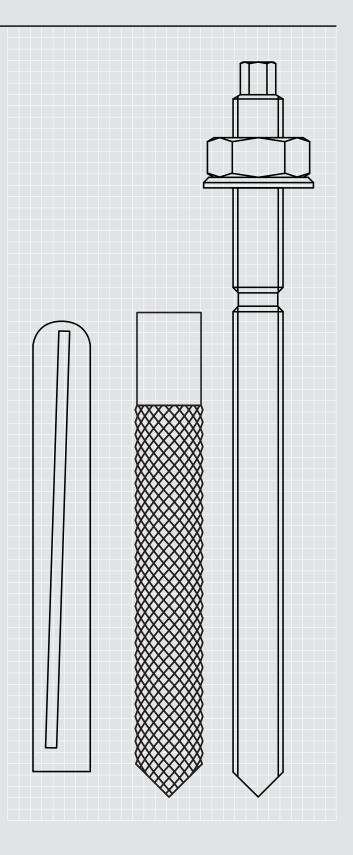
Europäische Technische Zulassung ETA-08/0010

fischer Reaktionsanker R (Eurobond)

Option 7 für ungerissenen Beton



Zul.-Nr. ETA-08/0010 aus galvanisch verzinktem Stahl, aus nicht rostendem Stahl A4, aus hochkorrosionsbeständigem Stahl 1.4529. Geltungsdauer bis 26. März 2013.

Lieferprogramm fischer Reaktionsanker R (Eurobond)

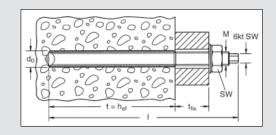
Prüfbericht MFPA PB III/08-312

Zul.-Nr. ETA-08/0010 Geltungsdauer bis 26. März 2013.

fischer Mörtelpatrone R M

fischer Gewindestange RG M

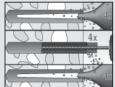
fischer Innengewindeanker RG MI

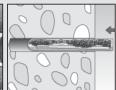

FEB RM 10		Mörtelp	oatro	ne R M			
Тур		ArtNr.		mind. Bohrloch- tiefe	min. Verankerungs- tiefe	passend zu Gewinde- stange	Ver- packung
				t	h _{ef}		
				[mm]	[mm]		[Stück]
Mörtelpatrone R M 8		050270		80	80	RG M 8	10
Mörtelpatrone R M 10		050271		90	90	RG M 10	10
Mörtelpatrone R M 12		050272		110	110	RG M 12	10
Mörtelpatrone R M 12 E	3)	048501		150	150	RG M 12 E	10
Mörtelpatrone R M 14		050278		120	120	RG M 14	10
Mörtelpatrone R M 16		050273		125	125	RG M 16	10
Mörtelpatrone R M 16 E		079838		190	190	RG M 16 E	10
Mörtelpatrone R M 20		050274		170	170	RG M 20	10
Mörtelpatrone R M 20 E		079840		240	240	RG M 20 E	5
Mörtelpatrone R M 24		050275		210	210	RG M 24	5
Mörtelpatrone R M 24 E		079842		290	290	RG M 24 E	5
Mörtelpatrone R M 27		079843		250	250	RG M 27	5
Mörtelpatrone R M 30		050276		280	280	RG M 30	5

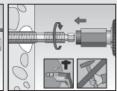
³⁾ nicht Bestandteil der Zulassung

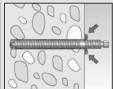
Aushärtezeiten Patrone

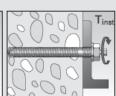
Temperatur im	Aushärtezeit
Verankerungsgrund	
- 5°C bis ± 0°C	240 Min.
± 0°C bis + 10°C	45 Min.
+ 10°C bis + 20°C	20 Min.
≥ + 20°C	10 Min.


Achtung: Im nassen Beton sind die Aushärtezeiten zu verdoppeln! Stehendes Wasser ist aus dem Bohrloch zu entfernen.




Gewindestange RG M,	Stahl galvanisch	verzinkt


Тур		ArtNr.	Bohrer- durch- messer	min. Verankerungs- tiefe	max. Nutz- länge	Schlüssel- weite (6kant)	Schlüssel- weite (6kant Mutter)	zugehörige Mörtelpatrone	Ver- packung
			d _o	h _{ef}	t fix		○SW		
			[mm]	[mm]	[mm]	[mm]	[mm]		[Stück]
RG M 8 x 110		050256	10	80	13	5	13	50270 RM 8	10
RG M 8 x 150		095698	10	80	60	5	13	50270 RM 8	10
RG M 8 x 250		095699	10	80	160	5	13	50270 RM 8	10
RG M 10 x 130		050257	12	90	20	7	17	50271 RM 10	10
RG M 10 x 165		050280	12	90	57	7	17	50271 RM 10	10
RG M 10 x 190		050281	12	90	82	7	17	50271 RM 10	10
RG M 10 x 250	2)	095703	12	90	150	-	17	50271 RM 10	10
RG M 10 x 350	2)	095718	12	90	250	-	17	50271 RM 10	10
RG M 12 x 160		050258	14	110	25	8	19	50272 RM 12	10
RG M 12 x 220		050283	14	110	90	8	19	50272 RM 12	10
RG M 12 x 250		050284	14	110	120	8	19	50272 RM 12	10
RG M 12 x 300		050285	14	110	170	8	19	50272 RM 12	10
RG M 12 x 380	2)	095720	14	110	255	-	19	50272 RM 12	10
RG M 12 x 200 E		050572	14	150	30	8	19	48501 RM 12 E	10
RG M 12 x 230 E		050574	14	150	60	8	19	48501 RM 12 E	10
RG M 12 x 290 E		050575	14	150	120	8	19	48501 RM 12 E	10
RG M 14 x 170	3)	050286	16	120	38	10	22	50278 RM 14	10
RG M 16 x 165		050287	18	125	13	12	24	50273 RM 16	10
RG M 16 x 190		050259	18	125	35	12	24	50273 RM 16	10
RG M 16 x 250		050288	18	125	98	12	24	50273 RM 16	10
RG M 16 x 300		050289	18	125	148	12	24	50273 RM 16	10
RG M 16 x 380	2)	095722	18	125	235	-	24	50273 RM 16	10
RG M 16 x 500	2)	095723	18	125	355	-	24	50273 RM 16	10
RG M 16 x 235 E		090716	18	190	20	12	24	79838 RM 16 E	10
RG M 20 x 260		050260	25	170	65	12	30	50274 RM 20	10
RG M 20 x 350	1)	095707	25	170	155	12	30	50274 RM 20	10
RG M 20 x 500	1)	095725	25	170	305	-	30	50274 RM 20	10
RG M 20 x 330 E		090718	25	240	60	12	30	79840 RM 20 E	10
RG M 24 x 300	1)	050261	28	210	65	-	36	50275 RM 24	10
RG M 24 x 400	1)	095727	28	210	165	-	36	50275 RM 24	10
RG M 24 x 600	1)	095728	28	210	365	-	36	50275 RM 24	5
RG M 24 x 380 E	1)	090719	28	290	60	-	36	79842 RM 24 E	5
RG M 27 x 340	1)	090720	32	250	60	-	41	79843 RM 27	5
RG M 30 x 380	1)	050262	35	280	65	-	46	50276 RM 30	5
RG M 30 x 500	1)	095730	35	280	185	-	46	50276 RM 30	5

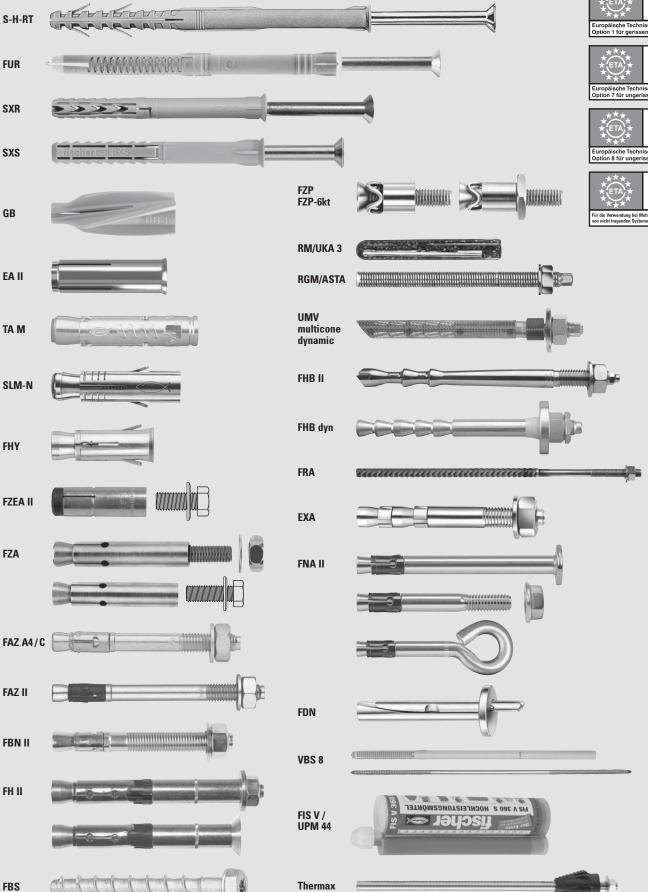

¹⁾ Glatt abgestochen, zusätzliches Setzgerät erforderlich.

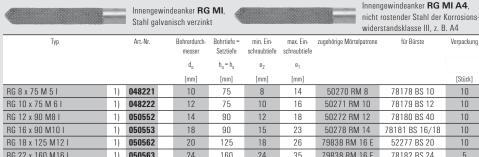
²⁾ Glatt abgestochen, Setzgerät liegt Packung bei.

³⁾ Nicht Bestandteil der Zulassung.

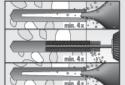
fischer mit allgemeiner bauaufsichtlicher Zulassung und Europäischer Technischer Zulassung 07/2008

Zulassungsbescheide können bei der Anwendungstechnik der fischer Deutschland Vertriebs GmbH angefordert werden: Telefon 0180 5 202900 bzw. 07443 12-4000, Fax 07443 12-4568



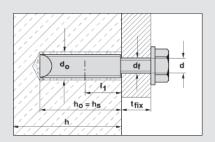

Gewindestange RG M A4, nicht rostender Stahl der Korrosionswiderstands-

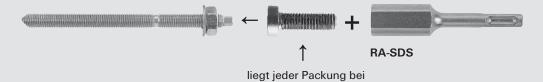
Gewindestange RG M, nicht rostender Stahl der Korrosionswiderstandsklasse IV, z. B. 1.4529


		klas	se III, z. B. A4				WILL	istaliuskiasse iv, z	. D. 1.4020
Тур		ArtNr.	Bohrer- durchmesser	min. Verankerungstiefe	max. Nutzlänge	Schlüsselweite (6kant)	Schlüsselweite (6kant Mutter)	zugehörige Mörtel- patrone	Verpackung
			d_0	h _{ef}	t fix		○ SW		
			[mm]	[mm]	[mm]	[mm]	[mm]		[Stück]
RG M 8 x 110 A4		050263	10	80	13	5	13	50270 RM 8	10
RG M 8 x 150 A4		050293	10	80	60	5	13	50270 RM 8	10
RG M 8 x 250 A4		095700	10	80	160	5	13	50270 RM 8	10
RG M 8 x 350 A4	2)	095708	10	80	260	-	13	50270 RM 8	10
RG M 10 x 130 A4		050264	12	90	20	7	17	50271 RM 10	10
RG M 10 x 165 A4		050294	12	90	57	7	17	50271 RM 10	10
RG M 10 x 190 A4		050296	12	90	82	7	17	50271 RM 10	10
RG M 10 x 250 A4		095701	12	90	150	7	17	50271 RM 10	10
RG M 10 x 350 A4	2)	095709	12	90	250	-	17	50271 RM 10	10
RG M 12 x 160 A4		050265	14	110	25	8	19	50272 RM 12	10
RG M 12 x 220 A4		050297	14	110	90	8	19	50272 RM 12	10
RG M 12 x 250 A4		095702	14	110	120	8	19	50272 RM 12	10
RG M 12 x 300 A4		095705	14	110	170	8	19	50272 RM 12	10
RG M 12 x 380 A4	2)	095710	14	110	255	-	19	50272 RM 12	10
RG M 12 x 600 A4	2)	095711	14	110	475	-	19	50272 RM 12	10
RG M 12 x 200 E A4		050576	14	150	30	8	19	48501 RM 12 E	10
RG M 12 x 230 E A4		050577	14	150	60	8	19	48501 RM 12 E	10
RG M 12 x 290 E A4		050578	14	150	120	8	19	48501 RM 12 E	10
RG M 16 x 165 A4		095704	18	125	13	12	24	50273 RM 16	10
RG M 16 x 190 A4		050266	18	125	35	12	24	50273 RM 16	10
RG M 16 x 250 A4		050298	18	125	98	12	24	50273 RM 16	10
RG M 16 x 300 A4		050299	18	125	148	12	24	50273 RM 16	10
RG M 16 x 380 A4	2)	095712	18	125	235	-	24	50273 RM 16	10
RG M 16 x 500 A4	2)	095713	18	125	355	-	24	50273 RM 16	10
RG M 20 x 260 A4		050267	25	170	65	12	30	50274 RM 20	10
RG M 20 x 350 A4	1)	095706	25	170	155	12	30	50274 RM 20	10
RG M 24 x 300 A4	1)	050268	28	210	65	-	36	50275 RM 24	10
RG M 24 x 400 A4	1)	095715	28	210	165	-	36	50275 RM 24	10
RG M 27 x 340 A4	1)	090725	32	250	60	-	41	79843 RM 27	5
RG M 30 x 380 A4	1)	090726	35	280	65	-	46	50276 RM 30	5
RG M 8 x 110 C		096316	10	80	13	5	13	50270 RM 8	10
RG M 10 x 130 C		096217	12	90	20	7	17	50271 RM 10	10
RG M 12 x 160 C		096218	14	110	25	8	19	50272 RM 12	10
RG M 16 x 190 C		096219	18	125	35	12	24	50273 RM 16	10

