

LEISTUNGSERKLÄRUNG

DoP 0200

für Bolzenanker Upat MAX, MAX R, MAX HCR (Mechanischer Dübel für den Einsatz in Beton)

DE

1. Eindeutiger Kenncode des Produkttyps: DoP 0200

2. Verwendungszweck(e): Nachträgliche Befestigung in gerissenem oder ungerissenem Beton.

Siehe Anhang, insbesondere die Anhänge B1- B6 fUpat Vertriebs GmbH, Bebelstraße 11, 79108 Freiburg im Breisgau, Deutschland 3. Hersteller:

4. Bevollmächtigter:

5. AVCP - System/e: 1

6. Europäisches Bewertungsdokument: EAD 330232-00-0601 Europäische Technische Bewertung: ETA-10/0170; 2020-04-28

Technische Bewertungsstelle: DIBt- Deutsches Institut für Bautechnik 1343 MPA Darmstadt / 2873 TU Darmstadt Notifizierte Stelle(n):

7. Erklärte Leistung(en):

Mechanische Festigkeit und Standsicherheit (BWR 1)

Charakteristischer Widerstand bei Zugbelastung (statische und quasi-statische Belastung): Anhang C1 E_c= 210 000 MPa Widerstand für Stahlversagen:

Widerstand für Herausziehen: Anhang C1

> Widerstand für kegelförmigen Betonausbruch: Anhang C1 Robustheit: Anhang C1

> > Anhänge B3, B4 Minimaler Rand- und Achsabstand:

Randabstand zur Vermeidung von Spaltversagen Anhang C1

bei Belastung:

Verschiebungen bei statischer und quasi-Anhang C5

statischer Belastung:

Charakteristischer Widerstand bei Querbelastung Widerstand für Stahlversagen (Querbelastung): Anhang C2 (statische und quasi-statische Belastung): Widerstand für Pry-out Versagen: Anhang C2

Anhang C2 Widerstand Betonkantenbruch: Verschiebungen bei statischer und quasi-statischer Belastung: Anhang C5

Dauerhaftigkeit: Anhänge A4, B1

Charakteristische Widerstände und Verschiebungen Widerstand Stahlversagen: Anhang C4

für die seismischen Leistungskategorien C1 und C2: Anhang C4 Widerstand für Herausziehen: Bruchdehnung:

> Anhang C4 Faktor Ringspalt:

>8%

Verschiebungen: Anhang C5

Sicherheit im Brandfall (BWR 2)

Brandverhalten: Klasse (A1)

Feuerwiderstand: Feuerwiderstand, Stahlversagen (Zugbelastung): Anhang C3 Feuerwiderstand, Herausziehen (Zugbelastung): Anhang C3 Feuerwiderstand, Stahlversagen (Querbelastung): Anhang C3

Fischer DATA DOP ECs V22.xlsm 1/2

 Angemessene Technische Dokumentation und/oder Spezifische Technische Dokumentation:

Die Leistung des vorstehenden Produkts entspricht der erklärten Leistung/den erklärten Leistungen. Für die Erstellung der Leistungserklärung im Einklang mit der Verordnung (EU) Nr. 305/2011 ist allein der obengenannte Hersteller verantwortlich.

Unterzeichnet für den Hersteller und im Namen des Herstellers von:

Thilo Pregartner, Dr.-Ing.

Tumlingen, 2020-05-12

ppa. The Mx

Peter Schillinger, Dipl.-Ing.

i.V. P. St

Diese Leistungserklärung wurde in mehreren Sprachen erstellt. Für alle Streitigkeiten, die sich aus der Auslegung ergeben, ist die Fassung in englischer Sprache maßgeblich.

Der Anhang enthält freiwillige und ergänzende Informationen in englischer Sprache, die über die (sprachneutral festgelegten) gesetzlichen Anforderungen hinausgehen.

Fischer DATA DOP_ECs_V22.xlsm 2/2

Besonderer Teil

1 Technische Beschreibung des Produkts

Der Upat Ankerbolzen MAX ist ein Dübel aus galvanisch verzinktem Stahl (MAX) oder aus nichtrostendem Stahl (MAX R) oder aus hochkorrosionsbeständigem Stahl (MAX HCR), der in ein Bohrloch gesetzt und durch kraftkontrollierte Verspreizung verankert wird.

Die Produktbeschreibung ist in Anhang A dargestellt.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

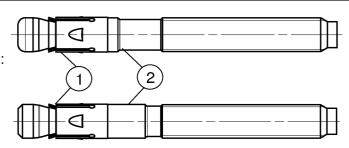
Die Prüf- und Bewertungsmethoden, die dieser Europäisch Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

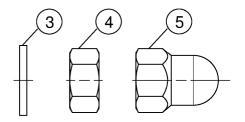
3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang B 3, C 1
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 2
Verschiebungen (statische und quasi-statische Einwirkungen)	Siehe Anhang C 5
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C1 und C2	Siehe Anhang C 4
Dauerhaftigkeit	Siehe Anhang B 1

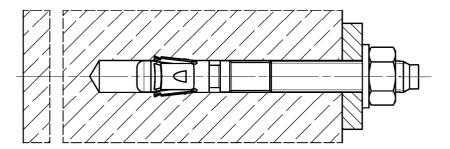
3.2 Brandschutz (BWR 2)

