

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-17/0197 vom 30. Januar 2023

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Upat UKA3 Plus

Verbunddübel zur Verankerung im Beton

Upat Vertriebs GmbH Bebelstraße 11 79108 Freiburg im Breisgau DEUTSCHLAND

Upat

20 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330499-01-0601, Edition 04/2020

ETA-17/0197 vom 3. April 2017

Europäische Technische Bewertung ETA-17/0197

Seite 2 von 20 | 30. Januar 2023

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z1597.23 8.06.01-144/22

Europäische Technische Bewertung ETA-17/0197

Seite 3 von 20 | 30. Januar 2023

Besonderer Teil

1 Technische Beschreibung des Produkts

Das Upat UKA3 Plus ist ein Verbunddübel zur Verankerung im Beton, der aus einer Mörtelpatrone Upat UKA3 Plus und einem Stahlteil nach Anhang A2 besteht.

Die Mörtelpatrone Upat UKA3 Plus wird in ein Bohrloch im Beton gesetzt. Das Stahlteil wird in die Mörtelpatrone mit einer Maschine durch Schlagen und Drehen getrieben.

Die Lastübertragung erfolgt durch Verbund zwischen dem Stahlteil, dem chemischen Mörtel und Beton.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß anwendbarem Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang B 3 und B 4, C 1 bis C 5
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 1 bis C 3
Verschiebungen unter Kurzzeit- und Langzeitbelastung	Siehe Anhang C 6
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C1 und C2	Leistung nicht bewertet

3.2 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

Z1597.23 8.06.01-144/22

Europäische Technische Bewertung ETA-17/0197

Seite 4 von 20 | 30. Januar 2023

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330499-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

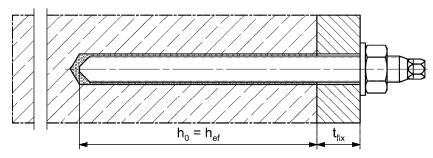
Folgendes System ist anzuwenden: 1

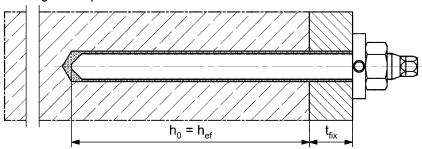
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 30. Januar 2023 vom Deutschen Institut für Bautechnik

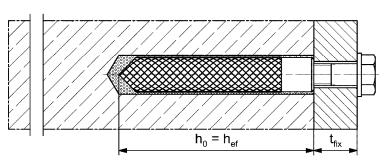
Dipl.-Ing. Beatrix Wittstock Referatsleiterin Beglaubigt Baderschneider


Z1597.23 8.06.01-144/22

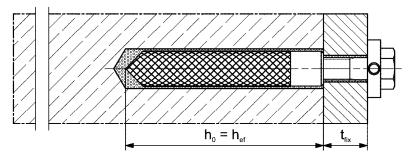

Einbauzustände

Upat Ankerstangen ASTA; Montage in Beton

Vorsteckmontage:



Vorsteckmontage mit nachträglich verpresster Verfüllscheibe:



Upat Innengewindeanker IST; Montage in Beton

Vorsteckmontage:

Vorsteckmontage mit nachträglich verpresster Verfüllscheibe:

Abbildungen nicht maßstäblich

 h_0 = Bohrlochtiefe

h_{ef} = Effektive Verankerungstiefe

t_{fix} = Dicke des Anbauteils

Upat UKA3 Plus

Produktbeschreibung

Einbauzustände

Anhang A 1

8.06.01-144/22

Z1610.23

Übersicht Produktkomponenten Mörtelpatrone UKA3 Plus Größen: 8, 10, 12, 16, 16E, 20/22, 24 Upoli, UKA3 Plus M12 **Upat Ankerstange ASTA** Größen: M8, M10, M12, M16, M20, M24 **Upat Innengewindeanker IST** Größen: M8, M10, M12, M16, M20 Schraube / Gewindestange / Scheibe / Mutter Verfüllscheibe mit Injektionshilfe Abbildungen nicht maßstäblich Upat UKA3 Plus Anhang A 2 Produktbeschreibung Übersicht Produktkomponenten

Teil	Bezeichnung		Material						
1	Mörtelpatrone UKA3 Plus	Mörtel, Härter, Füllstoffe							
		Stahl	Nichtrostender Stahl R	Hochkorrosionsbeständige Stahl HCR					
	Stahlart	verzinkt	gemäß EN 10088-1:2014 der Korrosionsbeständigkeits- klasse CRC III nach EN 1993-1-4: 2006+A1:2015	gemäß EN 10088-1:2014 d Korrosionsbeständigkeits- klasse CRC V nach EN 1993-1-4: 2006+A1:20					
2	Upat Ankerstange ASTA	Festigkeitsklasse 4.8, 5.8 oder 8.8; EN ISO 898-1:2013 galv. verzinkt ≥ 5 μ m, ISO 4042:2018/Zn5/An(A2K) oder feuerverzinkt ≥ 40 μ m EN ISO 10684:2004+AC:2009 $f_{uk} \le 1000 \text{ N/mm}^2$	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462 EN 10088-1:2014 f _{uk} ≤ 1000 N/mm ²	Festigkeitsklasse 50 oder 80 EN ISO 3506-1:2020 oder Festigkeitsklasse 70 mit f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le 1000$ N/mm ²					
			Bruchdehnung A ₅ > 8 %						
3	Unterlegscheibe ISO 7089:2000	galv. verzinkt ≥ 5 µm, ISO 4042:2018/Zn5/An(A2K) oder feuerverzinkt ≥ 40 µm EN ISO 10684:2004+AC:2009	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014					
4	Sechskantmutter	Festigkeitsklasse 4, 5 oder 8; EN ISO 898-2:2012 galv. verzinkt ≥ 5 µm, ISO 4042:2018/Zn5/An(A2K) oder feuerverzinkt ≥ 40 µm EN ISO 10684:2004+AC:2009	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2020 1.4565; 1.4529 EN 10088-1:2014					
5	Upat Innengewinde- anker IST	Festigkeitsklasse 5.8 ISO 898-1:2013 galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K)	Festigkeitsklasse 70 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Festigkeitsklasse 70 EN ISO 3506-1:2020 1.4565; 1.4529 EN 10088-1:2014					
6	Handelsübliche Schraube oder Gewindestange für Upat Innengewinde- anker IST	Festigkeitsklasse 5.8 oder 8.8; EN ISO 898-1:2013 galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) A₅ > 8 % Bruchdehnung	Festigkeitsklasse 70 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014 A ₅ > 8 % Bruchdehnung	Festigkeitsklasse 70 EN ISO 3506-1:2020 1.4565; 1.4529 EN 10088-1:2014 A ₅ > 8 % Bruchdehnung					
7	Verfüllscheibe	galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) oder feuerverzinkt ≥ 40 μm EN ISO 10684:2004+AC:2009	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014					
-	t UKA3 Plus			Anhang A 3					

