

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-17/0197 vom 3. April 2017

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von Deutsches Institut für Bautechnik

Upat Verbundanker UKA3 Plus

Verbunddübel zur Verankerung im Beton

Upat Vertriebs GmbH Bebelstraße 11 79108 Freiburg im Breisgau DEUTSCHLAND

Upat

19 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

Leitlinie für die europäische technische Zulassung für "Metalldübel zur Verankerung im Beton" ETAG 001 Teil 5: "Verbunddübel", April 2013,

verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, ausgestellt.

Europäische Technische Bewertung ETA-17/0197

Seite 2 von 19 | 3. April 2017

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-17/0197

Seite 3 von 19 | 3. April 2017

Besonderer Teil

1 Technische Beschreibung des Produkts

Das Upat UKA3 Plus ist ein Verbunddübel zur Verankerung im Beton, der aus einer Mörtelpatrone UKA3 Plus und einem Stahlteil nach Anhang A1 besteht.

Die Mörtelpatrone UKA3 Plus wird in ein Bohrloch im Beton gesetzt. Das Stahlteil wird in die Mörtelpatrone mit einer Maschine durch Schlagen und Drehen getrieben. Die Lastübertragung erfolgt durch Verbund zwischen dem Stahlteil, dem chemischen Mörtel und Beton.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristische Werte unter statischen und quasistatischen Einwirkungen, Verschiebungen	Siehe Anhang C 1 bis C 6

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Der Dübel erfüllt die Anforderungen der Klasse A1
Feuerwiderstand	Keine Leistung bestimmt

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Bezüglich gefährlicher Stoffe können die Produkte im Geltungsbereich dieser Europäischen Technischen Bewertung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Verordnung (EU) Nr. 305/2011 zu erfüllen, müssen gegebenenfalls diese Anforderungen ebenfalls eingehalten werden.

3.4 Sicherheit bei der Nutzung (BWR 4)

Die wesentlichen Merkmale bezüglich Sicherheit bei der Nutzung sind unter der Grundanforderung Mechanische Festigkeit und Standsicherheit erfasst.

Europäische Technische Bewertung ETA-17/0197

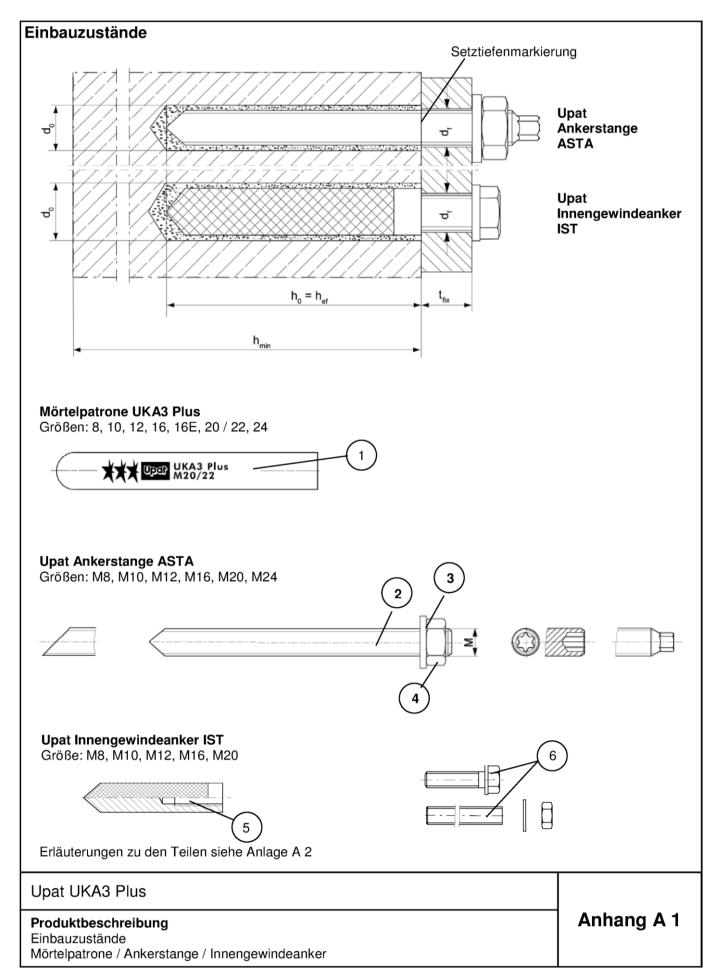
Seite 4 von 19 | 3. April 2017

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß der Leitlinie für die europäische technische Zulassung ETAG 001, April 2013 verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument


Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 3. April 2017 vom Deutschen Institut für Bautechnik

Andreas Kummerow i.V. Abteilungsleiter

Beglaubigt:

Teil	Bezeichnung	Material							
1	Mörtelpatrone UKA3 Plus		Mörtel, Härter, Füllstoffe						
	Stahlart	nlart Stahl, verzinkt Nichtrostender Stahl							
2	Ankerstange	Festigkeitsklasse 5.8 oder 8.8; EN ISO 898-1:2013 galv. verzinkt ≥ 5 μm, EN ISO 4042:1999 A2K oder feuerverzinkt ≥ 40 μm EN ISO 10684:2004 f _{uk} ≤ 1000 N/mm²	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$	Festigkeitsklasse 50 oder 80 EN ISO 3506-1:2009 oder Festigkeitsklasse 70 mit f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le$ 1000 N/mm ²					
			Bruchdehnung A ₅ > 8 %						
3	Unterlegscheibe ISO 7089:2000	galv. verzinkt ≥ 5 μm, EN ISO 4042:1999 A2K oder feuerverzinkt ≥ 40 μm EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014					
4	Sechskantmutter	Festigkeitsklasse 5 oder 8; EN ISO 898-2:2012 galv. verzinkt ≥ 5 µm, ISO 4042:1999 A2K oder feuerverzinkt≥ 40 µm EN ISO 10684:2004	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014					
5	Upat Innengewindeanker IST	Festigkeitsklasse 5.8 ISO 898-1:2013 galv. verzinkt≥ 5 µm, ISO 4042:1999 A2K	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014					
6	Handelsübliche Schraube oder Anker- / Gewindestange für Upat Innengewinde- anker IST	Festigkeitsklasse 5.8 oder 8.8; EN ISO 898-1:2013 galv. verzinkt \geq 5 μ m, ISO 4042:1999 A2K $A_5 > 8$ % Bruchdehnung	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088-1:2014 A ₅ > 8 % Bruchdehnung	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014 A ₅ > 8 % Bruchdehnung					

Upat UKA3 Plus	
Produktbeschreibung Materialien	Anhang A 2

Spezifizierung des Verwendungszwecks (Teil 1)

Tabelle B1: Übersicht Nutzungs- und Leistungskategorien

Beanspruchung der Ver	rankerung	UKA3 Plus mit							
			erstange TA	Upat Innengewindeanker IST					
Hammerbohren mit Standardbohrer	\$4666000000 	alle G	rößen	alle Größen					
Hammerbohren mit Hohlbohrer (Heller "Duster Expert" oder Hilti "TE-CD, TE-YD")	1	Bohrernenndurchmesser (d ₀) 12 mm bis 28 mm		alle G	rößen				
Statische und quasi- statische Belastung, im	ungerissenen Beton	alle Größen		alle Größen					
	gerissenen Beton	M10, M12, M16, M20, M24	Tabellen:	alle Grobert	Tabellen:				
Nutzungskategorie -	Trockener oder nasser Beton	alle Größen	C1, C3, C4, C6	alle Größen	C2, C3, C5, C7				
Nutzurigskategorie	Wassergefülltes Bohrloch	M12, M16, M20, M24		M8, M10, M16					
Einbautemperatur		-15 °C bis +40 °C							
Gebrauchs-	Temperatur- bereich I	-40 °C bis +40 °C (maximale Langzeittemperatur +24 °C und maximale Kurzzeittemperatur +40 °C)							
temperaturbereiche	Temperatur- bereich II	-40 °C bis +120 °C (maximale Langzeittemperatur +72 °C und maximale Kurzzeittemperatur +120 °C)							

Upat UKA3 Plus	
Verwendungszweck Spezifikationen (Teil 1)	Anhang B 1

Spezifizierung des Verwendungszwecks (Teil 2)

Verankerungsgrund:

 Bewehrter oder unbewehrter Normalbeton der Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206-1:2000

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl) oder hochkorrosionsbeständiger Stahl)
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl oder hochkorrosionsbeständiger Stahl)
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl)

