeits- klasse 70 eiwerte¹) Festigkeits- klasse Festigkeits- klasse Festigkeits- klasse 70 eiwerte¹) Festigkeits- klasse Festigkeits- klasse 70 eiwerte¹) Festigkeits- klasse	Festigkeits- 5.8	$N_{Rk,s} = \frac{Festigkeits-S.8}{Festigkeits-Testigkeit$	Festigkeits- S.8	Festigkeits- 5.8 klasse 70 HCR	t, Stahlversagen Festigkeits- 5.8 19 29 43 43 44 59 45 41 59 59 41 59 68		

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

Leistungen

Charakteristische Werte für die Stahltragfähigkeiten unter Zug-/ Querzugbeanspruchung von fischer Innengewindeankern RG M I Anhang C 2

	derstand N tahlversagen derstand V derstand M	/ ⁰ Rk,s [k	kN]				A _s · f _{uk} 2) · A _s · f _u 1,0			
Quertragfähigkeit, Sta Ohne Hebelarm Charakteristischer Wid Duktilitätsfaktor Mit Hebelarm Charakteristischer Wid 1) In Abstimmung m k ₆ =0,6 für Düb- =0,5 für Düb-	tahlversagen derstand V derstand M	/ ⁰ Rk,s [k	kN]				· A _s · f _u			
Ohne Hebelarm Charakteristischer Wid Duktilitätsfaktor Mit Hebelarm Charakteristischer Wid 1) In Abstimmung m k ₆ =0,6 für Düb =0,5 für Düb	derstand V	k ₇	[-]			k ₆ 1)		uk ²⁾		
Charakteristischer Wid Duktilitätsfaktor Mit Hebelarm Charakteristischer Wid 1) In Abstimmung m k6 =0,6 für Düb- =0,5 für Düb-	derstand V	k ₇	[-]			k ₆ ¹⁾		uk ²⁾		
Duktilitätsfaktor Mit Hebelarm Charakteristischer Wid 1) In Abstimmung m k ₆ =0,6 für Düb =0,5 für Düb	derstand V	k ₇	[-]			k ₆ 1)		uk ²⁾		
Mit Hebelarm Charakteristischer Wid 1) In Abstimmung m k ₆ =0,6 für Dübe =0,5 für Dübe	derstand M						1,0			
Charakteristischer Wid 1) In Abstimmung m k ₆ =0,6 für Düb =0,5 für Düb		∕I ⁰ Rk,s [N	Nm1							
1) In Abstimmung m k ₆ =0,6 für Düb =0,5 für Düb		√l ⁰ Rk,s [N	Nm1							
k ₆ =0,6 für Düb =0,5 für Düb	mit EN 1992-4:2]			1,2 ·	· W _{el} · f	uk ²⁾		
²⁾ f _{uk} bzw. f _{yk} ist der Tabelle C3.2: Ch.	pel aus Stahl mi pel aus Stahl mi pel aus nichtros en Spezifikatione	hit $f_{uk} \le 50$ hit $500 <$ stendem hen des E	500 N : f _{uk} ≤ n Sta Beto erte	N/mm² ≤ 1000 N/mm² .hl nstahls zu entn für die Stahl i	tragfä	ihigkei				
fischer Bewehrungsa		•		M12		M16		M20	M24	

fischer Bewehrungsanker FRA			M12	M16	M20	M24				
Zugtragfähigkeit, Stahlversage	n	•								
Charakteristischer Widerstand	N _{Rk,s}	[kN]	59	110	172	270				
Teilsicherheitsbeiwert 1)										
Teilsicherheitsbeiwert	γMs,N	[-]		1	,4					
Quertragfähigkeit, Stahlversagen										
Ohne Hebelarm										
Charakteristischer Widerstand	V^0 Rk,s	[kN]	30	55	86	141				
Duktilitätsfaktor	k ₇	[-]		1	,0					
Mit Hebelarm										
Charakteristischer Widerstand	M^0 Rk,s	[Nm]	92	233	454	898				
Teilsicherheitsbeiwert 1)		•								
Teilsicherheitsbeiwert	γMs,V	[-]		1,	56					