Spezifizierung des Verwendungszwecks Teil 1 Tabelle B1.1: Übersicht Nutzungs- und Leistungskategorien Beanspruchung der Verankerung UKA3 Plus mit ... Upat Ankerstange Upat Innengewindeanker **ASTA** IST Hammerbohren mit alle Größen Standardbohrer Hammerbohren mit Hohlbohrer (fischer FHD", Heller "Duster, Expert"; Bosch Bohrernenndurchmesser (d₀) alle Größen Speed Clean"; Hilti 12 mm bis 28 mm 'TE-CD, TE-YD", DreBo "D-Plus", DreBo "D-Max") ungerissenen alle Größen Statische und quasi-**Beton** alle Größen statische Belastung, M10, M12, M16, im gerissenen Beton Tabellen: Tabellen: M20, M24 C1.1, C3.1, C2.1, C3.1, Trockener oder C4.1, C6.1 C5.1, C6.2 11 alle Größen alle Größen nasser Beton Nutzungskategorie Wassergefülltes M12, M16, M20, 12 M8, M10, M16 Bohrloch M24 Seismische C₁ _1) _1) Leistungs-C2 kategorie D3 (horizontale und vertikale Montage nach unten, sowie Einbaurichtung Überkopfmontage) $T_{i,min}$ =-15 °C bis $T_{i,max}$ = +40 °C Einbautemperatur (maximale Kurzzeittemperatur +40 °C; Temperatur--40 °C bis +40 °C maximale Langzeittemperatur +24 °C) bereich I Gebrauchs-Temperatur-(maximale Kurzzeittemperatur +80 °C; -40 °C bis +80 °C bereich II maximale Langzeittemperatur +50 °C) temperaturbereiche Temperatur-(maximale Kurzzeittemperatur +120 °C; -40 °C bis +120 °C bereich III maximale Langzeittemperatur +72 °C) 1) Leistung nicht bewertet **Upat UKA3 Plus** Anhang B 1 Verwendungszweck Spezifikationen Teil 1

Spezifizierung des Verwendungszwecks Teil 2

Verankerungsgrund:

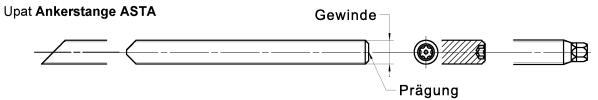
 Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern der Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206:2013+A1:2016

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl)
- Für alle anderen Bedingungen gemäß EN 1993-1-4:2006+A1:2015 entsprechend der Korrosionsbeständigkeitsklassen nach Anhang A 3 Tabelle A3.1.

Bemessung:

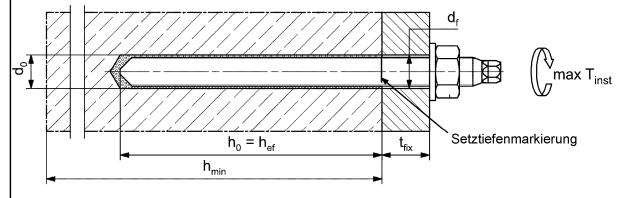
- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs
- Unter Berücksichtigung der zu verankernden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. Auf den Konstruktionszeichnungen ist die Lage der Dübel angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern)
- Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit:
 EN 1992-4:2018 und EOTA Technical Report TR 055, Fassung Februar 2018.


Einbau:

- · Einbau des Dübels durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters
- Effektive Verankerungstiefe markieren und einhalten
- Überkopfmontage erlaubt

Upat UKA3 Plus	
Verwendungszweck Spezifikationen Teil 2	Anhang B 2

Ankerstange ASTA		G	ewinde	М8	M10	M12	M16	M20	M24
Bohrernenndurchmess	er	d ₀		10	12	14	18	25	28
Bohrlochtiefe		h₀				h ₀ =	h _{ef}		
Effektive Verankerungstiefe		h_{ef}		80	90	110	125	170	210
Minimaler Achs- und Randabstand		S _{min} = C _{min}	[mm]	40	45	55	65	85	105
Durchmesser des Durchganglochs im Anbauteil	Nur Vorsteck- montage	d _f		9	12	14	18	22	26
Mindestdicke des Betonbauteils		h _{min}			h _{ef} + 30 (≥ 100)			h _{ef} + 2d ₀	
Maximales Montagedrehmoment		max T _{inst}	[Nm]	10	20	40	60	120	150