¹⁾ Glatt abgestochen, zusätzliches Setzgerät erforderlich. ²⁾ Glatt abgestochen, Setzgerät liegt Packung bei.

RG 22 x 160 M16 I 1) **050563** 24 160 24 35 79838 RM 16 E 78182 BS 24 5 RG 28 x 200 M20 I 050564 200 30 50274 RM 20 78184 BS 35 14 12 RG 12 x 90 M8 I A4 50272 RM 12 1) 050565 90 18 78180 BS 40 10 RG 16 x 90 M10 I A4 1) 050566 18 90 15 23 50278 RM 14 78181 BS 16/18 10 RG 18 x 125 M12 I A4 1) 050567 20 125 18 26 79838 RM 16 E 52277 BS 20 10 RG 22 x 160 M16 I A4 1) 050568 24 160 24 35 79838 RM 16 E 78182 BS 24 RG 28 x 200 M 20 I A4 1) 050569 32 200 30 45 50274 RM 20 78184 BS 35


Montageart Vorsteckmontage (drehend schlagend)


¹⁾ Setzwerkzeug liegt jeder Packung bei.

Тур	ArtNr.	für Bohr-Ø	Bürstendurchmesser	passend zu	Verpackung
		[mm]	[mm]		[Stück]
			(IIIIII)		[Stuck]
BS ø 10	078178	10	11	RG M 8	1
BS ø 12	078179	12	13	RG M 10	1
BS ø 14	078180	14	16	RG M 12	1
BS ø 16 / 18	078181	16/18	20	RG M 16	1
BS ø 20	052277	20	22	-	-
BS ø 24	078182	24	26	RG M 20	1
BS ø 28	078183	28	30	RG M 24/27	1
BS ø 35	078184	35	35	RG M 30	1


Setzwerkzeug mit SDS Aufnahme

Zur einfachen Montage von Verbundankern wie z. B. Reaktionsanker R (Eurobond), Highbondanker FHB II.

Adapter zum Setzen von Ankerstangen

Ankerstangen ohne Außensechskant (Sonderlängen).

Тур	ArtNr.		Verpackung
			[Stück]
RA-SDS	062420	Adapter passend zu Inbusschraube	1
SK SW 8 1/2" VK	001536	Adapter passend für Ankerstangen M8 - M22	1
SDS plus 1/2" VK	001537	Adapter passend für Ankerstangen M8 - M16	1
SDS max 1/2" VK	001538	Adapter passend für Ankerstangen M16 - M20	1
SDS max 3/4" VK	001539	Adapter passend für Ankerstangen M20-M30	1

Größte zulässige Lasten¹⁾ eines Einzeldübels in ungerissenen Normalbeton C20/25²⁾. Bei der Bemessung ist der gesamte Zulassungsbescheid ETA-08/0010 zu beachten.

gvz

RG M 8

C

Stahlgüte			5.8	8.8	10.9	A4-70	1.4529	5.8	8.8	10.9	A4-70	1.4529	5.8	8.8	10.9	A4-70	1.4529	5.8	8.8	10.9	A4-70	1.4529
Effektive Verankerungstiefe	h _{ef}	[mm]			80					90					110					150		
Bohrlochtiefe	h ₀ ≧	[mm]			80					90					110					150		
Bohrernenndurchmesser	d ₀	[mm]			10					12					14					14		
Zulässige zentrische Zuglast eines Einz	eldübels (ohne Ra	andeinf	luss in	ungeris	senem E	eton C 2	20/25,	d. h. Ra	ındabst	and c ≧	C _{cr,Np} ui	nd Achs	abstar	nd s≧c	er,Np						
Zulässige Zuglast in ungerissenem Beton C 20/25	N _{zul}	[kN]			8,8					12,3					19,7			21,1	26	,9	22,5	26,9
Zulässige Querkraft eines Einzeldübels	ohne Ran	deinflu	ss in u	ngeriss	enem Be	eton C 2	0/25, d.	h. Ran	dabsta	nd c ≧	10 x h _{ef}	und Ach	sabsta	nd s≧	S _{cr,Np}							
Zulässige Querkraft in ungerissenem Beton C 20/25	V _{zul}	[kN]	4,2	6,5	6,8	5,9	7,3	7,6	11,7	12,1	9,3	11,6	11,0	17,0	17,7	13,5	16,9	11,0	17,0	17,7	13,5	16,9
Zulässiges Biegemoment																						
	M _{zul}	[Nm]	11,1	17,1	17,9	12,0	15,0	22,2	34,2	35,6	23,9	29,9	38,9	59,8	62,3	41,9	52,3	38,9	59,8	62,3	41,9	52,3
Bauteilabmessungen und Montagekeni	nwerte																					
Charakteristischer Achsabstand	S _{cr Nn}	[mm]			195					250					280					280		
Charakteristischer Randabstand	C _{cr, Np}				100					125					140					140		
Minimaler Achsabstand 3)	S _{min}	-			40					45					55					75		
Minimaler Randabstand 3)	C _{min}				40					45					55					75		
Mindestbauteildicke	h _{min}	[mm]			110					120					150					200		
Durchgansloch im Anbauteil	d _f ≦	[mm]			9					12					14					14		
Erforderliches Montagedrehmoment	T _{inst}	[Nm]			10					20					40					40		
Zugehörige Mörtelpatrone	FEB RM	[-]			FEB RM	8			F	EB RM	10				FEB RM	12			FE	B RM 1	2 E	
Dübeltyp				qvz	RG M 1	6 A4	С		gvz	RG M 10	BE A4	С		gvz	RG M 2	20 A4	С		gvz	IG M 20	DE A4	C
Stahlgüte			5.8	8.8	10.9	A4-70	1.4529	5.8	8.8	10.9	A4-70	1.4529	5.8	8.8	10.9	A4-70	1.4529	5.8	8.8	10.9	A4-70	1.4529
Effektive Verankerungstiefe	h _{ef}	[mm]			125					190					170					240		-
Bohrlochtiefe	h ₀ ≧	[mm]			125					190					170					240		
Bohrernenndurchmesser	d ₀	[mm]			18					18					25					25		
Zulässige zentrische Zuglast eines Einz	eldübels (ohne Ra	andeinf	luss in	ungeris	senem E	eton C 2	20/25,	d. h. Ra	ındabst	and c ≧	C _{cr.Np} ui	nd Achs	abstar	nds≧c,	er.Np						
Zulässige Zuglast in ungerissenem Beto C 20/25					28,4			39,8		3,2	42,0	43,2			45,8			60,9		6	1,6	
Zulässige Querkraft eines Einzeldübels	ohne Ran	deinflu	ss in u	ngeriss	enem Be	eton C 2	0/25, d.	h. Ran	dabsta	nd c ≧	10 x h _{ef}	und Ach	sabsta	nd s≧	S _{cr,Np}							
Zulässige Querkraft in ungerissenem Beton C 20/25	V _{zul}		20,5	31,5	32,8	25,1	31,3	20,5	31,5	32,8	25,1	31,3	32,0	49,3	51,3	39,2	49,0	32,0	49,3	51,3	39,2	49,0
Zulässiges Biegemoment																						
	M _{zul}	[Nm]	98,6	151,7	158,0	106,4	132,8	98,6	151,7	158,0	106,4	132,8	192,6	296,3	308,7	207,8	259,3	192,6	296,3	308,7	207,8	259,3
Bauteilabmessungen und Montagekeni	nwerte																					
Charakteristischer Achsabstand	S _{cr, Np}	[mm]			370					370					450					450		
Charakteristischer Randabstand		[mm]			185					185					225					225		
Minimaler Achsabstand 3)	S _{min}	[mm]			65					95					85					120		
Minimaler Randabstand 3)	C _{min}	[mm]			65					95					85					120		
Mindestbauteildicke	h _{min}	[mm]			160					250					220					300		
Durchgansloch im Anbauteil	d _f ≦	[mm]			18					18					22					22		
Erforderliches Montagedrehmoment	T _{inst}	[Nm]			60					60					120					120		
Zugehörige Mörtelpatrone	FEB RM	[-]		F	EB RM	16			FE	B RM 1	6 E			ı	FEB RM	20			FE	B RM 2	0 E	

RG M 10

gvz

A4 C RG M 12

gvz

RG M 12 E

gvz

C

Dübeltyp

Mit der Bemessungssoftware COMPUFIX können Sie die ganze Leistungsfähigkeit des fischer Reaktionsankers R ausnutzen und Bemessungen mit individuellen Randbedingungen durchführen.

¹⁾ Es sind die in den Zulassungen geregelten Teilsicherheitsbeiwerte der Widerstände sowie ein Teilsicherheitsbeiwert von γ F = 1,4 berücksichtigt. Bei der Kombination von Zug- und Querlasten, bei Randeinfluss und bei Dübelgruppen beachten Sie bitte das Bemessungsverfahren A (ETAG Anhang C). Gültig für Verankerungen in trockenem Beton, einem Temperaturbereich von - 40 °C bis + 50 °C (bzw. kurzzeitig bis + 80 °C) und Premium-Reinigung gemäß Europäischer Technischer Zulassunt ETA.

²⁾ Der Beton wird als normalbewehrt oder unbewehrt vorausgesetzt; bei höheren Betonfestigkeiten sind bis zu 35 % höhere Werte möglich.

Bei gleichzeitiger Reduzierung der Last.

Größte zulässige Lasten¹⁾ eines Einzeldübels in ungerissenen Normalbeton C20/25²⁾. Bei der Bemessung ist der gesamte Zulassungsbescheid ETA-08/0010 zu beachten.