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

fischer Injektionssystem FIS V Zero

Leistungen
Charakteristische Werte für die Stabltragfähigkeiten unter Zug. /

Charakteristische Werte für die Stahltragfähigkeiten unter Zug- / Querzugbeanspruchung von Betonstahl und fischer Bewehrungsanker FRA Anhang C 3

Appendix 20 / 26

Größe								Alle	e Gı	ößen					
Zugbelastung															
Montagebeiwer	t	γinst	[-]				Sie	ehe Anh	äng	e C 5 k	ois C	8 3			
	etondruckfestigkei														
	C25/30								1,0	3					
_	C30/37								1,0	16					
Erhöhungs-	C35/45)T(.,						1,0	9					
faktor für τ _{Rk}	C40/50	Ψ_{c}	[-]						1,1	1					
_	C45/55								1,1	3					
_	C50/60								1,1	5					
Versagen durc	h Spalten														
	h / h _{ef} ≥ 2,0								1,0	h _{ef}					
Randabstand $\frac{2,0 > h / h_{ef} > 1,3}{h / h_{ef} \le 1,3}$		C _{cr,sp}	[mm]	4.6 h _{ef} - 1.8 h											
] [!''''']]	2,26 h _{ef}											
Achsabstand		S _{cr,sp}		2 Ccr,sp											
Versagen durc	h Betonausbruch														
Ungerissener B	eton	$k_{\text{ucr},N}$	- [-]						11	,0					
Gerissener Beton			LJ						7,	7					
Gerissener Beton Randabstand			[mm]						1,5	h _{ef}					
Achsabstand		Scr,N	2 C _{cr,N}				er,N								
Faktor für Dau	erzugbelastung														
Temperaturbere	eich		[-]	24	°C /	40	°C	50	°C /	80 °C		72 °	C /	120	°C
Faktor		Ψ^0_{sus}	0,67		0,6	67			0,6	57			0,	75	
Querzugbelast	ung														
Montagebeiwer	t	γinst	[-]						1,	0					
Betonausbruc	h auf der lastabgev	vandte	en Seite	е											
Faktor für Betor	nausbruch	k 8	[-]						2,)					
Betonkantena	usbruch														
Effektive Länge unter Querzugb		lf	[mm]					m: min m: min				0 mm)			
Rechnerische	Durchmesser														
Größe				M8		1	V10	M12		M16	6	M20		N	/ 124
fischer Ankersta Standard-Gewi		d _{nom}		8			10	12		16		20			24
fischer Innengewindea	nker RG M I	d _{nom}	[mm]	12			16	18		22		_1)			_1)
fischer Bewehrt	ungsanker FRA	d_{nom}		_1)			_1)	12		16		20			25
Stabnenndurch	messer		ф	8	10)	12	14	16	3 2	0	22	2	4	25
Betonstahl		d_{nom}	[mm]	8	10)	12	14	16	3 2	0	22	2	4	25
¹⁾ Dübelvarian	te nicht Bestandteil	der ET	A												
fischer Injek	tionssystem FIS	V Zer	o												
Leistungen											\dashv	Anh	ar	ıg C	2 4
														_	

Tabelle C5.1:	Charakteristische Werte für die Zugtragfähigkeit von fischer Ankerstangen
	und Standard-Gewindestangen im hammergebohrten Bohrloch;
	ungerissener oder gerissener Beton

M24											
24											
24											
Charakteristische Verbundtragfähigkeit im ungerissenen Beton C20/25 Hammerbohren mit Standardbohrer (trockener oder nasser Beton, wassergefülltes Bohrloch)											
8,5											
8,5											
7											
<u>'</u>											
5											
5											
4,5											
1,4											
4											
4											
3,5											
'											