Prägung (an beliebiger Stelle) Upat Ankerstange ASTA:

Stahl galvanisch verzinkt FK ¹⁾ 8.8	• oder +	Stahl feuerverzinkt FK ¹⁾ 8.8	•
Hochkorrosionsbeständiger Stahl HCR FK ¹⁾ 50) •	Hochkorrosionsbeständiger Stahl HCR FK ¹⁾ 70	-
Hochkorrosionsbeständiger Stahl HCR FK 80	(Nichtrostender Stahl R FK 50	~
Nichtrostender Stahl R FK 80	*		

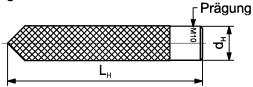
Alternativ: Farbmarkierung nach DIN 976-1:2016

Einbauzustände:

Abbildungen nicht maßstäblich

Upat UKA3 Plus

Verwendungszweck


Montagekennwerte für Upat Ankerstangen ASTA

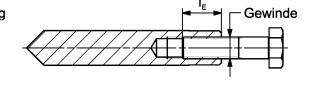
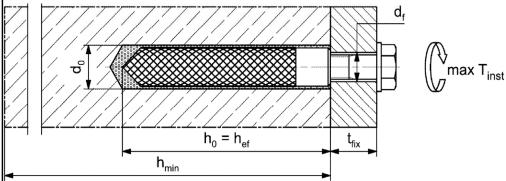

¹⁾ FK = Festigkeitsklasse

Tabelle B4.1: Montagek	ennwerte	e Upat	Innengev	vindeanke	r IST		
Innengewindeanker IST	Ge	winde	M8	M10	M12	M16	M20
Hülsendurchmesser	$d = d_H$		12	16	18	22	28
Bohrernenndurchmesser	d ₀		14	18	20	24	32
Bohrlochtiefe	h ₀				$h_0 = h_{ef} = L_H$		
Effektive Verankerungstiefe (h _{ef} = L _H)	h _{ef}		90	90	125	160	200
Minimaler Achs- und Randabstand	S _{min} = C _{min}	[mm]	55	65	75	95	125
Durchmesser des Durchgang- lochs im Anbauteil	df	-	9	12	14	18	22
Mindestdicke des Betonbauteils	h _{min}		120	125	165	205	260
Maximale Einschraubtiefe	$I_{E,max}$		18	23	26	35	45
Minimale Einschraubtiefe	$I_{E,min}$		8	10	12	16	20
Maximales Montagedrehmoment	max T _{inst}	[Nm]	10	20	40	80	120

Upat Innengewindeanker IST

Prägung:


Ankergröße z.B.: M10

Nichtrostender Stahl → zusätzlich R; z.B.: M10 R

Hochkorrosionsbeständiger Stahl → zusätzlich HCR; z.B.: M10 HCR

Befestigungsschraube oder Ankerstangen / Gewindestangen (einschließlich Mutter und Unterlegscheibe) müssen den zugehörigen Materialien und Festigkeitsklassen gemäß Anhang A 3, Tabelle A3.1 entsprechen

Einbauzustände:

Abbildungen nicht maßstäblich

Upat UKA3 Plus

Verwendungszweck

Montagekennwerte Upat Innengewindeanker IST

Tabelle B5.1: Abmessungen der Mörtelpatrone UKA3 Plus									
Mörtelpatrone	UKA3 F	Plus	8	10	12	16	16 E	20/22	24
Patronen Durchmesser	d₽	[mm]	9,0	10,5	12,5	16	5,5	23	3,0
Patronen Länge	L _P	[mm]	85	90	97	95	123	160	190

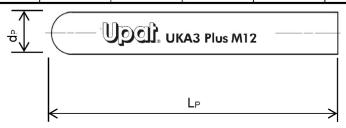


Tabelle B5.2: Zuordnung der Mörtelpatronen UKA3 Plus zu Upat Ankerstangen ASTA

Ankerstange ASTA			M8	M10	M12	M16	M20	M24
Effektive Verankerungstiefe	h _{ef}	[mm]	80	90	110	125	170	210
Zugehörige Mörtel- patrone UKA3 Plus		[-]	8	10	12	16	20/22	24

Tabelle B5.3: Zuordnung der **Mörtelpatronen UKA3 Plus** zu **Upat Innengewindeankern IST**

Innengewindeanker IS	Т		M8	M10	M12	M16	M20
Effektive Verankerungstiefe	h _{ef}	[mm]	90	90	125	160	200
Zugehörige Mörtel- patrone UKA3 Plus		[-]	10	12	16	16E	24

Tabelle B5.4: Minimale Aushärtezeiten

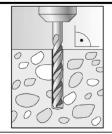
(Die Temperatur im Beton darf während der Aushärtung des Mörtels den angegebenen Mindestwert nicht unterschreiten; minimale Patronentemperatur -15 °C)

Temperatur im Verankerungsgrund [°C]	Minimale Aushärtezeit t _{cure}
-15 bis -10	30 h
> -10 bis -5	16 h
> -5 bis 0	10 h
> ±0 bis 5	45 min
> 5 bis 10	30 min
> 10 bis 20	20 min
> 20 bis 30	5 min
> 30 bis 40	3 min

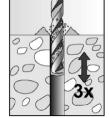
Upat UKA3 Plus

Verwendungszweck

Abmessungen Mörtelpatronen, Zuordnungen Mörtelpatronen zu Ankerstangen und Innengewindeankern, Minimale Aushärtezeiten


Anhang B 5

Montageanleitung Teil 1


Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Standardbohrer)

1

Bohrtiefe \mathbf{h}_0 bei Bohrlocherstellung einhalten (z.B. Markierung auf Bohrer). Bohrloch erstellen.