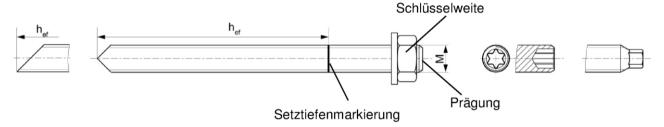
Anmerkung: Aggressive Bedingungen sind z. B. ständiges, abwechselndes Eintauchen in Meerwasser oder der Bereich der Spritzzone von Meerwasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z.B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden)

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs
- Unter Berücksichtigung der zu verankernden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. Auf den Konstruktionszeichnungen ist die Lage der Dübel angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern)
- Die Bemessung der Verankerungen unter statischer oder quasi-statischer Belastung wird durchgeführt in Übereinstimmung mit: EOTA Technical Report TR 029 "Bemessung von Verbunddübeln", Fassung September 2010 oder CEN/TS 1992-4:2009

Einbau:

- · Einbau des Dübels durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters
- Im Fall von Fehlbohrungen sind diese zu vermörteln
- · Effektive Verankerungstiefe markieren und einhalten
- Überkopfmontage erlaubt


Upat UKA3 Plus	
Verwendungszweck Spezifikationen (Teil 2)	Anhang B 2

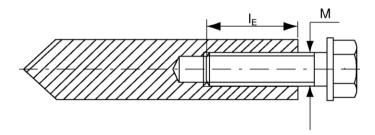
Größe				М8	M10	M12	M16	M20	M24
Schlüsselweite		SW		13	17	19	24	30	36
Bohrer- nenndurchmesser		d_0		10	12	14	18	25	28
Bohrlochtiefe		h ₀				h ₀ =	= h _{ef}		
Effektive Verankerungstiefe		h _{ef}		80	90	110	125	170	210
Minimaler Achs- und Randabstand		S _{min} = C _{min}	[mm]	40	45	55	65	85	105
Durchmesser des Durchganglochs im Anbauteil ¹⁾	Nur Vorsteck- montage	d _f		9	12	14	18	22	26
Mindestdicke des Betonbauteils		h _{min}			h _{ef} + 30 (≥ 100)			h _{ef} + 2d ₀	
Maximales Montage- drehmoment		T _{inst,max}	[Nm]	10	20	40	60	120	150

¹⁾ Für größere Durchgangslöcher im Anbauteil siehe TR 029, 4.2.2.1 oder CEN/TS 1992-4-1:2009, 5.2.3.1

Upat Ankerstange ASTA:

Prägung (an beliebiger Stelle):

Festigkeitsklasse 8.8 oder hochkorrosionsbeständiger Stahl, Festigkeitsklasse 80: • Nichtrostender Stahl A4, Festigkeitsklasse 50 und hochkorrosionsbeständiger Stahl, Festigkeitsklasse 50: • • Oder Farbmarkierung nach DIN 976-1


Upat UKA3 Plus	
Verwendungszweck Montagekennwerte für Upat Ankerstangen ASTA	Anhang B 3

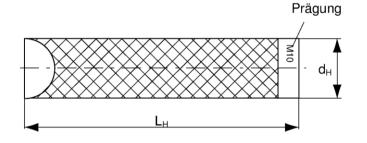


Tabelle B3: Montagekennwerte Upat Innengewindeanker IST									
Größe			М8	M10	M12	M16	M20		
Hülsendurchmesser	d _H		12	16	18	22	28		
Bohrernenn- durchmesser	d_0		14	18	20	24	32		
Bohrlochtiefe	h_0				$h_0 = h_{ef}$				
Effektive Verankerungstiefe ($h_{ef} = L_H$)	h _{ef}		90	90	125	160	200		
Minimaler Achs- und Randabstand	S _{min} = C _{min}	[mm]	55	65	75	95	125		
Durchmesser des Durchgang- lochs im Anbauteil ¹⁾	d _f		9	12	14	18	22		
Mindestdicke des Betonbauteils	h _{min}		120	125	165	205	260		
Maximale Einschraubtiefe	$I_{E,max}$		18	23	26	35	45		
Minimale Einschraubtiefe	$I_{E,min}$		8	10	12	16	20		
Maximales Montagedrehmoment	T _{inst,max}	[Nm]	10	20	40	80	120		

¹⁾ Für größere Durchgangslöcher im Anbauteil siehe TR 029, 4.2.2.1 oder CEN/TS 1992-4-1:2009, 5.2.3.1