¹⁾ Keine Leistung bewertet

Leistungen

Charakteristische Werte für die Zugtragfähigkeit von fischer Ankerstangen und Standard-Gewindestangen

Anhang C 5

Tabelle C6.1: Charakteristische Werte für die Zugtragfähigkeit von fischer Innengewindeankern RG M I im hammergebohrten Bohrloch; ungerissener oder gerissener Beton

Innenge	windeanker RG M I			M8	M10	M12	M16
Kombini	ertes Versagen durc	ch Hera	usziehen	und Betonausb	ruch		
Rechneri	ischer Durchmesser	d	[mm]	12	16	18	22
Ungeris	sener Beton						
Charakte	eristische Verbundtr	agfähig	keit im ui	ngerissenen Be	ton C20/25		
<u>Hammerl</u>	<u>bohren mit Standardb</u>	ohrer (tr	ockener o	der nasser Beto	n, wassergefüllte	s Bohrloch)	
Tempe	I: 24 °C / 40 °C		[N/mm²]	7,5	7,5	7,5	7
ratur-		τ _{Rk,ucr}		7,5	7,5	7,5	7
	III: 72 °C / 120 °C			6,5	6,5	6,5	6
<u>Hammerl</u>	bohren mit Hohlbohre	r (trocke	ener oder	nasser Beton)			
Tempe- – ratur- bereich [–]	I: 24 °C / 40 °C	$ au_{ ext{Rk,ucr}}$	cr [N/mm²]	6,5	6,5	6,5	6,5
	II: 50 °C / 80 °C			6,5	6,5	6,5	6,5
	III: 72 °C / 120 °C			5,5	5,5	5,5	5,5
Montage	ebeiwerte				•		
Trockene	er oder nasser Beton		[]		1	,4	
Wasserg	efülltes Bohrloch	γinst	[-]		'	,4	
Gerisser	ner Beton						
Charakte	eristische Verbundtr	agfähig	keit im ge	erissenen Betor	n C20/25		
<u>Hammerl</u>	<u>bohren mit Standardb</u>	ohrer (tr	ockener o	der nasser Betor	<u>n, wassergefüllte</u>	s Bohrloch)	
Tempe	I: 24 °C / 40 °C			4,5	4	4	3,5
ratur-	II: 50 °C / 80 °C	$ au_{Rk,ucr}$	[N/mm²]	4,5	4	4	3,5
bereich ⁻	III: 72 °C / 120 °C			3,5	3,5	3	3
Montage	ebeiwerte						.
Trockene	er oder nasser Beton	20	[]		1	,4	
Wasserg	efülltes Bohrloch	γinst	[-]			, -	

Leistungen

Charakteristische Werte für die Zugtragfähigkeit von fischer Innengewindeankern RG M I