Dübeltyp				RG M 2	4			-	RG M 2	1 E				RG M 2	27			F	RG M 3	0	
			gvz		A4	C		gvz		A4	C		gvz		A4	C		gvz		A4	C
Stahlgüte		5.8	8.8	10.9	A4-70	1.4529	5.8	8.8	10.9	A4-70	1.4529	5.8	8.8	10.9	A4-70	1.4529	5.8	8.8	10.9	A4-70	1.4529
Effektive Verankerungstiefe he	[mm]			210					290					250					280		
Bohrlochtiefe $h_0 \ge$	[mm]			210					290					250					280		
Bohrernenndurchmesser d	[mm]			28					28					32					35		
Zulässige zentrische Zuglast eines Einzeldübels	ohne R	andeinf	luss in	ungeris	senem E	Beton C 2	20/25,	d. h. Ra	ındabst	and c ≧	C _{cr,Np} ur	nd Achs	abstan	d s ≧ c _c	r,Np						
Zulässige Zuglast in ungerissenem Beton C 20/25	[kN]			64.1			87,7		8	8,5				85,8					100,5		
Zulässige Querkraft eines Einzeldübels ohne Ra	ndeinfl	uss in u	ngeriss	enem Be	eton C 2	0/25, d	. h. Ran	dabsta	nd c ≧	10 x h _{ef}	und Ach	sabsta	nd s≧s	cr,Np							
Zulässige Querkraft in ungerissenem Beton C 20/25	[kN]	46,1	70,9	73,9	56,5	70,5	46,1	70,9	73,9	56,5	70,5	60,1	92,4	96,2	73,6	91,9	73,3	112,7	117,5	89,8	112,1
Zulässiges Biegemoment																					
M _{zu}	[Nm]	332,9	512,1	533,4	359,0	448,1	332,9	512,1	533,4	359,0	448,1	495,2	761,8	793,6	543,2	666,6	667,6	1027,1	069,9	720,1	898,7
Bauteilabmessungen und Montagekennwerte																					
Charakteristischer Achsabstand S _{cr. N}	[mm]			530					530					600					640		
Charakteristischer Randabstand C _{cr, N}	[mm]			265					265					300					320		
Minimaler Achsabstand ³⁾ s _{min}	[mm]			105					145					125					140		
Minimaler Randabstand ³⁾ c _{min}	[mm]			105					145					125					140		
Mindestbauteildicke h _{min}	[mm]			280					380					330					370		
Durchgansloch im Anbauteil $d_f \le$	[mm]			26					26					30					33		
$ Erforderliches \ Montagedrehmoment \qquad \qquad T_{ins} $	[Nm]	m] 150				150				200					300						
Zugehörige Mörtelpatrone FEB RN	[-]	FEB RM 24						FE	B RM 2	24 E		FEB RM 27					FEB RM 30				

Hinweis:

Mit der Bemessungssoftware COMPUFIX können Sie die ganze Leistungsfähigkeit des fischer Reaktionsankers R ausnutzen und Bemessungen mit individuellen Randbedingungen durchführen.

- Es sind die in den Zulassungen geregelten Teilsicherheitsbeiwerte der Widerstände sowie ein Teilsicherheitsbeiwert von γF = 1,4 berücksichtigt.

 Bei der Kombination von Zug- und Querlasten, bei Randeinfluss und bei Dübelgruppen beachten Sie bitte das Bemessungsverfahren A (ETAG Anhang C). Gültig für Verankerungen in trockenem Beton, einem Temperaturbereich von 40 °C bis + 50 °C (bzw. kurzzeitig bis + 80 °C) und Premium-Reinigung gemäß Europäischer Technischer Zulassunt ETA.
- 2) Der Beton wird als normalbewehrt oder unbewehrt vorausgesetzt; bei höheren Betonfestigkeiten sind bis zu 35 % höhere Werte möglich.

Größte zulässige Lasten¹⁾ eines Einzeldübels in ungerissenem Normalbeton C20/25²⁾. Bei der Bemessung ist der gesamte Zulassungsbescheid ETA-08/0010 zu beachten.

Dübeltyp				RG	M 8 I			RG	M 10 I			RG	M 12 I			RGI	M 16 I			RG I	/I 20 I	
			gv	z	A4	C	g	νz	A4	С	g	VZ	A4	C	g	VZ	A4	C	g	νz	A4	C
Stahlgüte			5.8	8.8	A4-70	1.4529	5.8	8.8	A4-70	4529	5.8	8.8	A4-70	1.4529	5.8	8.8	A4-70	1.4529	5.8	8.8	A4-70	1.4529
Effektive Verankerungstiefe	h _{ef}	[mm]			90				90				125			1	160	•		2	00	
Bohrlochtiefe	$h_0 \ge$	[mm]										h	o = h _{ef}									
Bohrernenndurchmesser	d_0	[mm]			14				18				20				24			3	32	
Zulässige zentrische Zuglast eines E	inzeldübe	els ohne	e Rande	influss	in unge	rissener	n Betor	C 20/	25, d. h.	Randab	stand c	≧ c _{cr,N}	_{lp} und A	chsabsta	ınd s ≧	S _{cr,Np}						
Zulässige Zuglast in ungerissenem Beton C 20/25	N _{zul}	[kN]	9,1	13,8	9,9	12,4	14,4	16,7	15,7	16,7	21,1	23,8	22,5	23,8		3	15,7			5-	4,8	
Zulässige Querkraft eines Einzeldüb	els ohne l	Randeiı	nfluss ir	ı unger	rissenen	n Beton (20/2	5, d. h.	Randabs	stand c	≧ 10 x l	n _{ef} und	Achsab	stand s ≧	S _{cr,Np}							
Zulässige Querkraft in ungerissenem Beton C 20/25	V _{zul}	[kN]	5,3	8,2	5,9	7,3	8,5	13,0	9,3	11,6	12,3	18,9	13,5	16,9	22,8	35,1	25,1	31,3	35,7	54,9	39,2	49,0
Zulässiges Biegemoment																						'
	M_{zul}	[Nm]	11,1	17,1	12,0	15,0	22,2	34,2	23,9	29,9	38,9	59,8	41,9	52,3	98,6	151,7	106,4	132,8	192,6	296,3	207,8	259,3
Bauteilabmessungen und Montagek	ennwerte	9																				
Charakteristischer Achsabstand	S _{cr, Np}	[mm]		2	90			3	390			4	120			5	500			6	10	
Charakteristischer Randabstand	C _{cr, Np}	[mm]		1	45			1	195			,	210			2	250			3	05	
Minimaler Achsabstand 3)	S _{min}	[mm]		ž.	45				45				60				80			1	00	
Minimaler Randabstand 3)	C _{min}	[mm]			45				45				60				80			1	00	
Mindestbauteildicke	h_{min}	[mm]		1	20			1	120				170			2	220			2	70	
Minimale Einschraubtiefe	min e ₁	[mm]			12				15				18				24			3	30	
Maximale Einschraubtiefe	max e ₂	[mm]			18				23				26				35			4	15	
Durchgansloch im anzuschließenden Anbauteil	d _f ≦	[mm]			9				12				14				18			2	22	
Drehmoment beim Verankern	T _{inst}	[Nm]			10				20				40				60			1	20	
Zugehörige Mörtelpatrone	FEB RM	[-]		FEB	RM 12			FEB	RM 14			FEB F	RM 16 E			FEB F	RM 16 E			FEB I	RM 20	

Hinweis

Mit der Bemessungssoftware COMPUFIX können Sie die ganze Leistungsfähigkeit des fischer Reaktionsankers R mit Mörtelpatrone RM ausnutzen und Bemessungen mit individuellen Randbedingungen durchführen.

- Es sind die in den Zulassungen geregelten Teilsicherheitsbeiwerte der Widerstände sowie ein Teilsicherheitsbeiwert von $\gamma_F = 1.4$ berücksichtigt. Bei der Kombination von Zug- und Querlasten, bei Randeinfluss und bei Dübelgruppen beachten Sie bitte das Bemessungsverfahren gemäß TR 029 zur ETAG 001, Teil 5.
 - Gültig für Verankerungen in trockenem Beton, einem Temperaturbereich von 40 °C bis + 50 °C (bzw. kurzzeitig bis + 80 °C) und bei ausreichender mechanischer Bohrlochrreinigung mit einer Edelstahlbürste.
- 2) Der Beton wird als normalbewehrt oder unbewehrt vorausgesetzt; bei höheren Betonfestigkeiten sind bis zu 35 % höhere Werte möglich.
- 3) Bei gleichzeitiger Reduzierung der Last.

³⁾ Bei gleichzeitiger Reduzierung der Last.

Deutsches Institut für Bautechnik

Anstalt des öffentlichen Rechts

Kolonnenstr. 30 L 10829 Berlin Deutschland

Tel.: +49(0)30 787 30 0 Fax: +49(0)30 787 30 320 E-mail: dibt@dibt.de Internet: www.dibt.de

Mitglied der EOTA

Member of EOTA

Europäische Technische Zulassung ETA-08/0010

Handelsbezeichnung

Trade name

Zulassungsinhaber Holder of approval

Zulassungsgegenstand und Verwendungszweck

Generic type and use of construction product

Geltungsdauer: vom Validity: from

bis

Herstellwerk

Manufacturing plant

fischer Reaktionsanker R fischer Resin anchor R

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

Verbunddübel in den Größen M8 bis M30 zur Verankerung im ungerissenen Beton

Bonded anchor in the size of M8 to M30 for use in non-cracked concrete

27. November 2008

26. März 2013

fischerwerke

Diese Zulassung umfasst This Approval contains 21 Seiten einschließlich 13 Anhänge 21 pages including 13 annexes

Diese Zulassung ersetzt This Approval replaces ETA-08/0010 mit Geltungsdauer vom 26.03.2008 bis 26.03.2013 ETA-08/0010 with validity from 26.03.2008 to 26.03.2013

I RECHTSGRUNDLAGEN UND ALLGEMEINE BESTIMMUNGEN

- Diese europäische technische Zulassung wird vom Deutschen Institut für Bautechnik erteilt in Übereinstimmung mit:
 - der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte¹, geändert durch die Richtlinie 93/68/EWG des Rates² und durch die Verordnung (EG) Nr. 1882/2003 des Europäischen Parlaments und des Rates³;
 - dem Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur
 Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz BauPG) vom 28. April 1998⁴, zuletzt geändert durch Gesetz vom 06.01.2004⁵:
 - den Gemeinsamen Verfahrensregeln für die Beantragung, Vorbereitung und Erteilung von europäischen technischen Zulassungen gemäß dem Anhang zur Entscheidung 94/23/EG der Kommission⁶;
 - der Leitlinie für die europäische technische Zulassung für "Metalldübel zur Verankerung im Beton Teil 5: Verbunddübel", ETAG 001-05.
- Das Deutsche Institut für Bautechnik ist berechtigt zu prüfen, ob die Bestimmungen dieser europäischen technischen Zulassung erfüllt werden. Diese Prüfung kann im Herstellwerk erfolgen. Der Inhaber der europäischen technischen Zulassung bleibt jedoch für die Konformität der Produkte mit der europäischen technischen Zulassung und deren Brauchbarkeit für den vorgesehenen Verwendungszweck verantwortlich.
- Diese europäische technische Zulassung darf nicht auf andere als die auf Seite 1 aufgeführten Hersteller oder Vertreter von Herstellern oder auf andere als die auf Seite 1 dieser europäischen technischen Zulassung genannten Herstellwerke übertragen werden.
- Das Deutsche Institut für Bautechnik kann diese europäische technische Zulassung widerrufen, insbesondere nach einer Mitteilung der Kommission aufgrund von Art. 5 Abs. 1 der Richtlinie 89/106/EWG.
- Diese europäische technische Zulassung darf auch bei elektronischer Übermittlung nur ungekürzt wiedergegeben werden. Mit schriftlicher Zustimmung des Deutschen Instituts für Bautechnik kann jedoch eine teilweise Wiedergabe erfolgen. Eine teilweise Wiedergabe ist als solche zu kennzeichnen. Texte und Zeichnungen von Werbebroschüren dürfen weder im Widerspruch zu der europäischen technischen Zulassung stehen noch diese missbräuchlich verwenden.
- Die europäische technische Zulassung wird von der Zulassungsstelle in ihrer Amtssprache erteilt. Diese Fassung entspricht der in der EOTA verteilten Fassung. Übersetzungen in andere Sprachen sind als solche zu kennzeichnen.

Amtsblatt der Europäischen Gemeinschaften L 40 vom 11.02.1989, S. 12

² Amtsblatt der Europäischen Gemeinschaften L 220 vom 30.08.1993, S. 1

³ Amtsblatt der Europäischen Union L 284 vom 31.10.2003, S. 25

⁴ Bundesgesetzblatt I, S. 812

⁵ Bundesgesetzblatt I, S. 2, 15

⁶ Amtsblatt der Europäischen Gemeinschaften L 17 vom 20.01.1994, S. 34

II BESONDERE BESTIMMUNGEN DER EUROPÄISCHEN TECHNISCHEN ZULASSUNG

1 Beschreibung des Bauprodukts und des Verwendungszwecks

1.1 Beschreibung des Produkts

Der fischer Reaktionsanker R ist ein Verbunddübel, der aus einer Mörtelpatrone FEB RM und einem Stahlteil besteht. Das Stahlteil besteht aus einer Ankerstange mit Sechskantmutter und Unterlegscheibe in den Größen M8 bis M30 oder einem Innengewindeanker RG MI in den Größen M8 bis M20. Die Stahlteile bestehen aus galvanisch verzinktem Stahl, feuerverzinktem Stahl, nichtrostendem Stahl oder aus hochkorrosionsbeständigem Stahl.