Bohrlochdurchmesser d₀ und Bohrlochtiefe h₀ siehe **Tabellen B3.1**, **B4.1**

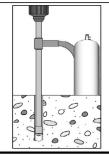
Nach dem Erreichen der erforderlichen Bohrtiefe den Bohrer bei laufender Maschine aus dem Bohrloch ziehen.

Bohrer mit der Bohrmaschine mindestens **dreimal** bis zum Bohrlochgrund einbringen und wieder aus dem Bohrloch herausziehen (Bohrloch "lüften")

2

Ein Nachrieseln des Bohrmehls in das Bohrloch ist zu verhindern z.B. durch Absaugen während des Bohrvorgangs. Das Bürsten oder Ausblasen des Bohrlochs ist nicht notwendig

Mit Schritt 3 fortfahren


Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Hohlbohrer)

1

Einen geeigneten Hohlbohrer (siehe **Tabelle B1.1**) auf Funktion der Staubabsaugung prüfen

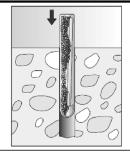
2

Verwendung eines geeigneten Staubabsaugsystems wie z.B. fischer FVC 35 M oder eines Staubabsaugsystems mit vergleichbaren Leistungsdaten

Bohrloch mit Hohlbohrer erstellen. Das Staubabsaugsystem muss den Bohrstaub konstant während des gesamten Bohrvorgangs absaugen und auf maximale Leistung eingestellt sein. Bohrlochdurchmesser **d**₀ und Bohrlochtiefe **h**₀ siehe **Tabellen B3.1, B4.1**

Mit Schritt 3 fortfahren

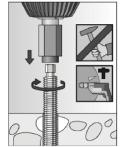
Upat UKA3 Plus

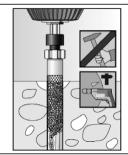

Verwendungszweck Montageanleitung Teil 1

Montageanleitung Teil 2

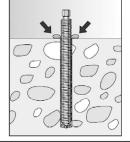
Montage von Upat Ankerstangen ASTA oder Upat Innengewindeankern IST mit Mörtelpatrone UKA3 Plus

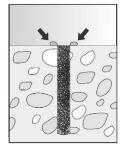
3



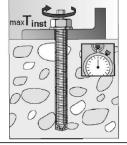

Mörtelpatrone UKA3 Plus von Hand in das Bohrloch stecken

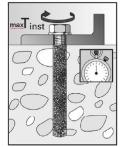
Abhängig vom Verankerungselement, passendes Setzwerkzeug / Adapter verwenden (z.B. MW-SDS)


4



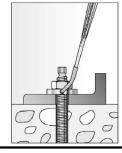
Nur saubere und ölfreie Stahlteile verwenden. Ankerstange ASTA oder Upat Innengewindeanker IST mit dem Bohrhammer mit eingeschaltetem Schlag und passendem Adapter in die Patrone eintreiben. Anhalten, wenn der Anker den Grund des Bohrlochs erreicht und die korrekte Verankerungstiefe erreicht ist


5



Nach dem Erreichen der korrekten Setztiefe muss Überschussmörtel aus dem Bohrlochmund austreten

6



Aushärtezeit abwarten, t_{cure} siehe **Tabelle B5.4**

Montage des Anbauteils, max T_{inst} siehe **Tabelle B3.1, B4.1**

Option

Nachdem die Aushärtezeit erreicht ist, kann der Bereich zwischen Anker und Anbauteil (Ringspalt) über die Verfüllscheibe mit Mörtel verfüllt werden. Druckfestigkeit ≥ 50 N/mm² (z.B. Upat Injektionsmörtel UPM 33, UPM 44, UPM 55, UPM 66).