Upat Innengewindeanker IST

Prägung: Ankergröße

z.B.: **M10**

Nichtrostender Stahl zusätzlich **A4**

z.B.: M10 A4

Hochkorrosionsbeständiger Stahl

zusätzlich C z.B.: M10 C

Befestigungsschraube oder Ankerstangen / Gewindestangen (einschließlich Mutter und Unterlegscheibe) müssen den zugehörigen Materialien und Festigkeitsklassen gemäß Anhang A 2, Tabelle A1 entsprechen

Upat UKA3 Plus	
Verwendungszweck Montagekennwerte Upat Innengewindeanker IST	Anhang B 4

Tabelle B4: Abmessungen der Mörtelpatronen UKA3 Plus

Mörtelpatrone UKA3 Plus		8	10	12	16	16 E	20 / 22	24	
Patronen Durchmesser	d _P	[mm]	9,0	10,5	12,5	16	6,5	23	3,0
Patronen Länge	L _P	[mm]	85	90	97	95	123	160	190

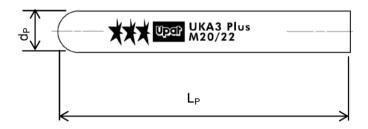


Tabelle B5: Zuordnung der Mörtelpatronen UKA3 Plus zu Upat Ankerstangen ASTA

Größe ASTA		М8	M10	M12	M16	M20	M24
Effektive Verankerungstiefe h _{ef}	[mm]	80	90	110	125	170	210
Zugehörige Mörtel- patrone UKA3 Plus	[-]	8	10	12	16	20 / 22	24

Tabelle B6: Zuordnung der Mörtelpatronen UKA3 Plus zu Upat Innengewindeankern IST

Größe IST	М8	M10	M12	M16	M20	
Effektive Verankerungstiefe h _{ef}	[mm]	90	90	125	160	200
Zugehörige Mörtelpatrone UKA3 Plus	[-]	10	12	16	16E	24

Tabelle B7: Minimale Aushärtezeiten

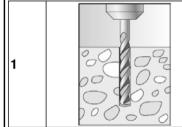
(Die Temperatur im Beton darf während der Aushärtung des Mörtels den angegebenen Mindestwert nicht unterschreiten; minimale Patronentemperatur -15 °C)

Temperatur im Verankerungsgrund [°C]	Minimale Aushärtezeit t _{cure} [Minuten]
-15 bis -10	30 Stunden
-9 bis -5	16 Stunden
-4 bis ±0	10 Stunden
+1 bis +5	45
+6 bis +10	30
+11 bis +20	20
+21 bis +30	5
+31 bis +40	3

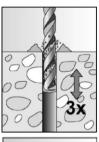
Upat UKA3 Plus

Verwendungszweck

Abmessungen Mörtelpatronen, Zuordnungen Mörtelpatronen zu Ankerstangen und Innengewindeankern, Minimale Aushärtezeiten


Anhang B 5

2


Montageanleitung Teil 1

Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Standardbohrer)

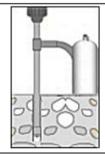
Bohrtiefe $\mathbf{h_0}$ bei Bohrlocherstellung einhalten (z.B. Markierung auf Bohrer). Bohrloch erstellen.

Bohrlochdurchmesser d_0 und Bohrlochtiefe h_0 siehe **Tabellen B2**, **B3**

Nach dem Erreichen der erforderlichen Bohrtiefe den Bohrer bei laufender Maschine aus dem Bohrloch ziehen.

Bohrmaschine mit dem Bohrer mind. **dreimal** bis zum Bohrlochgrund einschieben und wieder aus dem Bohrloch herausziehen (Bohrloch "lüften")

Ein Nachrieseln des Bohrmehls in das Bohrloch ist zu verhindern z.B. durch absaugen während des Bohrvorgangs. Das Bürsten oder Ausblasen des Bohrlochs ist nicht notwendig


Mit Schritt 3 fortfahren

2

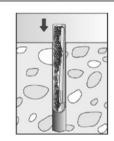
Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Hohlbohrer)

Einen geeigneten Hohlbohrer (siehe **Tabelle B1**) auf Funktion der Staubabsaugung prüfen

Verwendung eines geeigneten Staubabsaugsystems wie z.B. Bosch GAS 35 M AFC oder eines Staubabsaugsystems mit vergleichbaren Leistungsdaten

Bohrloch mit Hohlbohrer erstellen. Das Staubabsaugsystem muss den Bohrstaub konstant während des gesamten Bohrvorgangs absaugen und auf maximale Leistung eingestellt sein. Bohrlochdurchmesser \mathbf{d}_0 und Bohrlochtiefe \mathbf{h}_0 siehe **Tabellen B2, B3**

Mit Schritt 3 fortfahren


Upat UKA3 Plus

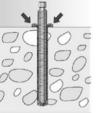
Verwendungszweck Montageanleitung Teil 1 Anhang B 6

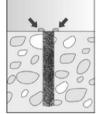
Montageanleitung Teil 2

Montage von Upat Ankerstangen ASTA oder Upat Innengewindeankern IST

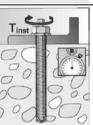
Mörtelpatrone UKA3 Plus von Hand in das Bohrloch stecken.