Die Mörtelpatrone wird in ein Bohrloch gesetzt und das Stahlteil wird durch gleichzeitiges Schlagen und Drehen eingetrieben. Der Dübel wird durch Ausnutzung des Verbundes zwischen Stahlteil, Mörtel und Beton verankert.

Im Anhang 1 ist der Dübel im eingebauten Zustand dargestellt.

1.2 Verwendungszweck

Der Dübel ist für Verwendungen vorgesehen, bei denen Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 der Richtlinie 89/106/EWG zu erfüllen sind und bei denen ein Versagen der Verankerungen zu einer Gefahr für Leben oder Gesundheit von Menschen und/oder erheblichen wirtschaftlichen Folgen führt. Der Brandschutz (wesentliche Anforderung 2) ist durch diese europäische technische Zulassung nicht erfasst. Der Dübel darf nur für Verankerungen unter vorwiegend ruhender oder quasi-ruhender Belastung in bewehrtem oder unbewehrtem Normalbeton der Festigkeitsklasse von mindestens C20/25 und höchstens C50/60 nach EN 206:2000-12 verwendet werden.

Er darf nur im ungerissenen Beton verankert werden.

Der Dübel darf in trockenen oder nassen Beton oder in mit Wasser gefüllte Bohrlöcher (kein Meerwasser) gesetzt werden. Der Dübel in der Größe M30 mit Standardreinigung darf in trockenem oder nassem Beton jedoch nicht in mit Wasser gefüllte Bohrlöcher gesetzt werden.

Der Dübel darf in folgendem Temperaturbereichen verwendet werden:

Temperaturbereich: -40 °C bis +80 °C (max. Kurzzeit-Temperatur +80 °C und

max. Langzeit-Temperatur +50 °C)

Temperaturbereich: -40 °C bis +120 °C (max. Kurzzeit-Temperatur +72 °C und max. Langzeit-Temperatur +120 °C)

galvanisch verzinkter oder feuerverzinkter Stahl:

Die Stahlteile aus galvanisch verzinktem oder feuerverzinktem Stahl dürfen nur in Bauteilen unter den Bedingungen trockener Innenräume verwendet werden.

nichtrostender Stahl:

Die Stahlteile aus nichtrostendem Stahl dürfen in Bauteilen unter den Bedingungen trockener Innenräume sowie auch im Freien (einschließlich Industrieatmosphäre und Meeresnähe) oder in Feuchträumen verwendet werden, wenn keine besonders aggressiven Bedingungen vorliegen. Zu diesen besonders aggressiven Bedingungen gehören, z. B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunnels, in denen Enteisungsmittel verwendet wird).

hochkorrosionsbeständiger Stahl:

Die Stahlteile aus hochkorrosionsbeständigem Stahl dürfen in Bauteilen unter den Bedingungen trockener Innenräume sowie auch im Freien, in Feuchträumen oder in besonders aggressiven Bedingungen verwendet werden. Zu diesen besonders aggressiven Bedingungen gehören, z. B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunnels, in denen Enteisungsmittel verwendet wird.

Die Bestimmungen dieser europäischen technischen Zulassung beruhen auf einer angenommenen Nutzungsdauer des Dübels von 50 Jahren. Die Angaben über die Nutzungsdauer können nicht als Garantie des Herstellers ausgelegt werden, sondern sind lediglich als Hilfsmittel zur Auswahl der richtigen Produkte im Hinblick auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks zu betrachten.

2 Merkmale des Produkts und Nachweisverfahren.

2.1 Merkmale des Produkts

Der Dübel entspricht den Zeichnungen und Angaben der Anhänge 1 bis 3. Die in den Anhängen 1 bis 3 nicht angegebenen Werkstoffkennwerte, Abmessungen und Toleranzen des Dübels müssen den in der technischen Dokumentation⁷ dieser europäischen technischen Zulassung festgelegten Angaben entsprechen.

Die charakteristischen Dübelkennwerte für die Bemessung der Verankerungen sind in den Anhängen 5 bis 13 angegeben.

Jede Mörtelpatrone ist mit dem Herstellerkennzeichen, der Handelsbezeichnung und der entsprechenden Größe der Ankerstange oder Innengewindehülse gemäß Anhang 2, Tabelle 1a und 1b gekennzeichnet.

Jede fischer-Ankerstange ist mit dem Herstellerkennzeichen, der Dübelgröße und der Markierung für die Verankerungstiefe gekennzeichnet. Jede fischer-Ankerstange aus nichtrostendem Stahl ist zusätzlich mit der Bezeichnung "A4" gekennzeichnet. Jede fischer-Ankerstange aus hochkorrosionsbeständigem Stahl ist zusätzlich mit der Bezeichnung "C" gemäß Anhang 2 gekennzeichnet.

Jede Innengewindehülse RG MI ist mit dem Herstellerkennzeichen und der Dübelgröße gemäß Anhang 2 gekennzeichnet. Jede Innengewindehülse RG MI aus nichtrostendem Stahl ist zusätzlich mit der Bezeichnung "A4". Jede Innengewindehülse RG MI aus hochkorrosionsbeständigem Stahl ist zusätzlich mit der Bezeichnung "C" gemäß Anhang 2 gekennzeichnet.

2.2 Nachweisverfahren

Die Beurteilung der Brauchbarkeit des Dübels für den vorgesehenen Verwendungszweck hinsichtlich der Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 erfolgte in Übereinstimmung mit der "Leitlinie für die europäische technische Zulassung für Metalldübel zur Verankerung im Beton", Teil 1 "Dübel - Allgemeines" und Teil 5 "Verbunddübel", auf der Grundlage der Option 7.

In Ergänzung zu den speziellen Bestimmungen dieser europäischen technischen Zulassung, die sich auf gefährliche Substanzen beziehen, können im Geltungsbereich dieser Zulassung weitere Anforderungen an das Produkt gestellt werden (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der EG-Bauproduktenrichtlinie zu erfüllen, müssen diese Anforderungen, sofern sie gelten, ebenfalls eingehalten werden.

-

Die technische Dokumentation dieser europäischen technischen Zulassung ist beim Deutschen Institut für Bautechnik hinterlegt und, soweit diese für die Aufgaben der in das Verfahren der Konformitätsbescheinigung eingeschalteten zugelassenen Stellen bedeutsam ist, den zugelassenen Stellen auszuhändigen.

3 Bescheinigung der Konformität des Produkts und CE-Kennzeichnung

3.1 System der Konformitätsbescheinigung

Gemäß Entscheidung 96/582/EG der Europäischen Kommission⁸ ist das System 2(i) (bezeichnet als System 1) der Konformitätsbescheinigung anzuwenden.

Dieses System der Konformitätsbescheinigung ist im Folgenden beschrieben:

System 1: Zertifizierung der Konformität des Produkts durch eine zugelassene Zertifizierungsstelle aufgrund von:

- (a) Aufgaben des Herstellers:
 - (1) werkseigener Produktionskontrolle;
 - (2) zusätzlicher Prüfung von im Werk entnommenen Proben durch den Hersteller nach festgelegtem Prüfplan;
- (b) Aufgaben der zugelassenen Stelle:
 - (3) Erstprüfung des Produkts;
 - (4) Erstinspektion des Werkes und der werkseigenen Produktionskontrolle;
 - (5) laufender Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle.

Anmerkung: Zugelassene Stellen werden auch "notifizierte Stellen" genannt.

3.2 Zuständigkeiten

3.2.1 Aufgaben des Herstellers

3.2.1.1 Werkseigene Produktionskontrolle

Der Hersteller muss eine ständige Eigenüberwachung der Produktion durchführen. Alle vom Hersteller vorgegebenen Daten, Anforderungen und Vorschriften sind systematisch in Form schriftlicher Betriebs- und Verfahrensanweisungen festzuhalten. Die werkseigene Produktionskontrolle hat sicherzustellen, dass das Produkt mit dieser europäischen technischen Zulassung übereinstimmt.

Der Hersteller darf nur Ausgangsstoffe / Rohstoffe / Bestandteile verwenden, die in der technischen Dokumentation dieser europäischen technischen Zulassung aufgeführt sind.

Die werkseigene Produktionskontrolle muss mit dem Kontrollplan vom März 2008, der Teil der technischen Dokumentation dieser europäischen technischen Zulassung ist, übereinstimmen. Der Kontrollplan ist im Zusammenhang mit dem vom Hersteller betriebenen werkseigenen Produktionskontrollsystem festgelegt und beim Deutschen Institut für Bautechnik hinterlegt.⁹

Die Ergebnisse der werkseigenen Produktionskontrolle sind festzuhalten und in Übereinstimmung mit den Bestimmungen des Kontrollplans auszuwerten.

3.2.1.2 Sonstige Aufgaben des Herstellers

Der Hersteller hat auf der Grundlage eines Vertrags eine Stelle, die für die Aufgaben nach Abschnitt 3.1 für den Bereich der Dübel zugelassen ist, zur Durchführung der Maßnahmen nach Abschnitt 3.2.2 einzuschalten. Hierfür ist der Kontrollplan nach den Abschnitten 3.2.1.1 und 3.2.2 vom Hersteller der zugelassenen Stelle vorzulegen.

Der Hersteller hat eine Konformitätserklärung mit der Aussage abzugeben, dass das Bauprodukt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

_

Amtsblatt der Europäischen Gemeinschaften L 254 vom 08.10.1996.

Der Kontrollplan ist ein vertraulicher Bestandteil der europäischen technischen Zulassung und wird nur der in das Konformitätsbescheinigungsverfahren eingeschalteten zugelassenen Stelle ausgehändigt. Siehe Abschnitt 3.2.2.

3.2.2 Aufgaben der zugelassenen Stellen

Die zugelassene Stelle hat die folgenden Aufgaben in Übereinstimmung mit dem Kontrollplan durchzuführen:

- Erstprüfung des Produkts,
- Erstinspektion des Werks und der werkseigenen Produktionskontrolle,
- laufende Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle.

Die zugelassene Stelle hat die wesentlichen Punkte ihrer oben angeführten Maßnahmen festzuhalten und die erzielten Ergebnisse und die Schlussfolgerungen in einem schriftlichen Bericht zu dokumentieren.

Die vom Hersteller eingeschaltete zugelassene Zertifizierungsstelle hat ein EG-Konformitätszertifikat mit der Aussage zu erteilen, dass das Produkt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

Wenn die Bestimmungen der europäischen technischen Zulassung und des zugehörigen Kontrollplans nicht mehr erfüllt sind, hat die Zertifizierungsstelle das Konformitätszertifikat zurückzuziehen und unverzüglich das Deutsche Institut für Bautechnik zu informieren.

3.3 CE-Kennzeichnung

Die CE-Kennzeichnung ist auf jeder Verpackung der Dübel anzubringen. Hinter den Buchstaben "CE" sind ggf. die Kennnummer der zugelassenen Zertifizierungsstelle anzugeben sowie die folgenden zusätzlichen Angaben zu machen:

- Name und Anschrift des Herstellers (für die Herstellung verantwortliche juristische Person),
- die letzten beiden Ziffern des Jahres, in dem die CE-Kennzeichnung angebracht wurde,
- Nummer des EG-Konformitätszertifikats für das Produkt.
- Nummer der europäischen technischen Zulassung,
- Nummer der Leitlinie für die europäische technische Zulassung,
- Nutzungskategorie (ETAG 001-1 Option 7),
- Größe.

4 Voraussetzungen, unter denen die Brauchbarkeit des Produkts gegeben ist

4.1 Herstellung

Der Dübel wird entsprechend den Bestimmungen der europäischen technischen Zulassung in einem automatisierten Verfahren hergestellt, das bei der Inspektion des Herstellwerks durch das Deutsche Institut für Bautechnik und die zugelassene Überwachungsstelle festgestellt und in der technischen Dokumentation festgelegt ist.