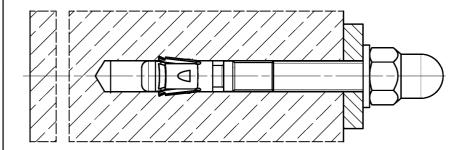

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand	Siehe Anhang C 3

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage


Gemäß dem Europäischen Bewertungsdokument EAD 330232-00-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

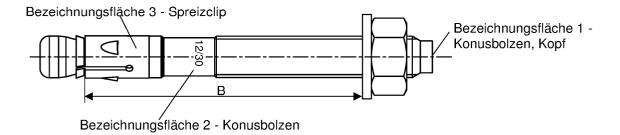

Konusbolzen, kaltumgeformte Ausführung:



Konusbolzen, spanend hergestellt:

- ① Spreizclip
- ② Konusbolzen (kaltmassivumgeformt oder gedreht)
- ③ Unterlegscheibe
- Sechskantmutter
- ⑤ UPAT MAX Hutmutter

(Abbildungen nicht maßstäblich)


Upat Ankerbolzen MAX, MAX R, MAX HCR

Produktbeschreibung Einbauzustand

Anhang A 1

Appendix 2/16

Produktkennzeichnung und Buchstabenkürzel:

Produktkennzeichnung, Beispiel: MAX 12/30 R

Firmenkennung | Dübeltyp Gewindegröße / max. Dicke des Anbauteils (t_{fix})

auf Bezeichnungsfläche 2 oder 3 Kennzeichnung R oder HCR auf Bezeichnungsfläche 2

MAX: Kohlenstoffstahl, galvanisch verzinkt

MAX R: nichtrostender Stahl

MAX HCR: hochkorrosionsbeständiger Stahl

Tabelle A2.1: Buchstabenkürzel auf Bezeichnungsfläche 1:

Markierui	ng	(a)	(b)	(c)	(d)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(K)
Max. t _{fix}		5	10	15	20	5	10	15	20	25	30	35	40	45	50
	M6			-		45	50	55	60	65	70	75	80	85	90
	M8	40	45		_	50	55	60	65	70	75	80	85	90	95
	M10	45	50	55	60	65	70	75	80	85	90	95	100	105	110
B ≥ [mm]	M12	55	60	65	70	75	80	85	90	95	100	105	110	115	120
	M16	70	75	80	85	90	95	100	105	110	115	120	125	130	135
	M20					105	110	115	120	125	130	135	140	145	150
	M24			-		130	135	140	145	150	155	160	165	170	175
Markierui	ng	(L)	(M)	(N)	(O)	(P)	(R)	(S)	(T)	(U)	(V)	(W)	(X)	(Y)	(Z)
Max. t _{fix}	-	60	70	80	90	100	120	140	160	180	200	250	300	350	400
	M6	100	110	120	130	140	160	180	200	220	240	290	340	390	440
	M8	105	115	125	135	145	165	185	205	225	245	295	345	395	445
	M10	120	130	140	150	160	180	200	220	240	260	310	360	410	460
B ≥ [mm]	M12	130	140	150	160	170	190	210	230	250	270	320	370	420	470
	M16	145	155	165	175	185	205	225	245	265	285	335	385	435	485
	M20	160	170	180	190	200	220	240	260	280	300	350	400	450	500
	M24	185	195	205	215	225	245	265	285	305	325	375	425	475	525

Berechung vorhandener hef von eingebauten Ankern:

vorhandene h_{ef} = B_(gemäß Tabelle A2.1) - vorhandenes t_{fix}

Dicke des Anbauteils t_{fix} ist inklusive der Dicke der Befestigungsplatte t und z.B. der Dicke von Ausgleichsschichten t_{Mörtel} oder anderen nicht tragenden Schichten

(Abbildungen nicht maßstäblich)

Upat Ankerbolzen MAX, MAX R, MAX HCR

Produktbeschreibung

Produktkennzeichnung und Buchstabenkürzel

Anhang A 2

Appendix 3/16

Produktabmessungen

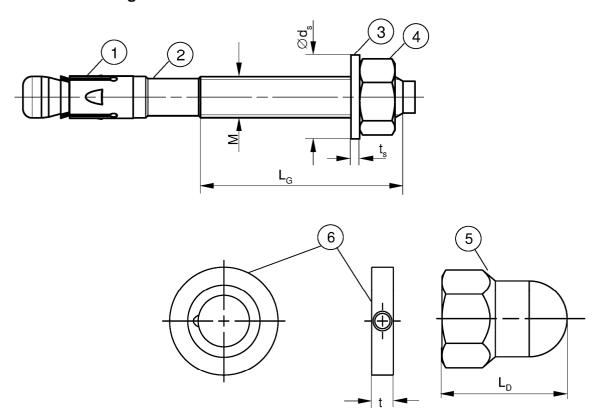


Tabelle A3.1: Abmessungen [mm]

Teil	Bezeichnung			MAX, MAX R, MAX HCR								
Tell	Bezeichhung	ezeichnung			М8	M10	M12	M16	M20	M24		
1	Spreizclip	Blech	Blechdicke		Blechdicke		1,3	1,4	1,6	2,	4	3,0
2	Konusbolzen	Gewi	ndegröße M	6	8	10	12	16	20	24		
	Konusboizen	L _G		10	19	26	31	40	50	57		
3	2 Hataylagaahaiba		≥	1	,4	1,8	2,3	2,7		3,7		
	Unterlegscheibe	$\emptyset d_s$		11	15	19	23	29	36	43		
4 & 5	Sechskantmutter / Upat MAX	Schlü	isselweite	10	13	17	19	24	30	36		
5	Hutmutter	L _D	≥	-		22	27	33		-		
6	Upat Verfüllscheibe FFD	t	=			6		7	8	10		