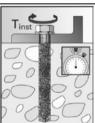
Abhängig vom Verankerungselement, passendes Setzwerkzeug / Adapter verwenden (z.B. MW-SDS)


3



Nur saubere und ölfreie Anker verwenden. Ankerstange ASTA oder Upat Innengewindeanker IST mit dem Bohrhammer mit eingeschaltetem Schlag und passendem Adapter in die Patrone eintreiben. Anhalten, wenn der Anker den Grund des Bohrlochs erreicht und die korrekte Verankerungstiefe erreicht ist.





Nach dem Erreichen der korrekten Setztiefe muss Überschussmörtel aus dem Bohrlochmund austreten.

Aushärtezeit abwarten, t_{cure} siehe **Tabelle B7**

Montage des Anbauteils, T_{inst,max} siehe **Tabelle B2, B3**

Upat UKA3 Plus

Verwendungszweck Montageanleitung Teil 2 Anhang B 7

Größe		ınter Zug- /	Que	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	M8	M10	M12	M16	M20	M24		
	agfähigkeit, Stahl	lversagen				1	2		20			
	Otalal and lake		5.8		19	29	43	79	123	177		
Trag- N _{Rk,s}	Stahl verzinkt		8.8		29	47	68	126	196	282		
ct. T eit N	Nichtrostender	Festigkeits-	50	[kN]	19	29	43	79	123	177		
Charakt. Trag- fähigkeit N _{Rk,s}	Stahl A4 und Hochkorrosions-	klasse	klasse	70		26	41	59	110	172	247	
오 교	beständiger Stahl C		80		30	47	68	126	196	282		
Teilsi	cherheitsbeiwerte	e ¹⁾				1			1			
	Stahl verzinkt		5.8				1,	50				
rheits Y _{Ms,N}			8.8				1,	50				
herh ert _{Yı}	Nichtrostender Stahl A4 und	Festigkeits-	50	[-]	2,86							
Teilsicherheits- beiwert _{Yms, N}	Hochkorrosions-	klasse	70		1,50 ²⁾ / 1,87							
Tel	beständiger Stahl C		80				1,	60				
Quert	ragfähigkeit, Stal	nlversagen										
ohne	Hebelarm					_						
	Stahl verzinkt			5.8		9	15	21	39	61	89	
Trag- V _{Rk,s}			8.8		15	23	34	63	98	141		
	Nichtrostender Stahl A4 und	Festigkeits- klasse -	50	[kN]	9	15	21	39	61	89		
Charakt. Tähigkeit	Hochkorrosions-		70		13	20	30	55	86	124		
Q 120	beständiger Stahl C		80	80	15	23	34	63	98	141		
Duktilit 1992-4	tätsfaktor gemäß C 4-5:2009 Abschnitt	EN/TS 6.3.2.1	k ₂	[-]			1	,0				
mit He	ebelarm	T										
ge-	Stahl verzinkt		5.8		19	37	65	166	324	560		
Bieg M° _p	Nichtrostender		8.8		30	60	105	266	519	896		
kt. E ent l	Stahl A4 und	Festigkeits- klasse	_50 	[Nm]	19	37	65	166	324	560		
Charakt. moment	Hochkorrosions- beständiger		70		26	52	92	232	454	784		
	Stahl C		80		30	60	105	266	519	896		
Γeilsi	cherheitsbeiwerte	e ¹⁾										
Ś.	Stahl verzinkt		5.8					25				
Teilsicherheits- beiwert _{YMs,v}	Nichtrostender	Festigkeits-	8.8 50			1,25						
eilsicher beiwert	Stahl A4 und	klasse		[-]	2,38							
eils. bei	Hochkorrosions- beständiger							/ 1,56				
	Stahl C		80				1,	33				
²⁾ Nui	ls keine abweichend r für Upat ASTA aus	en nationalen hochkorrosion	regel Isbest	ungen ändige	existieren m Stahl C							
Upat	t UKA3 Plus											
	tungsdaten								Anhan	.a C 1		