Upat UKA3 Plus

Verwendungszweck Montageanleitung Teil 2

von Upat Ankerstangen ASTA

Charakteristischer Widerstand ge Charakteristischer Widerstand ge Charakteristischer Widerstand ge Stahl verzinkt Nichtrostender Stahl R und Hochkorrosions- beständiger Stahl HCR Charakteristischer I) Stahl verzinkt Nichtrostender Stahl R und Hochkorrosions- beständiger Stahl HCR Charakteristischer Widerstand ge Charakteristischer Widerstand ge Charakteristischer Widerstand ge Charakteristischer Widerstand ge Stahl verzinkt Nichtrostender Stahl R und Hochkorrosions- beständiger Stahl HCR Lestigkeits- Lesti	4.8 5.8 8.8 5.8 5.8 5.8 5.8 5.8 5	3 3 3 3 3 3 3 3 3 3	15(13) 19(17) 29(27) 19 26 30 ersagen un 9(8) 11(10)	23(21) 29(27) 47(43) 29 41 47 ter Querbe	33 43 68 43 59 68 1, 1, 2, 1,50 ³⁾	63 79 126 79 110 126 50 50 50 86 7 1,87	98 123 196 123 172 196	141 177 282 177 247 282
Gerstand Nichtrostender Stahl R und Hochkorrosions-beständiger Stahl HCR Stahl verzinkt Nichtrostender Stahl HCR Stahl verzinkt Nichtrostender Stahl R und Hochkorrosions-beständiger Stahl HCR Charakteristischer Widerstand R und Hochkorrosions-beständiger Stahl HCR Charakteristischer Widerstand Ge Charakterin Widerstand Ge Charakteristischer Widerstand Ge Charakteristis	4.8 5.8 8.8 5.8 5.8 5.8 5.8 5.8 5	3 3 3 3 3 3 3 3 3 3	15(13) 19(17) 29(27) 19 26 30 ersagen un 9(8) 11(10)	23(21) 29(27) 47(43) 29 41 47 ter Querbe	33 43 68 43 59 68 1, 1, 2, 1,50 ³⁾ 1,	63 79 126 79 110 126 50 50 50 86 7 1,87 60 ung 2)	123 196 123 172 196	177 282 177 247
Gerstand Stahl R and Hochkorrosions-beständiger Stahl HCR Stahl verzinkt Nichtrostender Stahl R and Hochkorrosions-beständiger Stahl HCR Nichtrostender Stahl R and Hochkorrosions-beständiger Stahl HCR Charakteristischer Widerstand ge Chara	5.8 8.8 50 70 80 4.8 5.8 8.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5	[-]	19(17) 29(27) 19 26 30 ersagen un 9(8) 11(10)	29(27) 47(43) 29 41 47 ter Querbe	43 68 43 59 68 1, 1, 2, 1,50 ³⁾	79 126 79 110 126 50 50 50 86 7 1,87 60 ung 2)	196 123 172 196	177 282 177 247
Nichtrostender Stahl R und Hochkorrosions-beständiger Stahl HCR Stahl verzinkt Nichtrostender Stahl R und Hochkorrosions-beständiger Stahl HCR Nichtrostender Stahl R und Hochkorrosions-beständiger Stahl HCR Charakteristischer Widerstand ge	70 80 4.8 5.8 50 70 80 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8	[F]	29(27) 19 26 30 30 ersagen un 9(8) 11(10)	29 41 47 ter Querbe	43 59 68 1, 1, 2, 1,50 ³⁾ 1,	79 110 126 50 50 50 86 7/1,87 60 ung 2)	123 172 196	177 247
Gestigner of the stand of the s	70 80 4.8 5.8 50 70 80 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8	3 3 3 [-]	26 30 ersagen un 9(8) 11(10)	41 47 ter Querbea	59 68 1, 1, 2, 1,50 ³⁾ 1,	110 126 50 50 50 86 7/1,87 60 ung 2)	172 196	247
Gestigner of the stand of the s	70 80 4.8 5.8 50 70 80 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8	3 3 3 [-] tahlve	30 ersagen un 9(8) 11(10)	47 ter Querbea	1, 1, 2, 1,50 ³⁾ 1,	126 50 50 50 86 7 1,87 60 ung 2)	196	
Gestigner of the stand of the s	4.8 5.8 5.8 5.0 70 80 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8	[-] tahlve	9(8) 11(10)	ter Querbea	1, 1, 1, 2, 1,50 ³⁾ 1,	50 50 50 86 7 1,87 60 ung 2)		282
Gestigkeits- Jestigkeits- Je	5.8 8.8 50 70 80 5.8 5.8 5.8 8.8 5.8 5.8	[-]	9(8) 11(10)	14(13)	1, 1, 2, 1,50 ³⁾ 1,	50 50 86 7 1,87 60 ung ²⁾	50	
Charakteristischer Widerstand ge stand Cherstand Charakteristischer Widerstand ge Stand Cherstand Cherstan	5.8 8.8 50 70 80 5.8 5.8 5.8 8.8 5.8 5.8	[-]	9(8) 11(10)	14(13)	1, 1, 2, 1,50 ³⁾ 1,	50 50 86 7 1,87 60 ung ²⁾	50	
Charakteristischer Widerstand ge Stand Cheritischer Widerstand ge Charakteristischer Widerstand Ge	8.8 50 70 80 80 5.8 5.8 5.8 5.8 5.8	[-]	9(8) 11(10)	14(13)	1, 2, 1,50 ³⁾ 1, anspruch	50 86 7 1,87 60 ung ²⁾	50	
Charakteristischer Widerstand ge Stand Charakteristischer Widerstand ge Charakteristischer Widersta	70 80 gen S 5.8 5.8 5.8 5.8	tahlve	9(8) 11(10)	14(13)	2, 1,50 ³⁾ 1, anspruch	86 // 1,87 60 ung ²⁾	50	
Charakteristischer Widerstand ge Stand Cheritischer Widerstand ge Charakteristischer Widerstand Ge	70 80 gen S 5.8 5.8 5.8 5.8	tahlve	9(8) 11(10)	14(13)	1,50 ³⁾ 1, anspruch	1/ 1,87 60 ung ²⁾	50	
Charakteristischer Widerstand ge Stahl verzinkt Nichtrostender Stahl R und Hochkorrosions-	80 gen S 5.8 5.8 8.8 5.0 5.0	tahlve	9(8) 11(10)	14(13)	1, anspruchi	60 ung ²⁾	50	
Charakteristischer Widerstand ge Gerstand Control of Stand Control of Standard Control	4.8 5.8 8.8 50	tahlve	9(8) 11(10)	14(13)	anspruch	ung ²⁾	50	
Ohne Hebelarm ders teritischer. Stahl verzinkt Nichtrostender Stahl R estigkeits- Festigkeits-	4.8 5.8 8.8 50	3 3	9(8) 11(10)	14(13)	•	1	50	
arakteritischer. derstand derstand V _{Rks} Nichtrostender Stahl B Festigkeits- F	5.8 8.8 50	3	11(10)	t	20	38	50	
A strength of the strength of	5.8 8.8 50	3	11(10)	t		00	. 59	85
A sarakteriti: Nichtrostender Stahl B Festigkei Restigkei	8.8	₹		17(16)	25	47	74	106
는 전 Nichtrostender Stahl R 방 보고 Nichtrostender Stahl R 방 보고 Nichtrostender Stahl HCR			15(13)	23(21)	34	63	98	141
ซ ซ ซ und Hochkorrosions- ธ ซ ซ beständiger Stahl HCR		[kN]	9	15	21	39	61	89
ວົ ≶ beständiger Stahl HCR	70	-	13	20	30	55	86	124
	80		15	23	34	63	98	141
Duktilitätsfaktor	k 7	[-]			1	,0		
Mit Hebelarm								
ည် Stahl verzinkt မွာ	4.8	_	15(13)	30(27)	52	133	259	448
ပ္စံ Stahl verzinkt မွ်း	5.8	_	19(16)	37(33)	65	166	324	560
Oharakteritis Miderakteritis Miderakteritis Nichtrostender Stahl R and Hochkorrosions- Festigkeit Festigkeit	8.8		30(26)	60(53)	105	266	519	896
र्हें हुँ Nichtrostender Stahl R		վ՝ ๋	19	37	65	166	324	560
를 용 und Hochkorrosions-	_70	_	26	52	92	232	454	784
	80		30	60	105	266	519	896
Teilsicherheitsbeiwerte 1)		,	T					
ည်း > Stahl verzinkt မွ	4.8 5.8	_				25 25		
		-				25 25		
Nichtrostender Stahl R Stigkeit Stigkeit	50					38		
Nichtrostender Stahl R 5 3 4 5 5 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	70	_				7/ 1,56		
beständiger Stahl HCR	80	-				33		
1) Falls keine abweichenden natio 2) Die Werte in Klammern gelten (3) Nur für die ASTA aus hochkorn	ür feu	erverz	inkte Anker	rstangen	,			