(Abbildungen nicht maßstäblich)

Upat Ankerbolzen MAX, MAX R, MAX HCR

Produktbeschreibung Abmessungen Anhang A 3

Appendix 4/16

Tabelle A4.1: Materialien MAX (ISO 4042:2018/Zn5/An(A2K))

Teil	Bezeichnung	Material
1	Spreizclip	Kaltband, EN 10139:2016 oder Edelstahl EN 10088:2014
2	Konusbolzen	Kaltstauchstahl oder Automatenstahl
3	Unterlegscheibe	Kaltband, EN 10139:2016
4	Sechskantmutter	Stahl, Festigkeitsklasse min. 8, EN ISO 898-2:2012

Tabelle A4.2: Materialien MAX R

Teil	Bezeichnung	Material				
1	Spreizclip					
2	Konusbolzen	Edelstahl EN 10088:2014				
3	Unterlegscheibe					
4	Sechskantmutter	Edelstahl EN 10088:2014; ISO 3506-2:2018; Festigkeitsklasse – min. 70				

Tabelle A4.3: Materialien MAX HCR

Teil	Bezeichnung	Material					
1	Spreizclip	Edelstahl EN 10088:2014					
2	Konusbolzen	Hochkorrosionsbeständiger Stahl EN 10088:2014					
3	Unterlegscheibe	nochkorrosionsbestandiger Staffi EN 10066.2014					
4	Sechskantmutter	Hochkorrosionsbeständiger Stahl EN 10088:2014; ISO 3506-2:2018; Festigkeitsklasse – min. 70					

(Abbildungen nicht maßstäblich)

Upat Ankerbolzen MAX, MAX R, MAX HCR

ProduktbeschreibungMaterialien

Anhang A 4

Appendix 5/16

Spezifikation des Verwendungszweck

Beanspruchung der Verankerung:

beansprachang act verankerang.	carropragrams acr verankerang.										
Crößo	Größe		MAX, MAX R, MAX HCR								
Grobe		М6	M8	M10	M12	M16	M20	M24			
Statische und quasi-statische Belastunge	en										
Gerissener und ungerissener Beton	✓										
Brandbeanspruchung			topi								
Seismische Einwirkung für C1		- /									
Leistungskategorie C21)			-			/		-			

¹⁾ MAX HCR: Gilt nur für kaltmassivumgeformte Ausführung (gemäß Anhang A1)

Verankerungsgrund:

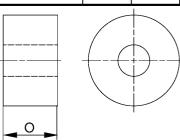
- Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern gemäß (gerissen und ungerissen) gemäß EN 206-1:2013+A1:2016
- Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206-1:2013+A1:2016

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (MAX, MAX R, MAX HCR)
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) oder in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (MAX R, MAX HCR)
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (MAX HCR)
 Anmerkung: Aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Meerwasser oder der Bereich der
 Spritzzone von Meerwasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer
 Verschmutzung (z.B. in Rauchgas Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet
 werden)

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs
- Unter Berücksichtigung der zu verankernden Lasten werden pr
 üfbare Berechnungen und
 Konstruktionszeichnungen angefertigt. In den Konstruktionszeichnungen ist die Position der D
 übel anzugeben
 (z. B. Lage des D
 übels zur Bewehrung oder zu den Auflagern usw.)
- Bemessung der Verankerungen erfolgt nach EN 1992-4:2018 und EOTA Technischer Report TR 055
- Anwendungen mit einer effektiven Verankerungstiefe hef < 40 mm sind auf statisch unbestimmte Bauteile beschränkt (z.B. leichte abgehängte Decken in trockenen Innenräumen) und über die ETA abgedeckt


Upat Ankerbolzen MAX, MAX R, MAX HCR

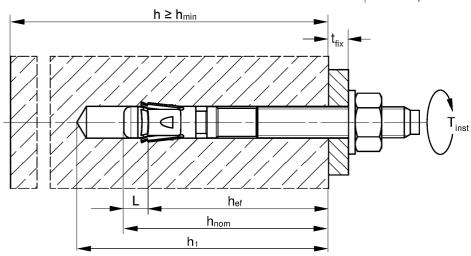

Anhang B 1

Tabelle B2.1: Montagekennwerte

Größe			MAX, MAX R, MAX HCR						
Grobe			М6	M8	M10	M12	M16	M20	M24
Nomineller Bohrdurchmesser	$d_0 =$		6	8	10	12	16	20	24
Maximaler Schneidendurchmesser mit Hammerbohrer oder Hohlbohrer	d	[mm]		8,45	10.45	12,5	16,5	20,55	24,55
Maximaler Schneidendurchmesser mit Diamantbohrer	Clout,max		-	8,15	10,45	12,25	16,45	20,50	24,40
Gesamtlänge des Ankers im Beton	$h_{nom} \ge (L)$	[]	46,5 (6,5)	44,5 (9,5)	52,0 (12)	63,5 (13,5)	82,5 (17,5)	120 (20)	148,5 (23,5)
		[mm]	Vorhandenes $h_{ef} + L = h_{nom}$						
Bohrlochtiefe am tiefsten Punkt	$h_1 \geq$				h _{nom} + 5			h _{nom}	+ 10
Durchmesser des Durchgangslochs im Anbauteil	$d_f \leq$	[mm]	7	9	12	14	18	22	26
Montagedrehmoment	$T_{inst} =$	[Nm]	8	20	45	60	110	200	270
Überstand nachdem der Konusbolzen durchgeschlagen wurde (für Anwendung mit Upat Hutmutter gemäß Anhang B6)	O =	[mm]		-	12	16	20		-