Anhang C 6

Ctobuspusting laws		1	_	40	40	Beto		00	00	04	0.5
Stabnenndurchmesser	sh Here	ф	8	10	12	14	16	20	22	24	25
Kombiniertes Versagen durc Rechnerischer Durchmesser		Τ	· ·	1		1.1	10	20	22	0.4	O.F.
	d	[mm]	8	10	12	14	16	20		24	25
Ungerissener Beton	oafähia	ıkait im	naorica	ones B	oton C	20/25					
Charakteristische Verbundtr Hammerbohren mit Standardb							ïlltae P	ohrloch'	١		
_ I: 24 °C / 40 °C	omer (II	JONETIE! C	6,5	7	7	7,5	7,5	8	8	8	8
Tempe-		INT.									
ratur- I: 50 °C / 80 °C bereich	$ au_{Rk,ucr}$	[N/mm ²]	6,5	7	7	7,5	7,5	8	8	8	8
II: 72 °C / 120 °C			5,5	5,5	6	6	6,5	6,5	6,5	6,5	6,5
Hammerbohren mit Hohlbohre	r (trocke	ener oder	I	Beton)					I	1	
Tempe I: 24 °C / 40 °C			6	6	6	6	6	6	5,5	5,5	5,5
ratur- I: 50 °C / 80 °C	$ au_{Rk,ucr}$	[N/mm ²]	6	6	6	6	6	6	5,5	5,5	5,5
bereich II: 72 °C / 120 °C			5	5	5	5	5	5	4,5	4,5	4,5
Montagebeiwerte		ı	l	I		l	<u> </u>	1	ı	1	
Trockener oder nasser Beton											
Wassergefülltes Bohrloch	γinst	[-]					1,4				
ankern F fischer Bewehrungsanker Fl		namme		nrten E	onriod	m;ung M16	eriss	M20	seton 	M2	4
Kombiniertes Versagen durc	ch Hera	usziehen	und Be	etonaus	bruch						
Rechnerischer Durchmesser	d	[mm]		12	T	16					
Ungerissener Beton						10		20		25	<u> </u>
				· -		10		20		25	
Charakteristische Verbundtr				senen B		20/25				25	
Hammerbohren mit Standardb				senen B		20/25	ülltes B		<u> </u>	25	
Hammerbohren mit Standardb				senen B		20/25	ülltes B		<u>)</u>	8	
Hammerbohren mit Standardb I: 24 °C / 40 °C Tempe- ratur- I: 50 °C / 80 °C				senen B sser Bet		20/25 ssergeft	ülltes B	ohrloch)	<u>)</u>		
Hammerbohren mit Standardb 1: 24 °C / 40 °C Tempe-	ohrer (tr	rockener o		senen B sser Bet 7		20/25 ssergeft 7,5	ülltes B	ohrloch) 8)	8	
Hammerbohren mit Standardb Tempe- I: 24 °C / 40 °C ratur- bereich Tempe- I: 50 °C / 80 °C	ohrer (tr	[N/mm²]	oder nas	senen Besser Bet 7 7		20/25 ssergefü 7,5 7,5	ülltes B	ohrloch) 8 8	1	8	
Hammerbohren mit Standardb Temperatur- bereich II: 24 °C / 40 °C II: 50 °C / 80 °C Hammerbohren mit Hohlbohren II: 24 °C / 40 °C	ohrer (tr	[N/mm²]	oder nas	senen Besser Bet 7 7		20/25 ssergefü 7,5 7,5	ülltes B	ohrloch) 8 8	1	8	5
Hammerbohren mit Standardb Temperatur- bereich II: 24 °C / 40 °C II: 50 °C / 80 °C Hammerbohren mit Hohlbohren Temperatur- II: 24 °C / 40 °C	ohrer (tr	[N/mm²]	oder nas	senen Besser Bet 7 7 6 Beton)		20/25 ssergeft 7,5 7,5 6,5	ülltes B	ohrloch 8 8 6,5		8 8 6,5	5
Hammerbohren mit Standardb Temperatur- bereich I: 24 °C / 40 °C I: 50 °C / 80 °C Hammerbohren mit Hohlbohren Temperatur- ratur- bereich I: 24 °C / 40 °C I: 50 °C / 80 °C	ohrer (tr	[N/mm²]	oder nas	senen Besser Bet 7 7 6 Beton) 6		20/25 ssergeft 7,5 7,5 6,5	ülltes B	ohrloch) 8 8 6,5 6		8 8 6,5 5,5	5