Tabelle C2.1:	Charakteristischer Widerstand gegen Stahlversagen unter Zug-/
	Querbeanspruchung von Upat Innengewindeankern IST

Innengewindea	Т			M8	M10	M12	M16	M20			
Charakteristisc	ner Wid	lerstand geg	en St	ahlver	sagen unter	Zugbeansp	ruchung				
		Festigkeits-	5.8		19	29	43	79	123		
Charakt. Widerstand mit	NI	klasse	8.8	[kN]	29	47	68	108	179		
Schraube	$N_{Rk,s}$	Festigkeits-	R	נאוזן	26	41	59	110	172		
		Klasse 70	HCR		26	41	59	110	172		
Teilsicherheitsb	eiwerte) 1)									
		Festigkeits-	5.8				1,50				
Teilsicherheits-	2/14 11	klasse	8.8	[-]			1,50				
beiwert	γMs,N	Festigkeits-	R	ן נ־ז			1,87				
		Klasse 70	HCR			1,87					
Charakteristisc	ner Wid	erstand geg	en St	ahlver	sagen unte	r Querbeans	pruchung				
ohne Hebelarm											
Ola a wallet		Festigkeits-	5.8	8.8 R [kN]	9,2	14,5	21,1	39,2	62,0		
Charakt. Widerstand	$V^0_{Rk,s}$	klasse	8.8		14,6	23,2	33,7	54,0	90,0		
mit Schraube	V KK,S	Festigkeits-	R		12,8	20,3	29,5	54,8	86,0		
		Klasse 70	HCR	12,8	20,3	29,5	54,8	86,0			
Duktilitätsfaktor			k ₇	[-]			1,0				
mit Hebelarm					I	T	T				
Ch a rale		Festigkeits-	5.8		20	39	68	173	337		
Charak- teristisches	M ⁰ Rk,s	klasse	8.8	[Nm]	30	60	105	266	519		
Biegemoment	IVI RK,S	Festigkeits-	R	וויייין	26	52	92	232	454		
		Klasse 70	HCR		26	52	92	232	454		
Teilsicherheitsb	eiwerte) 1)									
		Festigkeits-	5.8				1,25				
Teilsicherheits-	2/84 \/	klasse	8.8	[-]			1,25				
beiwert	γMs,V	Festigkeits-	R				1,56				
		Klasse 70	HCR				1,56				

¹⁾ Falls keine abweichenden nationalen Regelungen existieren

Upat UKA3 Plu

Leistungen

Charakteristischer Widerstand gegen Stahlversagen unter Zug- / Querbeanspruchung von IST