Größe					M8	M10	M12	M16	M20
Zugtragfähigkeit,	Stah	lversagen							
		Festigkeits-	5.8		19	29	43	79	123
Charakteristische	N.I	klasse	8.8	IL A II	29	47	68	108	179
Tragfähigkeit mit Schraube	$N_{Rk,s}$	Festigkeits-	A4	[kN]	26	41	59	110	172
Comado		Klasse 70	С		26	41	59	110	172
Teilsicherheitsbe	iwerte	e ¹⁾							
		Festigkeits-	5.8				1,50		
peiwert $\gamma_{\text{Ms,N}}$ Fo	klasse	8.8	r 1			1,50			
	Festigkeits-	A4	[-]	1,87					
		Klasse 70	С				1,87		
Quertragfähigkeit	t, Stal	nlversagen							
ohne Hebelarm									
Ola a walista wiati a ala a		Festigkeits-	5.8		9,2	14,5	21,1	39,2	62,0
Charakteristische Tragfähigkeit mit	V	klasse	8.8	[kN]	14,6	23,2	33,7	54,0	90,0
Schraube	▼ Rk,s	Festigkeits-	_A4	ונייין	12,8	20,3	29,5	54,8	86,0
		Klasse 70	С		12,8	20,3	29,5	54,8	86,0
Duktilitätsfaktor gen 1992-4-5:2009 Abso			k ₂	[-]			1,0		
mit Hebelarm									
Olasyalı		Festigkeits-	5.8		20	39	68	173	337
	klasse	8.8		30	60	105	266	519	

30

26

26

60

52

52

105

92

92

1,25

1,25

1,56

1,56

266

232

232

519

454

454

Festigkeits-

Festigkeitsklasse

Festigkeits-

Klasse 70

Klasse 70

teristisches

Biegemoment

Teilsicherheits-

beiwert

Teilsicherheitsbeiwerte¹⁾

 $\gamma_{\text{Ms,V}}$

8.8

A4

С

5.8

8.8

Α4

С

[Nm]

[-]

Upat UKA3 Plus	
Leistungsdaten Charakteristische Stahltragfähigkeiten von Upat Innengewindeanker IST	Anhang C 2

¹⁾ Falls keine abweichenden nationalen Regelungen existieren

Zug- / Quertragfähigkeit

Allgemeine Bemessungsfaktoren für die charakteristischen

Größe Alle Größ							rößen				
Zugtragfähigke	eit										
Faktoren gemä	iß CEN/TS 1992-4-5	:2009	Abschr	nitt 6.2.3.	1						
Ungerissener B		k_{ucr}	[-]			10),1				
Gerissener Beto	on	k_{cr}	[-]			7	,2				
Faktoren für B	etondruckfestigkei	ten >	C20/25								
	C25/30					1,	02				
-	C30/37			1,04							
Erhöhungs-	C35/45	$\Psi_{\mathbf{c}}$	[-]				07				
faktor für τ _{Rk} -	C40/50	- 0	''				08				
-	C45/55						09				
	C50/60					1,	10				
Versagen durc	<u> </u>		<u> </u>			4.0	. 1-				
- Dandahatand	$\frac{h / h_{ef} \ge 2.0}{2.0 > h / h_{ef} \ge 1.3}$	_					h _{ef}				
Randabstand ₋	$\frac{2.0 > h / h_{ef} > 1.3}{h / h < 1.3}$	C _{cr,sp}	[mm]	4,6 h _{ef} - 1,8 h 2,26 h _{ef} 2 c _{cr.sp}							
Achsabstand	h / h _{ef} ≤ 1,3	•	 								
	h kegelförmigen B	S _{cr,sp}	Ichruch	gamäß	CEN/TS 10			i++ 6 2 2 2			
Randabstand	ii kegenoriiigen b			geman	CEN/13 19		h _{ef}	111 0.2.3.2			
Achsabstand		s _{cr,N}	[mm]	2 C _{cr,N}							
Querzugtragfä	hiakeit	OCT,IN				rcr,IN					
Montagesicher											
good		γ2									
Alle Einbaubedi	ngungen	= γ _{inst}	[-]	1,0							
Betonausbruc	n auf der lastabgev	andte	n Seite								
Faktor k gemäß Abschnitt 5.2.3 CEN/TS 1992-4 Abschnitt 6.3.3	.3 bzw. k₃ gemäß	k ₍₃₎	[-]			2	,0				
Betonkantenbr	uch										
Der Wert von he unter Querbelas			[mm]			h _{ef} :	= h _o				
	Durchmesser										
Rechnerische				M8	M10	M12	M16	M20	M24		
Rechnerische Größe		d		8	10	12	16	20	24		
	ge ASTA	u	[mm]			l		1			