Setzlehre MAX SL-H für Anker mit Upat MAX Hutmutter:

hef = Effektive Verankerungstiefe

t_{fix} = Dicke des Anbauteils

h₁ = Bohrlochtiefe am tiefsten Punkt

h = Dicke des Betonbauteils

 $h_{\text{min}} = Minimale Dicke des Betonbauteils$ $<math>h_{\text{nom}} = Gesamtlänge des Ankers im Beton$

 $T_{inst} = Montagedrehmoment$

(Abbildungen nicht maßstäblich)

Upat Ankerbolzen MAX, MAX R, MAX HCR

Verwendungszweck Montageparameter Anhang B 2

Appendix 7/16

Tabelle B3.1: Mindestdicke der Betonbauteile, minimale Achs- und Randabstände

Größe			MAX, MAX R, MAX HCR							
Grobe	diobe			М8	M10	M12	M16	M20	M24	
Minimaler Randabstand								-		
Ungerissener Beton	— Cmin		45	40	45	55	65	95	135	
Gerissener Beton	— Cmin		45	+0	73	33	03	85	100	
Zugehöriger Achsabstand	s	[mm]			ger	näß Anha	ing B4			
Minimale Dicke des Betonbauteils	h _{min}			80		100	140	160	200	
Dicke des Betonbauteils	h≥			max. {h _{mi}	n; h ₁ 1) + 3	0}	max. $\{h_{min}; h_1^{(1)} + 2 \cdot d_0\}$			
Minimaler Achsabstand	Minimaler Achsabstand									
Ungerissener Beton	— Smin		35	40	40	50	65	95	100	
Gerissener Beton	— Smin			35	"		03	95	100	
Zugehöriger Randabstand	С	[mm]			ger	näß Anha	äß Anhang B4			
Minimale Dicke des Betonbauteils	h _{min}			80		100	140	160	200	
Dicke des Betonbauteils	h≥			max. {h _{mi}	n; h ₁ 1) + 3	0}	max. {	h _{min} ; h ₁ 1) ₊	- 2 · d₀}	
Minimale Spaltfläche										
Ungerissener Beton	_ ^	[·1000	5,1	18	37	54	67	100	117,5	
Gerissener Beton	— A _{sp,req}	mm²]	1,5	12	27	40	50	77	87,5	

¹⁾ h₁ gemäß Anhang B2

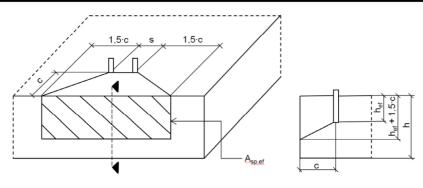
Spaltversagen für minimale Achs- und Randabstände in Abhängigkeit der effektiven Verankerungstiefe hef

Für die Berechnung des minimalen Achsabstands und des minimalen Randabstands der Anker in Kombination mit verschiedenen Einbindetiefen und -dicken des Betonbauteils ist die folgende Gleichung zu erfüllen:

 $A_{sp,req} < A_{sp,ef}$

 $A_{sp,req} = erforderliche Spaltfläche$ $<math>A_{sp,ef} = effektive Spaltfläche (gemäß Anhang B4)$

Upat Ankerbolzen MAX, MAX R, MAX HCR


Verwendungszweck

Mindestdicke der Betonbauteile, minimale Achs- und Randabstände

Anhang B 3

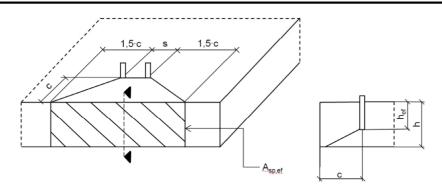

Appendix 8/16

Tabelle B4.1: Effektive Spaltfläche $A_{sp,ef}$ bei einer Betonbauteildicke $h > h_{ef} + 1,5 \cdot c$ und $h \ge h_{min}$

Einzelanker und Ankergruppen mit	s > 3 · c	$A_{\text{sp,ef}} = (6 \cdot c) \cdot (h_{\text{ef}} + 1.5 \cdot c)$	[mm²]	mit c ≥ c _{min}
Ankergruppen mit	$s \le 3 \cdot c$	$A_{sp,ef} = (3 \cdot c + s) \cdot (h_{ef} + 1,5 \cdot c)$	[mm²]	$mit \ c \geq c_{min} \ und \ s \geq s_{min}$

Tabelle B4.2: Effektive Spaltfläche $A_{sp,ef}$ bei einer Betonbauteildicke $h \le h_{ef} + 1,5 \cdot c$ and $h \ge h_{min}$