Anhang C 2

Größe					Alle G	rößen		
Charakteristischer Widerstan	ıd gegen B	etonve	rsagen un	ter Zugbea	anspruchu	ıng		
Montagebeiwert	γinst	[-]		Si	ehe Anhan	g C 4 bis 0	C 5	
Faktoren für Betondruckfesti	gkeiten > (C20/25						
	C25/30				1,	02		
= $-$ Erhöhungsfaktor $\psi_{ extsf{c}}$ für $-$	C30/37	7			1,	04		
gerissenen oder	C35/45	5] , [1,	07		
ungerissenen Beton	C40/50				1,	08		
τ _{Rk} = ψ _c ·τ _{Rk} (C20/25)	C45/55	<u> </u>			1,	09		
	C50/60				1,	10		
/ersagen durch Spalten								
h / h _{ef} ≥	: 2,0				1,0) h _{ef}		
Randabstand2,0 > h / h _{e f} >	1,3 C _{cr,sp}	[mm]			4,6 h _{ef}	- 1,8 h		
h / h _{ef} ≤	1,3				2,20	6 h _{ef}		
Achsabstand	S cr,sp				2 c	cr,sp		
Versagen durch kegelförmige	en Betonau	usbruc	h					
Ungerissener Beton	k _{ucr}	[-]	11,0					
Gerissener Beton	k cr	.,			7	,7		
Randabstand	C _{cr,N}	[mm]			1,5	h _{ef}		
Achsabstand	S cr,N	[]			2 (Ccr,N		
Faktoren für die Dauerzugbe		T T						
Faktor	Ψ^0 sus	[-]			_	2)		
Charakteristischer Widerstan	id gegen B	etonve	rsagen un	ter Querbe	eanspruch	ung		
Montagebeiwert	γinst	[-]			1	,0		
Betonausbruch auf der lastal	ogewandte	n Seite)					
Faktor für Betonausbruch	k 8	[-]			2	,0		
Betonkantenbruch								
Effektive Länge des Stahlteils unter Querbeanspruchung	If	[-]		für d _{nor}	_m ≤ 24 mm:	min (h _{ef} ; 1	2 d _{nom})	
Rechnerische Durchmesser						T	T	
Größe			M8	M10	M12	M16	M20	M24
Jpat Ankerstange ASTA	d	ļ. ,	8	10	12	16	20	24
Upat Innengewindeanker IST	\mathbf{d}_{nom}	[mm]	12	16	18	22	28	_1)
¹⁾ Dübelvariante nicht Bestar ²⁾ Keine Leistung bewertet	ndteil der E	TA						
Upat UKA3 Plus								

Tabelle C4.1:	Charakteristischer Widerstand unter Zugbeanspruchung von Upat
	Ankerstangen ASTA im hammergebohrten Bohrloch;
	ungerissener und gerissener Beton

Ankersta	ange	ASTA			M8	M10	M12	M16	M20	M24
Kombini	ertes	s Versagen durc	h Herau	sziehen u	nd Beton	ausbruch				
Rechneri	sche	r Durchmesser	d	[mm]	8	10	12	16	20	24
Ungeris	sene	r Beton								
Charakte	eristi	sche Verbundtra	agfähigk	ceit im un	gerissene	n Beton C2	20/25			
<u>Hammer</u>	bohre	en mit Standard- o	oder Hoh	lbohrer (tr	ockener u	nd nasser E	Beton)			
Tempe-	l:	40 °C / 24 °C	_		12,5	12,5	12,5	12,5	12,5	12,5
ratur-	II:	80 °C / 50 °C	$ au_{Rk,ucr}$	[N/mm ²]	12,0	12,0	12,0	12,0	12,0	12,0
bereich	III:	120 °C / 72 °C			10,5	10,5	10,5	10,5	10,5	10,5
<u>Hammer</u>	bohre	en mit Standard- o	oder Hoh	<u>ılbohrer (w</u>	<u>/assergefü</u>	<u>lltes Bohrlo</u>	<u>ch)</u>			
Tempe-	l:	40 °C / 24 °C			_1)	_1)	12,5	12,5	12,5	12,5
ratur-	II:	80 °C / 50 °C	$ au_{Rk,ucr}$	[N/mm ²]	_1)	_1)	12,0	12,0	12,0	12,0
bereich ⁻	III:	120 °C / 72 °C			_1)	_1)	10,5	10,5	10,5	10,5
Montage	beiv	vert				'	•	•	1	
Trockene	er und	d nasser Beton		r 1			1	,2		
Wasserg	efüllt	es Bohrloch	γinst	[-]	_1)	_1)		1	,4	
Gerisseı	ner B	Beton					_			
		sche Verbundtra								
<u>Hammer</u>	bohre	en mit Standard- o	oder Hoh	lbohrer (tr	ockener u	nd nasser E	<u>Beton)</u>	T	T	1
Tempe-	l:	40 °C / 24 °C			_1)	4,5	4,5	4,5	4,5	4,5
ratur-	II:	80 °C / 50 °C	$ au_{Rk,cr}$	[N/mm ²]	_1)	4,0	4,0	4,0	4,0	4,0
bereich	III:	120 °C / 72 °C	•		_1)	3,5	3,5	3,5	3,5	3,5
Hammer	bohre	en mit Standard- o	oder Hoh	ılbohrer (w	/assergefü	Iltes Bohrlo	<u>ch)</u>			
Tempe-	l:	40 °C / 24 °C			_1)	_1)	4,5	4,5	4,5	4,5
atur-	II:	80 °C / 50 °C	$ au_{\sf Rk,cr}$	[N/mm ²]	_1)	_1)	4,0	4,0	4,0	4,0
pereich	III:	120 °C / 72 °C	•		_1)	_1)	3,5	3,5	3,5	3,5
Montage	beiv	vert		1					1	
Trockene	er und	d nasser Beton		r 1	_1)			1,2		
Wasserg	efüllt	es Bohrloch	γinst	[-]	_1)	_1)		1	,4	
		minht have autot							,	

¹⁾ Leistung nicht bewertet

Upat UKA3 Plus

Leistungen

Charakteristischer Widerstand unter Zugbeanspruchung von Upat Ankerstangen ASTA

Anhang C 4

Tabelle C5.1:	Charakteristischer Widerstand unter Zugbeanspruchung von Upat
	Innengewindeankern IST im hammergebohrten Bohrloch;
	ungerissener und gerissener Beton