Tabelle C4: Charakteristi Ankerstang			_			•		
Größe			М8	M10	M12	M16	M20	M24
Kombiniertes Versagen durc	h Herau	sziehen u	ınd Beton	ausbruch				
Rechnerischer Durchmesser	d	[mm]	8	10	12	16	20	24
Ungerissener Beton								
Charakteristische Verbundtı	agfähigk	ceit im un	gerissene	n Beton C	20/25			
Hammerbohren mit Standard-	oder Hoh	ılbohrer (tr	<u>rockener u</u>	nd nasser l	Beton)			
Tempe- I: 24 °C / 40 °C		[N1/mm2]	12,5	12,5	12,5	12,5	12,5	12,5
ratur- bereich II: 72 °C / 120 °C	τ _{Rk,ucr}	[N/mm²]	10,5	10,5	10,5	10,5	10,5	10,5
Hammerbohren mit Standard-	oder Hoh	ılbohrer (v	vassergefü	Iltes Bohrlo	och)			
Tempe- I: 24 °C / 40 °C		[N]/mm ² 1			12,5	12,5	12,5	12,5
ratur- bereich II: 72 °C / 120 °C	τ _{Rk,ucr}	[N/mm ²]			10,5	10,5	10,5	10,5
Montagesicherheitsfaktoren								
Trockener und nasser Beton	-24 24	[-]			1	,2		
Wassergefülltes Bohrloch	$-\gamma_2 = \gamma_{\text{inst}}$	[-]			1,4			
Gerissener Beton								
Charakteristische Verbundtr								
Hammerbohren mit Standard-	<u>oder Hoh</u>	ılbohrer (tr	rockener u	nd nasser I	<u>Beton)</u>			
Tempe- I: 24 °C / 40 °C ratur-		 [N/mm²]		4,5	4,5	4,5	4,5	4,5
bereich II: 72 °C / 120 °C	τ _{Rk,cr}	[[14/11111]		3,5	3,5	3,5	3,5	3,5
Hammerbohren mit Standard-	oder Hor	ılbohrer (v	vassergefü	Iltes Bohrlo	och)			
Tempe- I: 24 °C / 40 °C		21			4,5	4,5	4,5	4,5
ratur- bereich II: 72 °C / 120 °C	- τ _{Rk,cr}	[N/mm ²]			3,5	3,5	3,5	3,5
Montagesicherheitsfaktoren								
Trockener und nasser Beton		r 1				1,2		
Wassergefülltes Bohrloch	$-\gamma_2 = \gamma_{\text{inst}}$	[-]					,4	

Upat UKA3 Plus	
Leistungsdaten Charakteristische Werte für statische oder quasi-statische Zugbelastung von Upat Ankerstangen ASTA (ungerissener / gerissener Beton)	Anhang C 4