Einzelanker und Ankergruppen m		A _{sp,ef} = 6 · c · vorhandenes h	[mm²]	mit c ≥ c _{min}
Ankergruppen m	it s≤3·c	$A_{sp,ef} = (3 \cdot c + s) \cdot vorhandenes h$	[mm²]	mit c ≥ c _{min} und s ≥ s _{min}

Randabstände und Achsabstände sind auf 5 mm zu runden

(Abbildungen nicht maßstäblich)

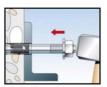
(Abbildu	ngen ment mabstable
Upat Ankerbolzen MAX, MAX R, MAX HCR	
Verwendungszweck	Anhang B 4
Mindestdicke der Betonbauteile, minimale Achs- und Randabstände	Appendix 9/ 16

Montageanleitung:

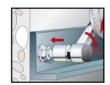
- Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters
- Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile Ausnahme: Upat MAX Hutmutter
- Überprüfung vor dem Setzen des Dübels, ob die Festigkeitsklasse des Betons, in den der Dübel gesetzt werden soll, nicht niedriger ist, als die Festigkeitsklasse des Betons, für den die charakteristischen Tragfähigkeiten gelten
- Einwandfreie Verdichtung des Betons, z. B. keine signifikanten Hohlräume
- · Hammer-, Hohl- oder Diamantbohren gemäß Anhang B5
- Bohrloch senkrecht +/- 5° zur Oberfläche des Verankerungsgrundes erstellen, ohne die Bewehrung zu beschädigen
- Bei Fehlbohrungen: Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt
- Es ist darauf zu achten, dass im Falle eines Brandes keine lokalen Abplatzungen der Betondecke erfolgten
- Unter Erbebeneinfluß sind Abstandmontagen und Befestigungen durch nicht tragenden Schichten nicht erlaubt
- Bei Anwendungen unter Erdbebeneinfluss muss das Befestigungselement außerhalb kritischer Bereiche (z. B. plastischer Gelenke) der Betonstruktur angeordnet sein

Montageanleitung: Bohren und Bohrlochreinigung

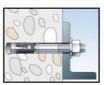
Möglichkeiten von Bohren und Reinigung


	Woglief Nettern von Bohren und Heinigung										
Hammerbohrer	\$444000000:	1: Bohrloch erstellen	2: Bohrloch reinigen								
Hohlbohrer		1: Bohrloch erstellen mit Hohlbohrer und Staubsauger	ı								
Diamantbohrer, nur bei Einwirkungen ohne Erdbeben- beanspruchung und ≥ Bohr Ø 8		1: Bohrloch erstellen	2: Bohrloch reinigen								

Upat Ankerbolzen MAX, MAX R, MAX HCR


Verwendungszweck Montageanleitung Anhang B 5

Montageanleitung: Anker setzen


Sechskantmutter:

3: Anker setzen


4: Anker mit dem Montagedrehmoment T_{inst} verspreizen

5: Abgeschlossene Montage

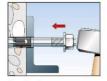
Upat MAX HUTMUTTER:

Möglichkeit 1: Durchsteckmontage mit Setzlehre SL-H:

3: Anker mit Setzlehre setzen

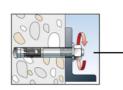
4: Überstand prüfen

5: Upat MAX Hutmutter aufdrehen



6: Anker mit dem Montagedrehmoment T_{inst} verspreizen

7: Abgeschlossene Montage


Möglichkeit 2: Durchsteckmontage mit Sechskantmutter:

3: Anker setzen

4: Position prüfen: Ein Gewindegang Überstand über die Mutter

4.1: Mutter entfernen


<u>Upat VERFÜLLSCHEIBE FFD optional z.B. bei Anwendungen unter Erdbebenbeanspruchung C2 oder zur Minimierung des Lochspiels:</u>

Der Ringspalt zwischen Bolzen und Anbauteil darf mit Mörtel verfüllt sein (Druckfestigkeit ≥ 50 N/mm² z.B. UPM 33) nach Schritt 7 (zur Minimierung des Lochspiels).

Optional

Die Verfüllscheibe ist zusätzlich zur Standard-Unterlegscheibe einzusetzen.

Die Dicke der Verfüllscheibe muss bei t_{fix} berücksichtigt werden. Senkung in der Verfüllscheibe zeigt in Richtung Anbauteil.

Upat Ankerbolzen MAX, MAX R, MAX HCR

Verwendungszweck Montageanleitung

Anhang B 6

Tabelle C1.1: Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi statischer Belastung