Hammerbohren mit Standardb Tempe- ratur- bereich I: 24 °C / 40 °C I: 50 °C / 80 °C II: 72 °C / 120 °C Hammerbohren mit Hohlbohren 24 °C / 40 °C Tempe- ratur- bereich I: 50 °C / 80 °C	ohrer (tr	[N/mm²]	oder nas	senen Besser Bet 7 7 6 Beton)		20/25 ssergeft 7,5 7,5 6,5	ülltes B	ohrloch) 8 8 6,5	1	8 8 6,5	5
Hammerbohren mit Standardb Temperatur-bereich I: 24 °C / 40 °C I: 50 °C / 80 °C Hammerbohren mit Hohlbohren mit Standardb	ohrer (tr	[N/mm²]	oder nas	senen Besser Bet 7 7 6 Beton) 6		20/25 ssergeft 7,5 7,5 6,5		ohrloch) 8 8 6,5 6		8 8 6,5 5,5	5
Hammerbohren mit Standardb Tempe- ratur- bereich I: 24 °C / 40 °C I: 50 °C / 80 °C II: 72 °C / 120 °C Hammerbohren mit Hohlbohren 24 °C / 40 °C Tempe- ratur- bereich I: 50 °C / 80 °C	ohrer (tr	[N/mm²]	oder nas	senen Besser Bet 7 7 6 Beton) 6		20/25 ssergeft 7,5 7,5 6,5	ülltes B	ohrloch) 8 8 6,5 6		8 8 6,5 5,5	5
Hammerbohren mit Standardb Temperaturbereich I: 24 °C / 40 °C I: 50 °C / 80 °C Hammerbohren mit Hohlbohren Temperaturbereich I: 24 °C / 120 °C Hammerbohren mit Hohlbohren I: 24 °C / 40 °C II: 72 °C / 120 °C Montagebeiwerte Trockener oder nasser Beton	Ohrer (tr TRk,ucr er (trocke TRk,ucr	[N/mm²]	oder nas	senen Besser Bet 7 7 6 Beton) 6		20/25 ssergeft 7,5 7,5 6,5		ohrloch) 8 8 6,5 6		8 8 6,5 5,5	5
Hammerbohren mit Standardb Temperaturbereich I: 24 °C / 40 °C I: 50 °C / 80 °C Hammerbohren mit Hohlbohren Temperaturbereich I: 24 °C / 40 °C Hammerbohren mit Hohlbohren I: 24 °C / 40 °C I: 50 °C / 80 °C II: 72 °C / 120 °C Montagebeiwerte Trockener oder nasser Beton	Ohrer (tr TRk,ucr er (trocke TRk,ucr	[N/mm²]	oder nas	senen Besser Bet 7 7 6 Beton) 6		20/25 ssergeft 7,5 7,5 6,5		ohrloch) 8 8 6,5 6		8 8 6,5 5,5	5
Hammerbohren mit Standardb Temperaturbereich I: 24 °C / 40 °C I: 50 °C / 80 °C Hammerbohren mit Hohlbohren Temperaturbereich I: 24 °C / 120 °C Hammerbohren mit Hohlbohren I: 24 °C / 40 °C II: 72 °C / 120 °C Montagebeiwerte Trockener oder nasser Beton	Ohrer (tr TRk,ucr er (trocke TRk,ucr	[N/mm²]	oder nas	senen Besser Bet 7 7 6 Beton) 6		20/25 ssergeft 7,5 7,5 6,5		ohrloch) 8 8 6,5 6		8 8 6,5 5,5	5
Hammerbohren mit Standardb I: 24 °C / 40 °C I: 50 °C / 80 °C Hammerbohren mit Hohlbohre I: 24 °C / 40 °C Hammerbohren mit Hohlbohre I: 24 °C / 40 °C Hammerbohren mit Hohlbohre I: 50 °C / 80 °C II: 72 °C / 120 °C Montagebeiwerte Trockener oder nasser Beton Wassergefülltes Bohrloch	Ohrer (tr TRk,ucr er (trocke TRk,ucr	[N/mm²]	oder nas	senen Besser Bet 7 7 6 Beton) 6		20/25 ssergeft 7,5 7,5 6,5		ohrloch) 8 8 6,5 6		8 8 6,5 5,5	5