Die europäische technische Zulassung wurde für das Produkt auf der Grundlage abgestimmter Daten und Informationen erteilt, die beim Deutschen Institut für Bautechnik hinterlegt sind und der Identifizierung des beurteilten und bewerteten Produkts dienen. Änderungen am Produkt oder am Herstellungsverfahren, die dazu führen könnten, dass die hinterlegten Daten und Informationen nicht mehr korrekt sind, sind vor ihrer Einführung dem Deutschen Institut für Bautechnik mitzuteilen. Das Deutsche Institut für Bautechnik wird darüber entscheiden, ob sich solche Änderungen auf die Zulassung und folglich auf die Gültigkeit der CE-Kennzeichnung auf Grund der Zulassung auswirken oder nicht, und ggf. feststellen, ob eine zusätzliche Beurteilung oder eine Änderung der Zulassung erforderlich ist.

4.2 Einbau

4.2.1 Bemessung der Verankerungen

Die Brauchbarkeit des Dübels ist unter folgenden Voraussetzungen gegeben:

Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit dem EOTA Technical Report TR 029 "Design of Bonded Anchors" unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.

Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen angefertigt.

Auf den Konstruktionszeichnungen ist die Lage des Dübels (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.) angegeben.

4.2.2 Einbau der Dübel

Von der Brauchbarkeit des Dübels kann nur dann ausgegangen werden, wenn folgende Einbaubedingungen eingehalten sind:

- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile.
- Einbau nach den Angaben des Herstellers und den Konstruktionszeichnungen mit den in der technischen Dokumentation dieser europäischen technischen Zulassung angegebenen Werkzeugen,
- Überprüfung vor dem Setzen des Dübels, ob die Festigkeitsklasse des Betons, in den der Dübel gesetzt werden soll, nicht niedriger ist als die Festigkeitsklasse des Betons, für den die charakteristischen Tragfähigkeiten gelten,
- Einwandfreie Verdichtung des Betons, z. B. keine signifikanten Hohlräume,
- Einhaltung der effektiven Verankerungstiefe.
- Einhaltung der festgelegten Rand- und Achsabstände ohne Minustoleranzen,
- Anordnung der Bohrlöcher ohne Beschädigung der Bewehrung,
- Bei Fehlbohrungen: Fehlbohrungen sind zu vermörteln,
- Bohrlochreinigung und Einbau gemäß Montageanleitung des Herstellers nach Anhang 3 Standard Bohrlochlochreinigung:

Mindestens 4x Ausblasen mit Handausbläser,

Premium Bohrlochlochreinigung:

Mindestens 4x ausblasen, 4x bürsten und nochmals 4x ausblasen; ausblasen mit Handausbläser; bürsten mit vom Hersteller gelieferten Stahlbürsten; vor dem Ausbürsten säubern der Bürste und Überprüfung, ob der Bürstendurchmesser nach Anhang 4, Tabelle 4 eingehalten ist,

- Einsetzen der Mörtelpatrone in das hammergebohrte Bohrloch; Eintreiben der Ankerstange oder des Innengewindeankers durch gleichzeitiges Schlagen und Drehen mit entsprechendem Aufsatz; nach erreichen der Markierung sofort ausschalten der Bohrmaschine, um ein Herausfördern des Mörtel zu vermeiden,
- Die Temperatur der Dübelteile beim Einbau beträgt mindestens +5 °C; die Temperatur im Verankerungsgrund unterschreitet während der Aushärtung des Injektionsmörtels nicht
 -5 °C; Einhaltung der Wartezeit bis zur Lastaufbringung gemäß Anhang 4, Tabelle 3,
- Montagedrehmomente sind für die Tragfähigkeit des Dübels nicht erforderlich. Die in Anhang 4, Tabelle 4 angegebenen Anzugsdrehmomente dürfen jedoch nicht überschritten werden,
- Befestigungsschrauben oder Gewindestangen (einschließlich Muttern und Scheiben) für Innengewindeanker müssen der zugehörigen Stahlgüte und Festigkeitsklasse gemäß Anhang 3 Tabelle 2 entsprechen.

Der EOTA Technical Report TR 029 "Design of Bonded Anchors" ist in Englischer Sprache auf der website www.eota.eu veröffentlicht.

5 Empfehlungen für Verpackung, Beförderung und Lagerung

5.1 Verpflichtungen des Herstellers

Es ist Aufgabe des Herstellers, dafür zu sorgen, dass alle Beteiligten über die Besonderen Bestimmungen nach den Abschnitten 1 und 2 einschließlich der Anhänge, auf die verwiesen wird, sowie den Abschnitten 4.2.1, 4.2.2 und 5.1 unterrichtet werden. Diese Information kann durch Wiedergabe der entsprechenden Teile der europäischen technischen Zulassung erfolgen. Darüber hinaus sind alle Einbaudaten auf der Verpackung und/oder einem Beipackzettel, vorzugsweise bildlich, anzugeben.

Es sind mindestens folgende Angaben zu machen:

- Bohrerdurchmesser,
- Bohrlochtiefe.
- Ankerstangendurchmesser,
- Mindestverankerungstiefe,
- maximale Dicke der Anschlusskonstruktion.
- Angaben über den Einbauvorgang einschließlich Reinigung des Bohrlochs mit den Reinigungsgeräten, vorzugsweise durch bildliche Darstellung,
- Stahlteile (Ankerstange, Scheibe und Mutter) müssen aus dem gleichen Werkstoff mit den dazugehörigen Materialeigenschaften entsprechend Anhang 3, Tabelle 2 sein.
- Temperatur der Dübelteile beim Einbau.
- Temperatur im Verankerungsgrund beim Setzen des Dübels.
- Wartezeit bis zur Lastaufbringung abhängig von der Temperatur im Verankerungsgrund beim Setzen,
- maximales Drehmoment,
- Herstelllos

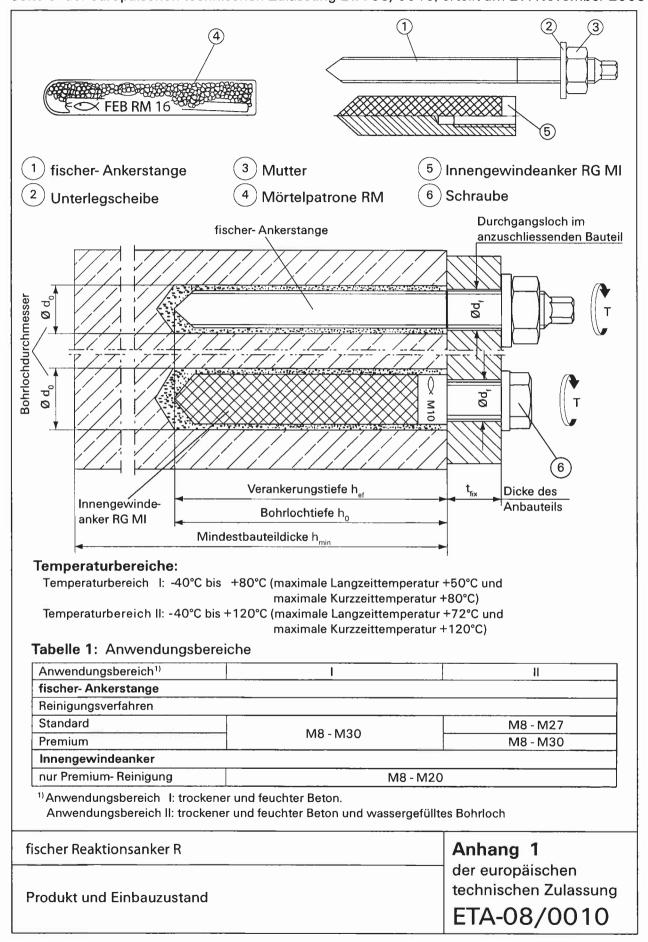
Alle Angaben müssen in deutlicher und verständlicher Form erfolgen.

5.2 Empfehlungen für Verpackung, Beförderung und Lagerung

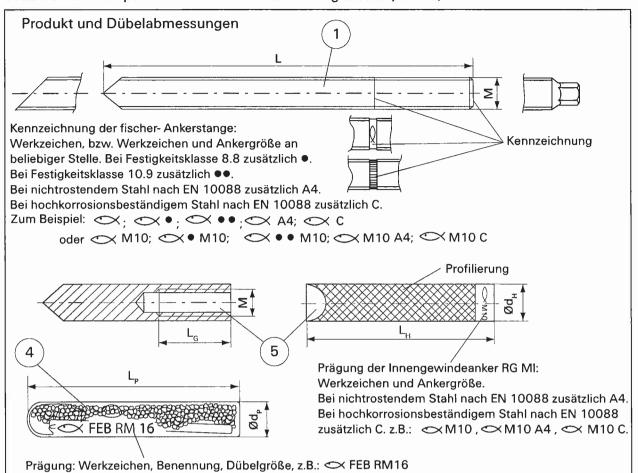
Die Mörtelpatronen sind vor Sonneneinstrahlung zu schützen und entsprechend der Montageanleitung trocken bei Temperaturen von mindestens +5 °C bis höchstens +25 °C zu lagern.

Mörtelpatronen mit abgelaufenem Haltbarkeitsdatum dürfen nicht mehr verwendet werden.

Der Dübel ist als Befestigungseinheit zu verpacken und zu liefern. Die Mörtelpatronen sind separat von den Ankerstangen (inklusive Sechskantmuttern und Unterlegscheiben) bzw. Innengewindeankern verpackt.


Die Montageanleitung muss darauf hinweisen, dass die Mörtelpatronen nur mit den entsprechenden Ankerstangen oder Innengewindeankern nach Anhang 1 bis 3 verwendet werden darf.

Beglaubigt


for Boutech

Dipl.-Ing. E. Jasch
Präsident des Deutschen Instituts für Bautechnik
Berlin, 27. November 2008

Seite 9 der europäischen technischen Zulassung ETA-08/0010, erteilt am 27. November 2008

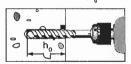
Seite 10 der europäischen technischen Zulassung ETA-08/0010, erteilt am 27. November 2008

Tabelle1a: Abmessungen der fischer- Ankerstangen und Mörtelpatronen FEB RM													
Dübelgröße	Э	M8	M10	M12	M12E	M16	M16E	M20	M20E	M24	M24E	M27	M30
М	[mm]	8	10	1	2	1	6	2	0	2	4	27	30
L1)	[mm]	90	100	130	170	150	215	195	270	240	320	280	315
h _{ef}	[mm]	80	90	110	150	125	190	170	240	210	290	250	280
Patrone FE	B RM	8	10	12	12E	16	16E	20	20E	24	24E	27	30
Ø d _p	[mm]	8	10,5	12	2,5	16	3,5		2	3		27	7,5
L _p	[mm]	85	90	97	120	95	123	160	215	190	250	210	260

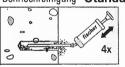
¹⁾ Minimale Ankerlänge. Verschiedene Längen sind möglich.