0				MAX, MAX R, MAX HCR								
Größe				М6	M8	3	M10	M12	M16	M20	M24	
Stahlversagen												
Charakteristischer	MAX	$N_{Rk,s}$	[kN]	7,6	16,	,6	28,3	43,2	67,0	123,3	176,7	
Widerstand	MAX R/HCR	INRK,s	[KIN]	11,4	17,	,0	29,0	44,3	70,6	124,9	183,6	
Teilsicherheitsbeiwert	γ _{Ms} 1)	[-]					1,5					
Herausziehen												
Effektive Verankerungstiefe für Berechnung		h _{ef}	[mm]	40	35 - < 45	45	40 - 60	50 - 70	65 - 85	100	125	
Charakteristischer Wide in gerissenem Beton Ca	20/25	$N_{Rk,p}$	[kN]	1,5	5,5	8	13	20	27,0	34,4	48,1	
Charakteristischer Widerstand in ungerissenem Beton C20/25		тчк,р	[KIN]	10,5	14	•	20	22	38,6	49,2	68,8	
		_	C25/30					1,12				
Erböbungsfolderen für	NI für	_	C30/37					1,22				
Erhöhungsfaktoren für N _{Rk,p} für gerissenen und ungerissenen		Ψc -	C35/45	, , , , , , , , , , , , , , , , , , ,								
Beton	Ψυ-	C40/50					1,41					
	20.011		C45/55					1,50				
			C50/60					1,58				
Montagesicherheitsbei		γinst	[-]	1,0								
Betonbruch und Spal				1								
Faktor für ungerissener		k _{ucr,N}	[-]					11,02)				
Faktor für gerissenem I		k _{cr,N}						7,72)				
Charakteristischer Achs		Scr,N	[mm]					3 · h _{ef}				
Charakteristischer Ran	dabstand	C _{cr} ,N						1,5 · h _{ef}				
Achsabstand		S _{cr,sp}					l	2 · c _{cr,sp}	T			
Randabstand bei h = 80					2,4·ł	n _{ef}	2 h _{ef}	-				
Randabstand bei h = 10							2,4·h _{ef}	2·h _{ef}		-		
Randabstand bei $h = 12$		Ccr,sp	[mm]	40				2,1·h _{ef}				
Randabstand bei h = 1		3 01,3p		.	2·h	ef	1,9·h _{ef}				-	
Randabstand bei h = 10							',' ''e'	1,5·h _{ef}	2·h _{ef}	2,4·h _{ef}	-	
Randabstand bei h = 20										_, · · · · e	$2,2 \cdot h_{\text{ef}}$	
Charakteristischer Wide gegen Spalten	erstand	$N^0_{Rk,sp}$	[kN]				min {	N ⁰ Rk,c; N	$I_{Rk,p}\}^{3)}$			

Upat Ankerbolzen MAX, MAX R, MAX HCR	

Charakteristische Zugtragfähigkeit

¹⁾ Sofern andere nationale Regelungen fehlen²⁾ Bezogen auf Betondruckfestigkeit als Zylinderdruckfestigkeit

³⁾ N⁰_{Rk,c} nach EN 1992-4:2018

Tabelle C2.1: Charakteristische Werte der **Quertragfähigkeit** unter statischer und quasi - statischer Belastung

CväCo			N	IAX, MA	AX R, N	IAX HC	R		
Größe		М6	M8	M10	M12	M16	M20	M24	
Stahlversagen ohne Hebelarm									
Charakteristischer Widerstand MAX	\/0	5,9	13,6	21,4	30,6	55,0	81,4	110,1	
MAX R/HCR	$V^0_{Rk,s}$ [kN]	8,8	16,8	26,5	38,3	69,8	106,3	148,5	
Teilsicherheitsbeiwert	γMs ¹⁾				1,25				
Faktor für Duktilität	$\frac{r^{\text{NVIS}}}{k_7}$ [-]				1,0				
Stahlversagen mit Hebelarm und Pryoutversagen									
Effektive Verankerungstiefe für Berechnung	h _{ef} [mm]	40	45	60	70	85	100	125	
Charaktariatiaahaa Riagamamant MAX	Local OLA	11,4	26	52	92	233	513	865	
Charakteristisches Biegemoment MAX R/HCR	- M ⁰ _{Rk,s} [Nm]	10,7	29	59	100	256	519	898	
Faktor für Pryoutversagen	k ₈ [-]	2,6	2,8	3	,2	3,0	2,6	2,4	
Effektive Verankerungstiefe für Berechnung	h _{ef} [mm]		35 - < 45	40 - < 60	50 - < 70	65 - < 85			
MAX		_	20	44	92	184			
Charakteristisches Biegemoment MAX R/HCR	- M ⁰ _{Rk,s} [Nm]	_	21	45	100	193		-	
Faktor für Pryoutversagen	k ₈ [-]	1	2,5	2,6	3,1	3,2			
Teilsicherheitsbeiwert	γ _{Ms} 1)		•		1,25				
Faktor für Duktilität	$\frac{\gamma \text{ Wis}}{k_7}$ [-]				1,0				
Betonkantenbruch									
Effektive Verankerungstiefe für Berechnung	l _f = [mm]				h _{ef}				
Dübeldurchmesser	dnom	6	8	10	12	16	20	24	

¹⁾ Sofern andere nationale Regelungen fehlen

Upat Ankerbolzen MAX, MAX R, MAX HCR

Leistungen

Charakteristische Quertragfähigkeit

Anhang C 2

Tabelle C3.1: Charakteristische	Werte der Zugtragfähigkeit unter Brar	ndbeanspruchung
- and the desired the state of	more as any any and	