Ankerstange	M8	M10	M12	M16	M20	M24
/erschiebungs-Fakt	oren für Zuglas	t ₁)				•
Jngerissener Beton	; Temperaturbe	reich I, II, III				
δN0-Faktor	0,04	0,04	0,05	0,06	0,07	0,08
$\delta_{N\infty\text{-Faktor}}$ [mm/(N/mm ²	0,04	0,04	0,05	0,06	0,07	0,08
Gerissener Beton; T	emperaturberei	ch I, II, III	•			•
SN0-Faktor	0,10	0,11	0,11	0,13	0,14	0,16
$\delta_{\text{N}_{\infty}\text{-Faktor}}$ [mm/(N/mm ²	0,10	0,11	0,11	0,13	0,14	0,16
Verschiebungs-Fakt	oren für Querla	st ²⁾				<u> </u>
Ungerissener oder g	erissener Betor	n; Temperatui	bereich I, II, III			
δνο-Faktor [mm/kN]	0,18	0,15	0,12	0,09	0,07	0,06
δV∞-Faktor	0,27	0,22	0,18	0,14	0,11	0,09
1) Berechnung der ef	ektiven Verschie	ebung:	²⁾ Berechnu	ung der effektiv	en Verschiebu	ng:
$\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \cdot \tau_{\text{Ed}}$		-		-Faktor · VEd		-
$\delta_{N^{\infty}} = \delta_{N^{\infty}\text{-}Faktor} \cdot \tau_{Ed}$				-Faktor · V _{Ed}		
(τ _{Ed} : Bemessungs)				messungswert		
einwirkenden Zugs	pannung)		einwirke	nden Querkraft)	
Γabelle C8.2: Ve	erschiebunge	n für fische	r Innengewir	ndeanker R0	3 M I	
	_				и IVI I	
Innengewindeanker	М8		M10	M12		M16
Innengewindeanker RG M I						M16
Innengewindeanker RG M I Verschiebungs-Fakt	_ oren für Zuglas	t 1)				M16
Innengewindeanker RG M I Verschiebungs-Fakt Ungerissener Beton	oren für Zuglas ; Temperaturbe	t 1)				M16
Innengewindeanker RG M I Verschiebungs-Fakt Ungerissener Beton δN0-Faktor [mm/(N/mm²	oren für Zuglas ; Temperaturbe	t 1)	M10	M12		
Innengewindeanker RG M I Verschiebungs-Fakt Ungerissener Beton δNo-Faktor δNo-Faktor	Temperaturber 0,06 0,06	t ¹⁾ reich I, II, III	M10 0,07	M12 0,07		0,07
Innengewindeanker RG M I Verschiebungs-Fakt Ungerissener Beton δ _{N0-Faktor} [mm/(N/mm ² Verschiebungs-Fakt	ren für Zuglas Temperaturbe 0,06 0,06 oren für Querla	reich I, II, III	M10 0,07	M12 0,07		0,07
Innengewindeanker RG M I Verschiebungs-Fakt Ungerissener Beton δN0-Faktor δN∞-Faktor Verschiebungs-Fakt Gerissener Beton; Τ δνν-Faktor	ren für Zuglas Temperaturbe 0,06 0,06 oren für Querla	reich I, II, III	M10 0,07	M12 0,07		0,07
Innengewindeanker RG M I Verschiebungs-Fakt Ungerissener Beton δNο-Faktor δN∞-Faktor Verschiebungs-Fakt Gerissener Beton; T δνο-Faktor	oren für Zuglas ; Temperaturber 0,06 0,06 oren für Querlas emperaturberei	reich I, II, III	M10 0,07 0,07	0,07 0,07		0,07
Innengewindeanker RG M I Verschiebungs-Fakt Ungerissener Beton δN0-Faktor δNν-Faktor Verschiebungs-Fakt Gerissener Beton; T δνυ-Faktor δνν-Faktor	Temperaturber 0,06 0,06 0,06 0,06 0,06 0,06 0,10 0,10	reich I, II, III st ²⁾ ch I, II, III	0,07 0,07 0,07	0,07 0,07 0,07		0,07 0,07 0,12
Innengewindeanker RG M I Verschiebungs-Fakt Ungerissener Beton δN0-Faktor δN∞-Faktor Verschiebungs-Fakt Gerissener Beton; T δV0-Faktor δV∞-Faktor δV∞-Faktor Verschiebungs-Fakt	Temperaturber 0,06 0,06 0,06 0ren für Querlar emperaturberei 0,10 0,10 0ren für Querlar	reich I, II, III st ²⁾ ch I, II, III	0,07 0,07 0,07	0,07 0,07 0,07		0,07 0,07 0,12