Tabelle1b: Abmessungen der Innengewindeanker RG MI und Mörtelpatronen FEB RM

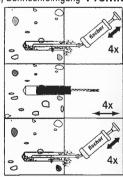
Dübelgröße	(M)	M8	M10	M12	M16	M20
Ø d _H	[mm]	12	16	18	22	28
L _H = h _{ef}	[mm]	9	0	125	160	200
L _G	[mm]	25	30	35	45	55
Patrone FEE	3 RM	12	14	16	E	20
Ø d _p	Ø d _p [mm]			10	3,5	23
L _p	[mm]			1	23	160


fischer Reaktionsanker R	Anhang 2
	der europäischen
Dübelkennwerte	technischen Zulassung
Bubeikeriiiwerte	ETA-08/0010

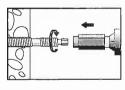
Seite 11 der europäischen technischen Zulassung ETA-08/0010, erteilt am 27. November 2008


Teil	Benennung	Werkstoff										
4	Mörtelpatrone		Bindemittel: Vinylesterharz, styrolfrei Härter: Dibenzoylperoxid Zuschläge: C									
		Stahl, verzinkt	nichtroste	nder Stahl								
1	Ankerstange	Festigkeitsklasse 5.8 oder 8.8; EN ISO 898-1 galv. verzinkt ≥ 5µm, EN ISO 4042 A2K oder feuerverzinkt ≥ 45 µm, EN ISO 10684 Festigkeitsklasse 10.9 EN ISO 10684	Werkstoffe nach EN 10 088 A4									
2	Unterlegscheibe	EN ISO 898-1 galv. verzinkt ≥ 5μm, EN ISO 4042 A2K oder feuerverzinkt ≥ 45 μm, EN ISO 10684	Werkstoffe	hochkorrosions- beständiger Stah								
3	Sechskantmutter EN 24 032	Festigkeitsklasse 5.8 oder 8.8; EN ISO 898-1 galv. verzinkt ≥ 5μm, EN ISO 4042 A2K oder feuerverzinkt ≥ 45 μm, EN ISO 10684	EN ISO 3506-1 Werkstoffe nach EN 10 088 A4	Werkstoffe nach EN 10 088 C								
5	Innengewindeanker	Festigkeitsklasse 5.8 oder 8.8; EN ISO 898-1 galv. verzinkt ≥ 5μm,										
6	Schraube für Innen- gewindeanker	EN ISO 4042 A2K oder feuerverzinkt ≥ 45 μm, EN ISO 10684	Werkstoffe nach EN 10 088 A4									

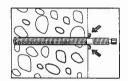
Montage der Ankerstangen und Innengewindeanker


1.) Bohrloch erstellen (h, siehe Tabelle 4)

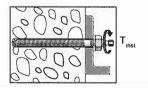
2.) Bohrlochreinigung Standard


2.) Bohrlochreinigung Premium

3.) Einstecken der Mörtelpatrone in das gereinigte Bohrloch



4.) Montage der Ankerstangen / Innengewindeanker mit Schlagbohrmaschine oder vorzugsweise Bohrhammer mit Werkzeugaufnahme RA-SDS. Beim Erreichen des Bohrlochgrundes Bohrmaschine / Bohrhammer sofort abschalten.


5.) Beim Erreichen der Verankerungstiefe muß Überschuß- Mörtel austreten.

Aushārtezeit abwarten. t_{rur}siehe Tabelle 3

6.) Montage des Anbauteils. Montagedrehmoment T_{inst} siehe Tabelle 4.

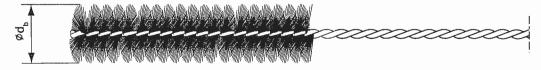
fischer Reaktionsanker R

Werkstoffe Montage der Dübel Anhang 3

der europäischen technischen Zulassung

ETA-08/0010

Tabelle 3: Wartezeiten bis zum Aufbringen der Last


Temperatur im Verankerungsgrund	Minimale Aushärtezeit t _{cure} 1)
- 5°C bis - 1°C	4 h
0°C bis +9°C	45 min
+10°C bis +20°C	20 min
> +20°C	10 min

¹⁾ Im feuchten Beton und wassergefüllten Bohrloch sind die Aushärtezeiten zu verdoppeln.

Tabelle 4: Montagekennwerte

Dübelgröße		M8	M10	M12	M12 E	M16	M16 E	M20	M20 E	M24	M24 E	M27	M30	
Bohrer- Nenndurchmesser	d ₀ =[mm]	10 12 14 18 25 28		32	35									
Bohrerschneiden- durchmesser	d _{cut} = [mm]	10,5	0,5 12,5 14,5		18	3,5	25	,55	28,	.55	32,7	35,7		
Bohrlochtiefe	h ₀ = [mm]	80	90	110	150	125	190	170	240	210	290	250	280	
Durchgangsloch im anzuschließenden Bauteil	d _r ≤ [mm]	9	12	1	4	1	8	2	2	2	6	30	33	
Stahlbürsten- durchmesser	d _b = [mm]	11	13	1	6	2	.0	2	27	3	0	40	40	
Drehmoment beim Verankern	T _{inst} = [Nm]	10	20	20 40		6	30 120		20	150		200	300	
Dicke des .	min = [mm]				•		()						
Anbauteils t _{fix}	max = [mm]	1500												
Innengewindeanke	r RG MI													
Dübelgröße		M8			M10		M1			M16		M20		
Bohrer- Nenndurchmesser	d ₀ =[mm]		14		18		20		.0			32		
Bohrerschneiden- durchmesser	d _{cut} = [mm]	1	4,5		18,5		20,55			24,55		32,	7	
Bohrlochtiefe	h ₀ = [mm]		90		90		1:	25		160		20	0	
Durchgangsloch im anzuschließenden Bauteil	d _f ≤ [mm]		9		12		1	14		18		22		
Stahlbürsten- durchmesser	d _b = [mm]		16		20		2	1,5		26		40)	
Drehmoment beim Verankern	T _{inst} = [Nm]		10		20		4	40		60		12	0	
Min.Einschraubtiefe	[mm]		12		15		1	8		24		30)	
Max.Einschraubtiefe	e [mm]		18		23			6		35			45	

Stahlbürste

fischer	Rea	ktionsan	ker R
---------	-----	----------	-------

Aushärtezeiten Montagekennwerte

Anhang 4

der europäischen technischen Zulassung

ETA-08/0010

Tabelle 5: Minimale Abstände und Bauteildicken

fischer- Ankerstange						
Dübe lgröße	M8	M10	M12	M12 E	M16	M16E
effektive h _{ef} [mm] Verankerungstiefe	80	90	110	150	125	190
Minimale h _{min} [mm]	110	120	150	200	160	250
Minimaler Achs- und min s = min c [mm] Randabstand	40	45	55	75	65	95
Dübelgröße	M20	M20E	M24	M24E	M27	M30
Dübelgröße effektive Verankerungstiefe h _{ef} [mm]	1	M20E 240	M24 210	M24E 290	M27 250	M30 280
effektive h [mm]	170					

Innengewindeanker RG MI											
Dübel größe	M8	M10	M12	M16	M20						
effektive Verankerungstiefe h _{ef} [mm]	90	90	125	160	200						
Minimale Bauteildicke h _{min} [mm]	120	120	170	220	270						
Minimaler Achs- und min s = min c [mm] Randabstand	45	45	60	80	100						

	fischer Reaktionsanker R	Anhang 5
ł		der europäischen
	Minimale Achs- und Randabstände	technischen Zulassung
	Minimale Bauteildicken	ETA-08/0010

Tabelle 6: Charakteristische Werte für die Zugtragfähigkeit von Ankerstangen Bemessungsverfahren nach TR 029. **(Standard-Reinigungsverfahren)**

Stahlversagen														
Dübelgröße			M8	M10	M12	M12 E	M16	M16 E	M20	M20 E	M24	M24 E	M27	M30
Festigkeits	5.8	[kN]		30	30 44		8	2	1:	27	18	33	239	292
Charakteris-		[kN]		9 46 67		12	26	15	96	28	32	367	449	
tische N _{Rk,s}	10.9	[kN]	-	58	-	4		57	_	45	_	53	459	561
Tragfähigkeit	<u>A4</u>	[kN] [kN]		41		9	_	10	-	72		47	322	393
	C [5	9	1	10	1	72	2	47	322	393
Festigkeits	[-]		-					49						
Teilsicher- γ_{Ms}^{1} klass	8.8 10.9	[-]		1,50 1,40										
beiwert	A4	[-]							40 87					
DOIVVOIT	[-]							50			-			
Herausziehen und Betona	usbru													
Rechnerischer Durchmess	er d	[mm]	8	10	1	2	1	6	2	0	24		27	30
Effektive Verankerungstief		80	90	110	150	125	190	170	240	210	290	250	280	
Temperaturbereich -40	°C/+8	0°C; N	lutzu	ngsk	ategoi	ie I un	d II		•					
Charakteristische Verbundspannung im ungerissenen Beton C20/25		mm²]	8 7,5 6,5						6,5 ³⁾					
Temperaturbereich -40	°C/+1	20°C,	Nutz	ungsl	catego	rie I u	nd II							
Charakteristische Verbundspannung im ungerissenen Beton C20/25	[N/	mm²]	6			7					6			6 ³⁾
	25/3	0 [-]						1,	,06					
Erhöhungs-	030/3	7 [-]						1,	,14					
	235/4	5 [-]						1,	,22					
Tr -	240/5	0 [-]						1,	,27					
-	245/5	5 [-]						1,	,31					
	250/6							1,	,35				-	
		11	-			-	-	1,	80 ²⁾		-			

¹⁾Sofern andere nationale Regelungen fehlen.

Die Achs- und Randabstände sind gemäss TR 029, Gleichungen (5.2c) und (5.3d) zu berechnen

Achsabstand
$$s_{cr,Np} = 20 \cdot d\left(\frac{\tau_{Rk,ucr}}{7.5}\right)^{0.5} \le 3 \cdot h_{ef}$$
 [mm]

Randabstand
$$c_{cr,Np} = \frac{s_{cr,Np}}{2}$$
 [mm]

fischer Reaktionsanker R	Anhang 6
Charakteristische Zugtragfähigkeit von Ankerstangen Standard- Reinigungsverfahren Achs- und Randabstände	der europäischen technischen Zulassung ETA-08/0010

²⁾ Der Teilsicherheitsbeiwert $\gamma_2 = 1.2$ ist enthalten.

³⁾ Nur Nutzungskategorie I.

Tabelle 7:	Charakteristische Werte für die Zugtragfähigkeit von Ankerstangen
	Bemessungsverfahren nach TR 029. (Premium- Reinigungsverfahren)

Stahlversagen				M8	M10	M12	M12	M16	M16	M20	M20	M24	M24	M27	M30	
Dübelgröße							E	10110	Ε		E		E			
Charakteris-	Festig-	5.8	[kN]		30		4	8:		127		183		239		
tische N _{Rk,s}	keits-				46	67		126			96	28		367	_	
Tragfähigkeit nk.s	klasse		[kN]		58	84		15		· · · · · · · · · · · · · · · · · · ·	1 5	35		459		
		1/C	[kN] [-]	26	41	5	9	11			72	2	47	322	393	
elisicner-			[-]	1,49 1,50												
heits- Ms klasse 10 9 [-				<u> </u>												
beiwert		1 / C	[-]	1,87/1,50												
Herausziehen und							•									
Rechnerischer Dur	chmesse	rd [mm]	8	10	1	2	10	6	2	0	2	4	27	30	
Effektive Verankerungstiefe h _{ef} [mm]		mm]	80	90	110	150	125	190	170	240	210	290	250	280		
Temperaturbereic	h -40°C	/+80	°C; N	utzun	gskat	egorie	e i	11								
Charakt. Verbundspannung im ungerissenen τ _{Rk,ucr} [N/mm²] Beton C20/25			mm²]	1	1,0	10	0,0	9,	5	9	,0		8,5		8,0	
Teilsicherheitsbeiwert $?_{Mc} = ?_{Mp}^{1}$ [-					1,8 ²⁾ 1,5 ³⁾											
Temperaturbereio				utzur	ngska	tegori	e II								•	
Charakt. Verbundspannung im ungerissenen τ _{Rk.ucr} [N/mm²] Beton C20/25			nm²]	9	9,0	10,0			9,5		9,0			8,5		
Teilsicherheitsbeiw	/ert γ	= Υ. ₄₋	¹⁾ [-]						2 1	I O ⁴⁾					1	
Temperaturbereic	h -40°C	/+12	0°C: I		ınask	atego	rie I									
Charakt. Verbunds im ungerissenen Beton C20/25			mm²]		T	8,0 7,5 7,0 6,1			.5							
Teilsicherheitsbeiw	ert γ _{Mc}	= γ _{Mn}	1) [-]	1	,8 ²⁾			.,		1,5 ³⁾						
Temperaturbereio					ungsk	atego	rie II		_							
Charakt. Verbunds im ungerissenen Beton C20/25	pannung τ _{Rk,ucr}		mm²]	8	3,0		9,0		8	3,5		8,0	·	7,5		
Teilsicherheitsbeiw	ert γ _{Mc}	= γ	1) [-]			1			2 1	104)						
10113101101110110300141	C	25/3	0 [-]			-				06						
Erhöhungs-		30/3								14						
faktoren für		35/4								22					_	
ungerissenen		40/5		_						27						
Beton		50/5								31						
	C	50/6	0 [-]	1,35												

Die Achs- und Randabstände sind gemäss TR 029, Gleichungen (5.2c) und (5.3d) zu berechnen

Achsabstand
$$s_{cr,Np} = 20 \cdot d\left(\frac{\tau_{Rk,ucr}}{7.5}\right)^{0.5} \le 3 \cdot h_{ef}$$
 [mm]

Randabstand
$$c_{cr,Np} = \frac{s_{cr,Np}}{2}$$
 [mm]

fischer Reaktionsanker R	Anhang 7
Charakteristische Zugtragfähigkeit von Ankerstangen Premium- Reinigungsverfahren Achs- und Randabstände	der europäischen technischen Zulassung ETA-08/0010

Tabelle 8: Charakteristische Werte für das Spalten (Ankerstangen) Bemessungsverfahren nach TR 029

Dübe	lgröße	M8	M10	M12	M12E	M16	M16E	M20	M20E	M24	M24E	M27	M30
h _{ef}	[mm]	80	90	110	150	125	190	170	240	210	290	250	280
h _{min} 1)3	³⁾ [mm]	110	120	150	200	160	250	220	300	280	380	330	370
C _{cr,sp}	[mm]	175	210	240	280	290	360	370	460	430	520	480	540
S _{cr,sp}	[mm]	350	420	480	560	580	720	740	920	860	1040	960	1080
h ²⁾	[mm]	160	180	220	300	250	380	340	480	420	580	500	560
C _{cr,sp}	[mm]	140	160	190	23	230		290		350		380	430
S _{cr,sp}	[mm]	280	320	380	46	460		580		700		760	860

¹⁾ $h_{min} = h_{ef} + \triangle h \ge 100 mm; \triangle h \ge max \{2d_0; 30 mm\}$

fischer Reaktionsanker R	Anhang 8
	der europäischen
Charakterische Werte für das Spalten	technischen Zulassung
(Ankerstangen)	ETA-08/0010

²⁾ h ≥ 2h_{ef}

 $^{^{3)}}$ Bei Bauteildicken $h_{min} \ge h = 2h_{ef}$ kann der charakteristische Randabstand linear interpoliert werden.