Größe						MAX, MA	X R, MAX	HCR				
Grobe				М6	М8	M10	M12	M16	M20	M24		
		h _{ef} ≥	[mm]	40	35 / 45	40 / 60	50 / 70	65 / 85	100	125		
Ole a wall the winting leads a w	_	R30		$0,6^{1)} / 0,9^{2)}$	1,4	2,8	5,0	9,4	14,7	21,1		
Charakteristischer	NI	R60		$0,4^{1)} / 0,9^{2)}$	1,2	2,3	4,1	7,7	12,0	17,3		
Widerstand Stahlversagen	$N_{Rk,s,fi}$ -	R90		$0,3^{1)} / 0,9^{2)}$	0,9	1,9	3,2	6,0	9,4	13,5		
Staniversagen		R120		$0,2^{1)} / 0,7^{2)}$	0,8	1,6	2,8	5,2	8,1	11,6		
Charakteristischer Widerstand	N _{Rk,c,fi} _	R30 - R90	[kN]	7,7 · h _{ef} ^{1,5} · (20) ^{0,5} · h _{ef} / 200 / 1000								
Betonbruch	,,, _	R120			7,7 · h _e	f ^{1,5} · (20) ^{0,}	⁵ · h _{ef} / 20	0 / 1000 · 0	,8			
Charakteristischer Widerstand Herausziehen	N _{Rk,p,fi} -	R30 R60 R90		0,4	0,9 / 2,0 0,8 / 2,0 0,5 / 2,0		3,0 / 5,0	4,5 / 6,8	8,6	12,0		
	_	R120		0,3	0,3 / 1,6	1,7 / 2,6	2,4 / 4,0	3,6 / 5,4	6,9	9,6		

Tabelle C3.2: Charakteristische Werte der Quertragfähigkeit unter Brandbeanspruchung

G	Größe		R	30	R60			
MAX, MAX	K R, MA	KHCR	$V_{Rk,s,fi,30}$ [kN] $M^0_{Rk,s,fi,30}$ [Nm]		$V_{Rk,s,fi,60}$ [kN]	M ⁰ _{Rk,s,fi,60} [Nm]		
M6		40	$0,6^{1)} / 0,9^{2)}$	$0,5^{1)}/0,2^{2)}$	$0,4^{1)}/0,9^{2)}$	$0,3^{1)}/0,1^{2)}$		
M8		35	1,8	1,4	1,6	1,2		
M10		40	3	3,6	2,9	3,0		
M12	h _{ef} ≥	50	6,3	7,8	4,9	6,4		
M16		65	11,7	19,9	9,1	16,3		
M20		100	18,2	39,0	14,2	31,8		
M24		125	26,3	67,3	20,5	55,0		

0	aröße		R	190	R120			
MAX, MAX	(R, MA)	HCR	$V_{Rk,s,fi,90}$ [kN] $M^0_{Rk,s,fi,90}$ [Nm]		$V_{Rk,s,fi,120}$ [kN]	M ⁰ Rk,s,fi,120 [Nm]		
M6		40	$0,3^{1)}/0,9^{2)}$	$0,2^{1)}/0,1^{2)}$	$0,2^{1)}/0,7^{2)}$	$0,2^{1)}/0,1^{2)}$		
M8		35	1,3	1,0	1,2	0,8		
M10		40	2,2	2,4	1,9	2,1		
M12	h _{ef} ≥	50	3,5	5,0	2,8	4,3		
M16		65	6,6	12,6	5,3	11,0		
M20		100	10,3	24,6	8,3	21,4		
M24		125	14,8	42,6	11,9	37,0		

Pryoutversagen gemäß EN 1992-4:2018

Tabelle C3.3: Minimale Achsabstände und minimale Randabstände für Anker unter Brandbeanspruchung für Zug- und Quertragfähigkeit

Größe			MAX, MAX R, MAX HCR									
Grobe			М6	М8	M10	M12	M16	M20	M24			
Achsabstand	Smin		Anhang B3									
Randabstand	Cmin	[mm] [
riandabotana	Ollilli			bei meh	nrseitiger Bi	randbeansp	oruchung c	_{min} ≥ 300 m	ım			

¹⁾ MAX

Upat Ankerbolzen MAX, MAX R, MAX HCR

Leistungen

Charakteristische Werte unter Brandbeanspruchung

Anhang C 3

Appendix 14/ 16

²⁾ MAX R / HCR

Tabelle C4.1: Charakteristische Werte der Zug- und Quertragfähigkeit unter Erdbebenbeanspruchung C1

0.70					MAX, M	AX R, M	AX HCR			
Größe			М6	M8	M10	M12	M16	M20	M24	
Dübellänge	L _{max}			167	186	221	285	394	477	
Effektive Verankerungstiefe	h _{ef}	[mm]	-	45	40 - 60	50 - 70	65 - 85	100	125	
Mit Ringspaltverfüllung	α _{gap}	[-]				1,0				
Stahlversagen										
Charakteristische Zugtragfähigkeit C1	$N_{\text{Rk,s,C1}}$	[kN]		16,0	27,0	41,0	66,0	111,0	150,0	
Teilsicherheitsbeiwert	γMs,C1 ¹⁾	[-]	-			1	,5			
Herausziehen										
Charakteristische Zugtragfähigkeit in gerissenem Beton C 1	$N_{\text{Rk,p,C1}}$	[kN]	-	4,6	8,0	16,0	28,2	36,0	50,3	
Montagesicherheitsbeiwert	γinst	[-]		1,0						
Stahlversagen ohne Hebelarm										
Charakteristische Quertragfähigkeit C1	$V_{Rk,s,C1}$	[kN]		11	17	27	47	56	69	
Teilsicherheitsbeiwert	γMs,C1 ¹⁾	[-]	i			1,:	25			

¹⁾ Sofern andere nationale Regelungen fehlen

Table C4.2: Charakteristische Werte der Zug- und Quertragfähigkeit unter Erdbebenbeanspruchung C2