Innengewindeanker RG M I Verschiebungs-Fakt Ungerissener Beton δNο-Faktor δΝω-Faktor Verschiebungs-Fakt Gerissener Beton; T δνο-Faktor δνω-Faktor Verschiebungs-Fakt Ungerissener und ge δνο-Factor	Temperaturber 0,06 0,06 0,06 0ren für Querlar emperaturberei 0,10 0,10 0ren für Querlar	reich I, II, III st ²⁾ ch I, II, III	0,07 0,07 0,07	0,07 0,07 0,07		0,07 0,07 0,12
Innengewindeanker RG M I Verschiebungs-Fakt Ungerissener Beton δNο-Faktor δΝω-Faktor Verschiebungs-Fakt Gerissener Beton; T δνο-Faktor δνω-Faktor Verschiebungs-Fakt Ungerissener und ge δνο-Factor [mm/kN]	Temperaturber 0,06 0,06 0,06 0,10 0,10 0,10 0ren für Querlaserissener Beton	reich I, II, III st ²⁾ ch I, II, III	0,07 0,07 0,07 0,11 0,11	0,07 0,07 0,07		0,07 0,07 0,12 0,12
Innengewindeanker RG M I Verschiebungs-Fakt Ungerissener Beton δNο-Faktor δΝο-Faktor Gerissener Beton; T δνο-Faktor δνο-Faktor δνο-Faktor Verschiebungs-Fakt Ungerissener und ge δνο-Factor [mm/kN]	Temperaturber 0,06 0,06 0,06 0,10 0,10 0,10 0ren für Querlaserissener Beton 0,12 0,18	reich I, II, III st ²⁾ ch I, II, III st ²⁾ ; Temperatur	0,07 0,07 0,07 0,11 0,11 bereich I, II, III 0,09 0,14	0,07 0,07 0,07 0,11 0,11	ektiven Verschie	0,07 0,07 0,12 0,12 0,07 0,10
Innengewindeanker RG M I Verschiebungs-Fakt Ungerissener Beton δΝο-Faktor Verschiebungs-Fakt Gerissener Beton; T δνο-Faktor δνο-Faktor Verschiebungs-Fakt Ungerissener und ge δνο-Factor δνο-Factor δνο-Factor δνο-Factor	Temperaturber 0,06 0,06 0,06 0,10 0,10 0,10 0ren für Querlaserissener Beton 0,12 0,18	reich I, II, III st ²⁾ ch I, II, III st ²⁾ ; Temperatur	0,07 0,07 0,07 0,11 0,11 bereich I, II, III 0,09 0,14	0,07 0,07 0,07 0,11 0,11		0,07 0,07 0,12 0,12 0,07 0,10
Innengewindeanker RG M I Verschiebungs-Fakt Ungerissener Beton δN0-Faktor δN∞-Faktor Verschiebungs-Fakt Gerissener Beton; T δν0-Faktor δν∞-Faktor Verschiebungs-Fakt Ungerissener und ge δν0-Factor δνν-Factor δνν-Factor δνν-Factor 1) Berechnung der ef	Temperaturber 0,06 0,06 0,06 0,10 0,10 0,10 0ren für Querlaserissener Beton 0,12 0,18	reich I, II, III st ²⁾ ch I, II, III st ²⁾ ; Temperatur	0,07 0,07 0,07 0,11 0,11 bereich I, II, III 0,09 0,14 2) Berec δνο =	0,07 0,07 0,07 0,11 0,11 0,08 0,12 chnung der effe		0,07 0,07 0,12 0,12 0,07 0,10
Innengewindeanker RG M I Verschiebungs-Fakt Ungerissener Beton δN0-Faktor δN∞-Faktor Verschiebungs-Fakt Gerissener Beton; T δV0-Faktor δV∞-Faktor Verschiebungs-Fakt Ungerissener und ge δV0-Factor δν∞-Factor δν∞-Factor 1) Berechnung der ef δN0 = δN0-Faktor · τEd	oren für Zuglas (Temperaturber 0,06 0,06 oren für Querlas emperaturberei 0,10 0,10 oren für Querlas erissener Beton 0,12 0,18 fektiven Verschie	reich I, II, III st ²⁾ ch I, II, III st ²⁾ ; Temperatur	M10 0,07 0,07 0,11 0,11 bereich I, II, III 0,09 0,14 2) Berec $\delta_{Vo} = 0$ $\delta_{Vo} = 0$ (Ved:	M12 0,07 0,07 0,11 0,11 0,08 0,12 chnung der effe δvo-Faktor · VEd	ektiven Verschie	0,07 0,07 0,12 0,12 0,07 0,10