						ı	Г		
Innenge	wind	eanker IST			M8	M10	M12	M16	M20
Kombini	ertes	s Versagen durc	h Herau	sziehen u	nd Betonau	sbruch			
Rechneri	sche	r Durchmesser	d	[mm]	12	16	18	22	28
Ungeris	sene	r Beton							
		sche Verbundtra							
<u>Hammer</u>	oohre	en mit Standard- o	oder Hoh	lbohrer (tr	ockener und	nasser Betor	<u>)</u>	1	T
Tempe-	l:	40 °C / 24 °C			11	11	11	11	11
atur-	II:	80 °C / 50 °C	$ au_{Rk,ucr}$	[N/mm ²]	10,5	10,5	10,5	10,5	10,5
bereich	III:	120 °C / 72 °C			9,5	9,5	9,5	9,5	9,5
Hammer	bohre	en mit Standard- o	oder Hoh	lbohrer (w	assergefüllte	s Bohrloch)			
Tempe-	I:	40 °C / 24 °C			11	11	_1)	11	_1)
ratur- bereich	II:	80 °C / 50 °C	τ _{Rk,ucr}	[N/mm ²]	10,5	10,5	_1)	10,5	_1)
	III:	120 °C / 72 °C			9,5	9,5	_1)	9,5	_1)
Montage	beiv	vert .							
Trockene	r un	d nasser Beton		r 1			1,2		
Wasserg	efüllt	es Bohrloch	γinst	[-]	1	,4	_1)	1,4	_1)
Gerisseı	ner B	eton							
		sche Verbundtra							
<u>Hammer</u>	bohre	en mit Standard- o	oder Hoh	lbohrer (tr	ockener und	nasser Betor	<u>)</u>		
Tempe-	l:	40 °C / 24 °C			4,5	4,5	4,5	4,5	4,5
atur-	II:	80 °C / 50 °C	τ _{Rk,cr}	[N/mm ²]	4,0	4,0	4,0	4,0	4,0
bereich	III:	120 °C / 72 °C	•		3,5	3,5	3,5	3,5	3,5
Hammer	oohre	en mit Standard- o	oder Hoh	lbohrer (w	assergefüllte	s Bohrloch)	•	1	1
Tomas	1:	40 °C / 24 °C			4,5	4,5	_1)	4,5	_1)
Tempe- ratur-	II:	80 °C / 50 °C	τ _{Rk,cr}	[N/mm ²]	4,0	4,0	_1)	4,0	_1)
bereich	III:	120 °C / 72 °C	•		3,5	3,5	_1)	3,5	_1)
Montage	beiv	vert		<u>. </u>		<u> </u>	<u> </u>	1	1
Trockene	er und	d nasser Beton		[]			1,2		
Wasserg	efüllt	es Bohrloch	γinst	[-]	1	,4	_1)	1,4	_1)

¹⁾ Leistung nicht bewertet

Upat UKA3 Plus	
Leistungen Charakteristischer Widerstand unter Zugbeanspruchung von Upat Innengewindeankern IST	Anhang C 5

Ankerstang	e ASTA	M8	M10	M12	M16	M20	M24
Verschiebu	ngs-Faktore	en für Zugbear	nspruchung 1)				
Ungerissen	er oder geri	issener Beton	Temperaturb	ereich I, II, III			
δN0-Faktor	m/(N/mm²)]	0,07	0,08	0,09	0,10	0,11	0,12
δN∞-Faktor	11/(14/111111-)][0,13	0,14	0,15	0,17	0,17	0,18
Verschiebu	ngs-Faktor	en für Querbea	anspruchung ²	2)			-
Ungerissen	er oder geri	issener Beton	; Temperaturb	ereich I, II, III			
δv0-Faktor	[mama /lcN]]	0,18	0,15	0,12	0,09	0,07	0,06
δ∨∞-Faktor	[mm/kN]	0,27	0,22	0,18	0,14	0,11	0,09

1) Berechnung der effektiven Verschiebung:

²⁾ Berechnung der effektiven Verschiebung:

 $\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \cdot \tau$

 $\delta_{V0} = \delta_{V0\text{-Faktor}} \cdot V$

 $\delta_{\mathsf{N}\infty} = \delta_{\mathsf{N}\infty\text{-Faktor}} \cdot \tau$

 $\delta_{V\infty} = \delta_{V\infty\text{-Faktor}} \cdot V$

 τ = einwirkende Verbundspannung unter

Zugbeanspruchung

V = einwirkende Querbeanspruchung

Tabelle C6.2: Verschiebungen für Upat Innengewindeanker IST

Innenge	windeanker	M8	M10 M12		M16	M20			
Verschie	Verschiebungs-Faktoren für Zugbeanspruchung¹)								
Ungerissener oder gerissener Beton; Temperaturbereich I, II, III									
δ N0-Faktor	[mm/(N/mm²)]	0,09	0,10	0,10	0,11	0,19			
δN∞-Faktor	[[mm/(w/mm-)]	0,13	0,15	0,15	0,17	0,19			
Verschie	bungs-Faktor	en für Querbeans	spruchung ²⁾						
Ungeris	sener oder ger	issener Beton; T	emperaturbereicl	n I, II, III					
δ V0-Faktor	[mm/kN]]	0,12	0,09	0,08	0,07	0,05			
δ∨∞-Faktor	[mm/kN]	0,18	0,14	0,12	0,10	0,08			

1) Berechnung der effektiven Ver	erschiebuna
----------------------------------	-------------

²⁾ Berechnung der effektiven Verschiebung:

 $\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \cdot \tau$

 $\delta_{V0} = \delta_{V0\text{-Faktor}} \cdot V$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Faktor}} \cdot \tau$

 $\delta_{V\infty} = \delta_{V\infty\text{-Faktor}} \cdot V$

 τ = einwirkende Verbundspannung unter Zugbeanspruchung

V = einwirkende Querbeanspruchung

Upat UKA3 Plus

Leistungen

Verschiebungen Ankerstangen ASTA und Innengewindeanker IST

Anhang C 6