0.500					MAX, MA	X R, MA	X HCR)	
Größe			М6	M8	M10	M12	M16	M20	M24
Dübellänge	L _{max}	[mm]			186	221	285	394	1
Mit Ringspaltverfüllung	$lpha_{ extsf{gap}}$	[-]				1,0			
Stahlversagen									
Charakteristische Zugtragfähigkeit C2	$N_{\text{Rk,s,C2}}$	[kN]			27	41	66	111	
Teilsicherheitsbeiwert	γMs,C2 ²⁾	[-]		•		1,	,5		ı
Herausziehen									
	h _{ef}	[mm]			60	70	85	100	
Charakteristische Zugtragfähigkeit in	$N_{Rk,p,C2}$	[kN]			5,1	7,4	21,5	30,7	-
gerissenem Beton C2	h _{ef}	[mm]		-	40-59	50-69	65-84		
	$N_{\text{Rk},p,C2}$	[kN]			2,7	4,4	16,4		-
Montagesicherheitsbeiwert	γinst	[-]				1,0			
Stahlversagen ohne Hebelarm									
	h _{ef}	[mm]			60	70	85	100	
Charaktariatiaaha Quartraafähiakait C2	$V_{Rk,s,C2}$	[kN]			10,0	17,4	27,5	39,9	-
Charakteristische Quertragfähigkeit C2	h _{ef}	[mm]	•	-	40-59	50-69	65-84		
	$V_{\text{Rk,s,C2}}$	[kN]			7,0	12,7	22,0		_
Teilsicherheitsbeiwert	γMs,C2 ²⁾	[-]				1,25			

¹⁾ MAX HCR: Gilt nur für kaltmassivumgeformte Ausführung (gemäß Anhang A1)

Upat Ankerbolzen MAX, MAX R, MAX HCR

Leistungen

Charakteristische Werte von Zug und Querwiderständen unter Erdbebeneinfluss

Anhang C 4

Appendix 15/16

²⁾ Sofern andere nationale Regelungen fehlen

Tabelle C5.1: Verschiebungen unter statischer und quasi - statischer Zuglast

Größe			MAX, MAX R, MAX HCR							
Globe			М6	M8	M10	M12	M16	M20	M24	
Verschiebungen – Faktor für Zuglast ¹⁾										
δN0 - Faktor	In goringonom Poton	— [mm/kN]	0,13	0,22	0,12	0,09	0,08	0,07	0,05	
δN∞ - Faktor	In gerissenem Beton		1,00	0,78	0,40	0,19	0,0	09	0,07	
δN0 - Faktor		[[[[]	0,16	0,07	0,05	0,	06	0,05	0,04	
δN∞ - Faktor	In ungerissenem Beton		0,24	0,29	0,21	0,14	0,10	0,06	0,05	

Tabelle C5.2: Verschiebungen unter statischer und quasi - statischer Querlast

Größe			MAX							
			М6	M8	M10	M12	M16	M20	M24	
Verschiebungen - I	Faktor für Querlast ²⁾									
δvo - Faktor			0,6	0,35	0,37	0,27	0,10	0,09	0,07	
δV∞ - Faktor	 In gerissenem und ungerissenem Beton 		0,9	0,52	0,55	0,40	0,14	0,15	0,11	
		[mm/kN]		MAX R, MAX HC		HCR				
δvo - Faktor			0,6	0,23	0,19	0,18	0,10	0,11	0,07	
δv∞ - Faktor	_		0,9	0,27	0,22	0,16	0,11	0,05	0,09	

¹⁾ Berechnung der effektiven Verschiebung:

 $\delta_{N0} = \delta_{N0} - \mathsf{Faktor} \cdot N_{ED}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty} - \mathsf{Faktor} \, \cdot \, N_{\text{ED}}$

(N_{ED}: Bemessungswert der vorhandenen Zuglast)

²⁾ Berechnung der effektiven Verschiebung:

 $\delta_{V0} = \delta_{V0} - F_{aktor} \cdot V_{ED}$

 $\delta_{V\infty} = \delta_{V\infty} - \mathsf{Faktor} \, \cdot \, V_{ED}$

(V_{ED}: Bemessungswert der vorhandenen Querlast)

Tabelle C5.3: Verschiebungen unter Zuglast C2 für alle Verankerungstiefen

Größe			MAX, MAX R, MAX HCR							
			М6	M8	M10	M12	M16	M20	M24	
Verschiebungen DLS	δN,C2(DLS)	[mm]			2,7	4	,4	5,6		
Verschiebungen ULS	δ N,C2 (ULS)	[mm]	-	•	11,5	13,0	12,3	14,4	-	

Tabelle C5.4: Verschiebungen unter Querlast C2 für alle Verankerungstiefen

Größe			MAX, MAX R, MAX HCR							
			М6	M8	M10	M12	M16	M20	M24	
Verschiebungen DLS	$\delta_{\text{V,C2 (DLS)}}$	[mm]			4,1	4,7	5,5	4,8		
Verschiebungen ULS	δ v,c2 (ULS)	[mm]		=	6,2	7,8	10,1	11,2		

Upat Ankerbolzen MAX, MAX R, MAX HCR

Leistungen

Verschiebungen unter Zug und Querlast

Anhang C 5

Appendix 16/16