LeistungenVerschiebungen Ankerstangen und fischer Innengewindeanker RG M I

Anhang C 8

Appendix 25 / 26

Stabnen durchme	т — ф 1	8	10	12	14	16	20	22	24	25		
Verschiebungs-Faktoren für Zuglast¹)												
Ungeris	sener Beton; 1	Temperati	urbereich	I, II, III								
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm²)]	0,05	0,06	0,07	0,08	0,09	0,10	0,11	0,12	0,12		
δN∞-Faktor	[111111/(14/111111-)]	0,05	0,06	0,07	0,08	0,09	0,10	0,11	0,12	0,12		
Verschie	ebungs-Faktor	en für Qı	ierlast ²⁾									
Ungeris	sener Beton; 1	Temperati	urbereich	I, II, III								
δv0-Faktor	[mm/kN]]	0,18	0,15	0,12	0,10	0,09	0,07	0,07	0,06	0,06		
δ∨∞-Faktor	[mm/kN]	0,27	0,22	0,18	0,16	0,14	0,11	0,10	0,09	0,09		
1) Berec	hnung der effe	ktiven Ver	schiebung	:	²⁾ Bere	echnung d	er effektiv	en Versch	iebung:			
$\delta_{N0} =$	δ N0-Faktor \cdot $ au$ Ed											
δ _{N∞} =	δN∞-Faktor · τEd				δν∞	= δv∞-Faktor	· V _{Ed}					

(τ_{Ed}: Bemessungswert der einwirkenden Zugspannung)

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

Tabelle C9.2: Verschiebungen für fischer Bewehrungsanker FRA

fischer I anker Fl	Bewehrungs- RA	M12	M16	M20	M24					
Verschi	ebungs-Faktor	ren für Zuglast¹)								
Ungerissener Beton; Temperaturbereich I, II, III										
δN0-Faktor	[mm/(N/mm²)]	0,07	0,09	0,10	0,12					
δ _{N∞-} Faktor	[[11111/(1 1 /111111-)]	0,07	0,09	0,10	0,12					
Verschiebungs-Faktoren für Querlast ²⁾										
Ungerissener Beton; Temperaturbereich I, II, III										
δ V0-Faktor	[mm/kN]	0,12	0,09	0,07	0,06					
δv∞-Faktor	[mm/kN]	0,18	0,14	0,11	0,09					

1) Berechnung der effektiven Verschiebung:

 $\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Faktor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed}: Bemessungswert der einwirkenden Zugspannung) ²⁾ Berechnung der effektiven Verschiebung:

 $\delta_{V0} = \delta_{V0\text{-Faktor}} \cdot V_{Ed}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Faktor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

fischer Injektionssystem FIS V Zero

Leistungen

Verschiebungen Betonstahl und fischer Bewehrungsanker FRA

Anhang C 9

Appendix 26 / 26