Charakteristische Werte für die Querzugtragfähigkeit von Ankerstangen Tabelle 9: Bemessungsverfahren nach TR 029

Dübelgröße					M8	M10	M12	M12 E	M16	M16 E	M20	M20 E	M24	M24 E	M27	M30
Effektive Vera	nkerur	gstiefe	h _{ef}	[mm]	80	90	110	150	125	190	170		210		250	280
Stahlversage	n ohne	e Hebel	arm						1.							
Charakte-		Güte-	5.8 [kN]					19,3		35,9		56,0		0,7	105,1	128,3
rististische	stistische _V					20,4		29,7		55,2		86,2		24,1	161,7	197,3
Querzug-	Hk,s	klasse	10.9		14,3 25,5 37,1 12,8 20,3 29,5		68,9			7,7		55,1	202,1			
tragfähigkeit		44/C 5.8	[-]	12,8	20,3	28	9,5	54	1,8		5,7	12	23,4	160,8	196,2	
Teilsicher-		Güte-	0.0	F 1	1,25 1,25											
heits-	heits- γ_{Ms}^{-1}					1,50										
beiwert	' MS	klasse	A4	[-]		1,56										
		_	С	[-]		1,25										
Stahlversage	Stahlversagen mit Hebelarm															
Charakte- ristisches Biegemomen		Güte-				38,9		3,1		2,6		7,1		32,5	866,6	
	$M_{Rk,s}^0$	klasse	8.8	[Nm]	30,0	59,8	10	4,7		5,5		8,6			1333,2	
			10.9			74,8		0,9	+	1,9		8,3	 		1666,6	
						52,3	9	1,6	23	2,4	<u> </u>	3,8	78	34,1	1166,6	1572,7
Teilsicher-		Güte-	5.8 8.8	[-]	1,25 1,25											
heits-	$\gamma_{Ms}^{1)}$	klasse	10.9	[-]		1,25										
beiwert	Ms		A4	[-]							56					
		_	C	[-]							25					
Betonausbru	ıch auf	der las	tabg	ewan	dten	Seite		-								
Faktor in Glei des Technica TR 029, Kapi	l Repor	t		k [-]						2	,0					
Teilsicherheit	sbeiwe	rt γ _{Mcp}	1)	[-]						1,	5 ²⁾					
Betonkanten	bruch		•		L											
Wirksame Dübellänge I, [mm]			[mm]	80	90	110	150	125	190	170	240	210	290	250	280	
Wirksamer d _{nom} [mm]			[mm]	8	8 10 12 16 20 24					24	27	30				
Teilsicherheitsbeiwert $\gamma_{\text{Mcp}} = \gamma_{\text{Mc}}^{-1}$ [-] 1,5 ²																
1\C - f		D_														

fischer Reaktionsanker R	Anhang 9
Charakteristische Querzugtragfähigkeit	der europäischen technischen Zulassung
von Ankerstangen	ETA-08/0010

 $^{^{1)}}$ Sofern andere nationale Regelungen fehlen. $^{2)}$ Der Teilsicherheitsbeiwert $\gamma_2=$ 1,0 ist enthalten

Tabelle 10: Charakteristische Werte für die Zugtragfähigkeit und das Spalten (Innengewindeanker) nach dem Bemessungsverfahren TR 029 (nur Premiumreinigung)

Dübelgröße				M8	M10	M12	M16	M20					
Effektive Verankerungstiefe		h _{ef}	[mm]	90	90	125	160	200					
Stahlversagen													
		Güte- 5.8	[kN]	19	30	44	82	127					
Charakteristische	$N_{_{\mathrm{Hk,s}}}$	klasse 8.8	[kN]	29	46	68	109	182					
Zugtragfähigkeit	" "Rk,s	A4	[kN]	26	41	59	110	171					
		C	[kN]	26	41	59	110	171					
		Güte- 5.8	[-]			1,49							
Teilsicherheits-	γ _{Ms} 1)	klasse 8.8	[-]			1,50							
beiwert	Ms	A4 [-] 1,87											
		C	[-]			1,50							
Herausziehen und Betona	usbruch												
Temperaturbereich -40°C	;/+80°C	Nutzungsk	ategor	ie I									
Charakteristische Zugtragfä		N _{Rk,p}	[kN]	30	35	50	75	115					
Teilsicherheitsbeiwert		$\gamma_{Mp} = \gamma_{Mc}^{1}$	[-]			1,5 ²⁾	L						
Randabstand		C _{cr,N}	[mm]	145	195	210	250	305					
Achsabstand		S _{cr,Np}	[mm]	290	390	420	500	610					
Temperaturbereich -40°C	:/+80°C	Nutzungsk			l,								
Charakteristische Zugtragfa		N _{Rk,p}	[kN]	30	40	50	75	115					
Teilsicherheitsbeiwert	ingkon	$\gamma_{Mp} = \gamma_{Mc}^{RK,p}$	[-]			2,1 ³⁾	,,,	110					
Randabstand		C _{cr,N}	[mm]	145	195	210	250	305					
Achsabstand		S _{cr.Np}	[mm]	290	390	420	500	610					
Temperaturbereich -40°C	:/+120°C	Nutzungsk			000	720	000	010					
Charakteristische Zugtragf		N _{Rk,p}	[kN]	20	30	40	60	95					
Teilsicherheitsbeiwert	ingkon	$\gamma_{Mp} = \gamma_{Mc}^{Hk,p}$	[-]		- 50	1,5 ²⁾		_ 55					
Randabstand		C _{cr,N}	[mm]	130	165	180	220	265					
Achsabstand		S _{cr,Np}	[mm]	260	330	360	440	530					
Temperaturbereich -40°C	`/+120°C	Nutzungsk			000	000	440	000					
Charakteristische Zugtragf			[kN]		35	50	60	115					
Teilsicherheitsbeiwert	ariigkeit	$N_{Rk,p}$	[-]		30	2,1 ³⁾	00	113					
Randabstand		$\gamma_{Mp} = \gamma_{Mc}^{1}$		145	185	200	235	295					
Achsabstand		C _{cr,N}	[mm]			 							
		S _{cr.Np}	[mm]	290	370	400	470	590					
Betonausbruch		h	f	120	100	170	220	27/					
NAC 1 - La Day Astrata		h _{min}	[mm]	120	120	170	220	270					
Minimale Bauteildicke		S _{cr,sp}	[mm]	360	380	440	480	660					
		C _{cr,sp}	[mm]	180	190	220	240	330					
		h _{min}	[mm]		Т	≥ 2h _{ef}	Ţ						
Minimaler Achsabstand		S _{cr,sp}	[mm]	280	300	360	380	500					
		C _{cr,sp}	[mm]	140	150	180	190	250					
		C25/30	[-]			1,06							
		C30/37	[-]			1,14							
Erhöhungsfaktoren	Ψ_{c}	C35/45	[-]			1,22							
z.,,ondrigoraktoron	* c	C40/50	[-]			1,27							
		C45/55	[-]			1,31							
		C50/60	[-]			1,35							

²⁾ Der Teilsicherheitsbeiwert γ_2 = 1,0 ist enthalten.
³⁾ Der Teilsicherheitsbeiwert γ_2 = 1,4 ist enthalten. 1) Falls andere nationale Teilsicherheitsbeiwerte fehlen

fischer Reaktionsanker R	Anhang 10
	der europäischen
Charakteristische Zugtragfähigkeit	technischen Zulassung
für Innengewindeanker	ETA-08/0010

Tabelle 11: Charakteristische Werte für die Querzugtragfähigkeit von Innengewindeankern. Bemessungsverfahren nach TR 029.

Dübelgröße			M8	M10	M12	M16	M20				
Effektive Einbindetie	fe h	ef [mm]	90	90	125	160	200				
Stahlversagen ohne	Hebelarm	, RG MI (Fe	stigkeitskla	asse des Inn	engewindea	ankers 5.8)					
Charakteristische Querzug-	Festigke klasse d	eits- 5.8[kN]	9,3	14,8	21,5	39,9	62,4				
Querzug- tragfähigkeit	Schraub	e 8.8 [kN]	14,3	22,7	33,0	61,4	96,0				
Teilsicher-	Festigke	eits- 5,8 [-]	1,25								
neitsbeiwert	klasse d Schraub	e 8.8 [-]			1,25						
Stahlversagen ohne	Hebelarm	(A4/ C)									
Charakteristische Querzug-	·	A4 [kN]	12,8	20,3	29,5	54,8	85,7				
tragfähigkeit	V _{Rk,s} —	C [kN]	12,8	20,3	29,5	54,8	85,7				
Teilsicher-	γ _{Ms} ¹⁾ —	A4 [-]			1,56						
heitsbeiwert	Ms	C [-]	1,25								
Stahlversagen mit l	debelarm (Festigkeitsk	lasse des l	nnengewind	leankers 5.8	3)					
Charak- teristisches M _{ss}	Festigkeit	s-5.8 [Nm]	19,5	38,9	68,1	172,6	337,1				
Biegemoment	klasse de Schraube		30,0	59,8	104,7	265,5	518,6				
Teilsicher-	Festigkeit klasse de	^{(S-} 5.8 [-]	1,25								
heitsbeiwert 'Ms	Schraube		1,25								
Stahlversagen mit I	Hebelarm (A4/C)									
Charak-	Б.//	A4 [Nm]	26,2	52,3	91,6	232,4	453,8				
teristisches Biegemoment	M _{Rk,s} —	C [Nm]	26,2	52,3	91,6	232,4	453,8				
Teilsicher-	n, 1)	A4 [-]			1,56						
heitsbeiwert	γ _{Ms} ¹⁾ —	C [-]	1,25								
Betonausbruch auf	der lastabo	gewan dten S	Seite								
Faktor in Gleichung (nach TR 029, Kapite	. ,	k [-]			2,0						
Teilsicherheitsbeiwe		$=\gamma_{Mc}^{1)}$ [-]			1,5 ²						
Betonkantenbruch	MCF	1110									
Wirksame Dübelläng	ge	l, [mm]	90	90	125	160	200				
Wirksamer Dübeldu	rchmesser	d [mm]	12,5	16,5	18,5	22,5	28,5				
Teilsicherheitsbeiwe	ort 1	/ _{Mc} ¹⁾ [-]			1,5 ²⁾						

¹⁾ Sofern andere nationale Regelungen fehlen.

fischer Reaktionsanker R	Anhang 11
Charakteristische Querzugtragfähigkeit	der europäischen technischen Zulassung
von Innengewindeankern	ETA-08/0010

²⁾ Der Teilsicherheitsbeiwert γ_2 = 1,0 ist enthalten.