Tabelle C5: Charakteristische Innengewindea		_		•	Beton	
Größe		М8	M10	M12	M16	M20
Kombiniertes Versagen durch He	rausziehen u	und Betonau	sbruch			
Rechnerischer Durchmesser	[mm]	12	16	18	22	28
Ungerissener Beton						
Charakteristische Verbundtragfä						
Hammerbohren mit Standard- oder	Hohlbohrer (t	rockener und	nasser Beto	<u>n)</u>		
Tempe- I: 24 °C / 40 °C	5N 1/22 22 21	11	11	11	11	11
ratur-	[N/mm²]	9,5	9,5	9,5	9,5	9,5
Hammerbohren mit Standard- oder	Hohlbohrer (v	vassergefüllt	es Bohrloch)			
Tempe- I: 24 °C / 40 °C	[N1/mm mm ²]	11	11		11	
ratur- ${}$ bereich II: 72 °C / 120 °C	[N/mm ²]	9,5	9,5		9,5	
Montagesicherheitsfaktoren						
Trockener und nasser Beton	γ _{inst} [-]			1,2		
Wassergefülltes Bohrloch γ ₂ =	/inst L ⁻ J	1	,4		1,4	
Gerissener Beton						
Charakteristische Verbundtragfä						
<u>Hammerbohren mit Standard- oder</u>	Hohlbohrer (t	rockener und	nasser Beto	<u>n)</u>		
Tempe- I: 24 °C / 40 °C	[N1/mmm2]	4,5	4,5	4,5	4,5	4,5
ratur- TR bereich II: 72 °C / 120 °C	_{k,cr} [N/mm ²]	3,5	3,5	3,5	3,5	3,5
<u>Hammerbohren mit Standard- oder</u>	Hohlbohrer (v	vassergefüllt	es Bohrloch)			
Tempe- I: 24 °C / 40 °C	[N1/mmm2]	4,5	4,5		4,5	
ratur- $\overline{\hspace{1cm}}$ bereich $\overline{\hspace{1cm}}$ II: 72° C $/$ 120° C	_{k,cr} [N/mm ²]	3,5	3,5		3,5	
Montagesicherheitsfaktoren						
Trockener und nasser Beton	γ _{inst} [-]			1,2		
Wassergefülltes Bohrloch $\gamma_2 =$	/inst L-J	1	,4		1,4	

Upat UKA3 Plus	
Leistungsdaten	Anhang C 5
Charakteristische Werte für statische oder quasi-statische Zugbelastung von	
Upat Innengewindeankern IST (ungerissener / gerissener Beton)	

Größe	М8	M10	M12	M16	M20	M24
Verschiebungs-Faktor	en für Zuglast	1)				
Ungerissener oder ge	rissener Beton	; Temperaturb	ereich I, II			
$\delta_{\text{N0-Faktor}}$ [mm/(N/mm ²)]	0,07	0,08	0,09	0,10	0,11	0,12
$\delta_{N_{\infty}\text{-Faktor}}$	0,13	0,14	0,15	0,17	0,17	0,18
Verschiebungs-Faktor	en für Querlas	t ²⁾				
Ungerissener oder ge	rissener Beton	; Temperaturb	ereich I, II			
δ _{V0-Faktor} [mm/kN]	0,18	0,15	0,12	0,09	0,07	0,06
$\delta_{V_{\infty}\text{-Faktor}}$ [mm/kN]	0,27	0,22	0,18	0,14	0,11	0,09

¹⁾ Berechnung der effektiven Verschiebung:

 $\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Faktor}} \, \cdot \, \tau_{\text{Ed}}$

 $(\tau_{Ed}$: Verbundspannung aus

einwirkendem Zug)

²⁾ Berechnung der effektiven Verschiebung:

 $\delta_{\text{V0}} = \delta_{\text{V0-Faktor}} \cdot V_{\text{Ed}}$

 $\delta_{V^{\infty}} = \delta_{V^{\infty}\text{-Faktor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

Tabelle C7: Verschiebungen für Upat Innengewindeanker IST

Größe		M8	M10	M12	M16	M20			
Verschiebungs-Faktoren für Zuglast ¹⁾									
Ungerissener oder gerissener Beton; Temperaturbereich I, II									
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm²)]	0,09	0,10	0,10	0,11	0,19			
$\delta_{N\infty\text{-Faktor}}$	[[mm/(14/mm)]	0,13	0,15	0,15	0,17	0,19			
Verschiebungs-Faktoren für Querlast ²⁾									
Ungerissener oder gerissener Beton; Temperaturbereich I, II									
$\delta_{\text{V0-Faktor}}$	[mm/kN]	0,12	0,09	0,08	0,07	0,05			
$\delta_{V\infty ext{-Faktor}}$		0,18	0,14	0,12	0,10	0,08			

¹⁾ Berechnung der effektiven Verschiebung:

 $\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Faktor}} \cdot \tau_{\text{Ed}}$

 $(\tau_{Ed}$: Verbundspannung aus einwirkendem Zug)

²⁾ Berechnung der effektiven Verschiebung:

 $\delta_{\text{V0}} = \delta_{\text{V0-Faktor}} \cdot V_{\text{Ed}}$

 $\delta_{\text{V}^{\infty}} = \delta_{\text{V}^{\infty}\text{-Faktor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

1	1	1.1	1/ /	\sim D	11
ι	Jpat	U	NA	ഗ മ	ius

Leistungsdaten

Verschiebungen Upat Ankerstangen ASTA und Upat Innengewindeanker IST

Anhang C 6