Tabelle 12: Verschiebung der fischer- Ankerstange unter Zuglast

Dübelgröße			M8	M10	M12	M12 E	M16	M16 E	M20	M20 E	M24	M24 E	M27	M30
Zuglast im ungerissenen Beton	N [[kN] 1	10,5	14,8	19,7	26,9	29,9	45,5	48,3	68,2	67,9	93,7	90,9	106,8
Verschiebung	δ _{NO} [n	nm]	0,20							0,50				
Verschiebung	δ _{N∞} [n	nm]	0,50					0,75						1,25

Tabelle 13: Verschiebung der fischer- Ankerstangen unter Querlast

Dübelgröße		M8	M10	M12	M12 E	M16	M16 E	M20	M20 E	M24	M24 E	M27	M30
Querlast im ungerissenen Beton Festigkeitsklasse 5.8	V [kN]	4,2	7,6	1	1	20,5 32		2	46,1		60,1	73,3	
Verschiebung	δ_{v0} [mm]	1	,9			2	,0			2	,4	2,5	2,6
Verschiebung	$\delta_{v_{\infty}}$ [mm]	2	,9			3	,0			3	,6	3,8	3,9
Querlast im ungerissenen Beton Festigkeitsklasse 8.8	V [kN]	6,5	11,7	1	7	31,5 49,3),3	70	0,9	92,4	112,7	
Verschiebung	δ_{v0} [mm]	2	,5		2,6						,2	3,3	3,4
Verschiebung	$\delta_{v\infty}$ [mm]	3	,8		3,9					4	,8	5,0	5,1
Querlast im ungerissenen Beton Festigkeitsklasse 10.9	V [kN]	6,8	12,1	17	7,7	32	32,8 51,3		,3	73	3,9	96,2	117,5
Verschiebung	δ_{v0} [mm]	1	,9			2	,0			2	,4	2,5	2,6
Verschiebung	$\delta_{v\infty}$ [mm]	2	,9			3	,0			3	,6	3,8	3,9
Querlast im ungerissenen Beton A4	V [kN]	5,9	9,3	13	3,5	25	5,1	39),2	56	6,5	73,6	89,8
Verschiebung	δ_{vo} [mm]	2	.,3			2	,4			2	,9	3,0	3,1
Verschiebung	$\delta_{v\infty}$ [mm]	3	,4			3	,6			4	,3	4,5	4,7
Querlast im ungerissenen Beton C	V [kN]	7,3	11,6	16	6,9	31,3		4	9	70	0,5	91,9	112,1
Verschiebung	δ_{v0} [mm]	2	,8			3	,0			3	,6	3,7	3,9
Verschiebung	$\delta_{v\infty}$ [mm]	4	,3		4,5					5	,4	5,6	5,8

	Anhang 12
	der europäischen
Verschiebungen fischer- Ankerstangen	technischen Zulassung
	ETA-08/0010

Tabelle 14: Verschiebung der Innengewindeanker unter Zuglast

Dübelgröße		M8	M10	M12	M16	M20
Zuglast im ungerissenen Beton	N [kN]	14,0	18,5	28,3	36,4	58,0
Verschiebung	δ_{N0} [mm]	0,2	0,30			
Verschiebung	δ _{N∞} [mm]	0,5	0,75			

Tabelle 15: Verschiebung der Innengewindeanker unter Querlast

Dübelgröße		M8	M10	M12	M16	M20	
Querlast im ungerissenen Beton Festigkeitsklasse 5.8	V [kN]	5,3	8,5	12,3	22,8	35,7	
Verschiebung	δ_{vo} [mm]	2,4		2,2			
Verschiebung	δ _{ν∞} [mm]	3,6		3,3			
Querlast im ungerissenen Beton Festigkeitsklasse 5.8	V [kN]	8,2	13	18,9	35,1	51	
Verschiebung	δ_{v0} [mm]	3,1	3,7	2,8			
Verschiebung	δ _{v∞} [mm]	4,7		4,3			
Querlast im ungerissenen Beton A4	V [kN]	5,9	9,3	13,5	25,1	39,2	
Verschiebung	δ_{v0} [mm]	2,3		2,4			
Verschiebung	$\delta_{v_{\infty}}$ [mm]	3,4		3,6			
Querlast im ungerissenen Beton C	V [kN]	7,3	11,6	16,9	31,3	49	
Verschiebung	δ _{vo} [mm]	2,8		3,0			
Verschiebung	δ _{v∞} [mm]	4,3		4,5			

fischer Reaktionsanker R	Anhang 13
Verschiebungen Innengewindeanker	der europäischen technischen Zulassung ETA-08/0010

Service-Center

Waldachtal
Weinhalde 14–18
72178 Waldachtal
Tel. 07443 12-0
Fax 07443 12-4500
E-Mail: ordermanagement
@fischer.de

Brehna Rudolf-Diesel-Straße 7 06796 Brehna Tel. 034954 640-1400 Fax 034954 640-1414 E-Mait: sc-brehna@fischer.de

Anwendungstechnik

fischer Deutschland Vertriebs GmbH Hotline 0180 5202900 · Fax 07443 12-4568 E-Mail: Anwendungstechnik@fischer.de · www.fischer.de

Technische Berater und Technische Verkäufer im Außendienst:

01 Arne Saggau Staatl. gepr. Bautechniker Mobil 0170 2271844 Fax 07443 128684 E-Mail Arne.Saggau @fischer.de

02 Frank-Jörn Maier
Dipl.-Ingenieur
Mobil 0170 3306403
Fax 07443 128667
E-Mail Frank-Joern.Maier
@fischer.de

03 Uwe Herding
Staatl. gepr. Maschinenbautechniker
Mobil 0170 2271731
Fax 07443 128647
E-Mail Uwe.Herding
@fischer.de

04 Walter Schmidt
Staatl. gepr. Maschinenbautechniker
Mobil 0170 2271764
Fax 07443 128214
E-Mail Walter.Schmidt
@fischer.de

22 Hans-Joachim Szumalla
Technischer Verkäufer 2
Mobil 0170 3306445
Fax 07443 128690
E-Mail Hans-Joachim.Szumalla
@fischer.de

Olaf Schinkel
Dipl.-Ingenieur
Technischer Berater
Mobil 0170 2271763
Fax 07443 128687
E-Mail Olaf.Schinkel
@fischer.de

24 Peter Schöpe Technischer Verkäufer Mobil 0170 2271723 Fax 07443 128636 E-Mail Peter.Schoepe @fischer.de

Olaf Schinkel
Dipl.-Ingenieur
Technischer Berater
Mobil 0170 2271763
Fax 07443 128687
E-Mail Olaf.Schinkel
@fischer.de

26 Michael Peyler
Technischer Verkäufer
Mobil 0170 3306431
Fax 07443 128675
E-Mail Michael Peyler
@fischer.de

Olaf Schinkel
Dipl.-Ingenieur
Technischer Berater
Mobil 0170 2271763
Fax 07443 128687
E-Mail Olaf.Schinkel
@fischer.de

27 Herbert Reimers

Dipl.-Ingenieur (FH)
Technischer Verkäufer
Mobil 0170 2271758
Fax 07443 128680
E-Mail Herbert.Reimers
@fischer.de

Kerstin Großmann Dipl.-Ingenieur (FH) Technische Beraterin Mobil 0170 3306412 Fax 07443 128640 E-Mail Kerstin.Grossmann @fischer.de

8 Ralf Quellmalz
Technischer Verkäufer
Mobil 0170 3306432
Fax 07443 128677
E-Mail Ralf.Quellmalz
@fischer.de

Kerstin Großmann Dipl.-Ingenieur (FH) Technische Beraterin Mobil 0170 3306412 Fax 07443 128640 E-Mail Kerstin.Grossmann Øfischer de

Andre Höfer Technischer Verkäufer Mobil 0170 2271734 Fax 07443128650 E-Mail Andre Hoefer @fischer.de

Kerstin Großmann Dipl.-Ingenieur (FH) Technische Beraterin Mobil 0170 3306412 Fax 07443 128640 E-Mail Kerstin.Grossmann @fischer.de

30 Steffen Unterdörfer Dipl.-Ingenieur Technischer Verkäufer Mobil 0170 2271771 Fax 07443 128691 E-Mail Steffen.Unterdoerfer @fischer.de

Kerstin Großmann
Dipl.-Ingenieur (FH)
Technische Berarein
Mobil 0170 3306412
Fax 07443 128640
E-Mail Kerstin.Grossmann
@fischer.de

Vertretung Gebiet 42

42 Roberto Weyda Dipl.-Ingenieur (FH) Mobil 0170 2271900 Fax 07443 128188 E-Mail Roberto.Weyda @fischer de 43 Leonhard Gaumann Staatl. gepr. Techniker Mobil 0170 3306410 Fax 07443 128638 E-Mail Leonhard.Gaumann @fischer.de

44 Gerhard Reimers
Staatl. gepr. Bautechniker
Mobil 0170 2271757
Fax 07443 128186
E-Mail Gerhard.Reimers
@fischer.de

45 Reiner Kleer Staatl. gepr. Maschinenbautechniker Mobil 0170 2271740 Fax 07443 128659

61 Herbert Wiechmann Staatl. gepr. Bautechniker Mobil 0170 2271772 Fax 07443 128694 E-Mail Herbert.Wiechmann @fischer.de

E-Mail Reiner.Kleer@fischer.de

62 Peter Arnold Staatl. gepr. Maschinenbautechniker Mobil 0170 2271703

bautechniker
Mobil 0170 2271703
Fax 07443 128624
E-Mail Peter.Arnold
@fischer.de

63 Thomas Held Mobil 0170 3306416 Fax 07443 128646 E-Mail Thomas.Held @fischer.de 65 Michael Stuis
Dipl.-Ingenieur (FH)
Mobil 0170 2271728
Fax 07443 128187
E-Mail Michael.Stuis

66 Christian Felch
Dipl.-Ingenieur (FH)
Mobil 0170 3306423
Fax 07443 128252
E-Mail Christian.Felch
@fischer.de

@fischer.de

MFPA Leipzig GmbH

Durch die DAP GmbH nach DIN EN ISO/IEC 17025 akkreditiertes Prüffaboratorium. Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

Geschäftsbereich III – Baulicher Brandschutz

Geschäftsbereichsleiter: Dipl.-Phys. Ingolf Kotthoff

Arbeitsgruppe 3.2 -Brandverhalten von Bauteilen

Prüfbericht

PB III/08-312

vom 27.10.2008

Ausfertigung

Gegenstand:

fischer-Reaktionsanker R mit Gewindestange (galvanisch verzinkt)

Prüfung auf Brandverhalten in Anlehnung an DIN EN 1363-1: 1999-10 zur Ermittlung der Feuerwiderstandsdauer von in ungerissene Stahlbetondecken-

abschnitte gesetzte und auf zentrischen Zug beanspruchte Dübel

Auftraggeber:

Fischerwerke GmbH & Co. KG

Otto-Hahn-Str. 15

79211 Denzlingen

Auftragsdatum:

15.08.2008

Bearbeiterin:

Dipl.-ing. Claudia Sint

Die Gültigkeit dieses Prüfberichts endet am 26.10.2013.

Dieser Prüfbericht besteht aus 11 Seiten einschließlich 4 Anlagen.

Den Original-Prüfbericht PB III / 08-312

DITTE DEI BEGART antordern unter
Hotline: 0180 5 202900, Fax 07443 12-4568 E-Mail: Anwendungstechnik@fischer.de

Diese Stellungnahme darf nur ungekürzt vervielfältigt werden. Eine Veröffentlichung – auch auszugsweise – bedarf der vorherigen schriftlichen Zustimmung der MFPA Leipzig GmbH. Als rechtsverbindliche Form gilt die Schriftform mit Originalstempel und Originalunterschrift.

Gesellschaft für Materialforschung und Prüfungsanstalt

für das Bauwesen Leipzig mbH

Geschäftsführer: Jun.-Prof. Dr.-Ing. Frank Dehn

Sitz:

Hans Weigel Straße 2b - D - 04319 Leipzig

Telefon:

Fax: E-Mail: +49 (0) 341/65 82-121 +49 (0) 341/65 82-197 sint@mfpa-leipzig.de

Handelsregister:

Amtsgericht Leipzig HRB 177 19

Ust.-Nr.: Bankverbindung: DE 813200649 Sparkasse Leipzig Kto.-Nr 1100 560 781

BLZ 860 555 92