Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Kolonnenstraße 30 B D-10829 Berlin Tel.: +493078730-0 Fax: +493078730-320 E-Mail: dibt@dibt.de www.dibt.de

Mitglied der EOTA Member of EOTA

Europäische Technische Zulassung ETA-12/0258

Handelsbezeichnung Trade name

Zulassungsinhaber Holder of approval

Zulassungsgegenstand und Verwendungszweck Generic type and use of construction product

Geltungsdauer: Validity:

vom from bis

Herstellwerk Manufacturing plant fischer Superbond fischer Superbond

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen **DEUTSCHLAND**

Verbundanker in den Größen M8 bis M30 zur Verankerung im Beton

Bonded Anchor of sizes M8 to M30 for use in concrete

26. Juni 2013

8. August 2017

fischerwerke

Diese Zulassung umfasst This Approval contains

37 Seiten einschließlich 27 Anhänge 37 pages including 27 annexes

Diese Zulassung ersetzt This Approval replaces

ETA-12/0258 mit Geltungsdauer vom 08.08.2012 bis 08.08.2017 ETA-12/0258 with validity from 08.08.2012 to 08.08.2017

Seite 2 von 37 | 26. Juni 2013

I RECHTSGRUNDLAGEN UND ALLGEMEINE BESTIMMUNGEN

- Diese europäische technische Zulassung wird vom Deutschen Institut für Bautechnik erteilt in Übereinstimmung mit:
 - der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechtsund Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte¹, geändert durch die
 Richtlinie 93/68/EWG des Rates² und durch die Verordnung (EG) Nr. 1882/2003 des
 Europäischen Parlaments und des Rates³;
 - dem Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, zuletzt geändert durch Art. 2 des Gesetzes vom 8. November 2011⁵;
 - den Gemeinsamen Verfahrensregeln für die Beantragung, Vorbereitung und Erteilung von europäischen technischen Zulassungen gemäß dem Anhang zur Entscheidung 94/23/EG der Kommission⁶;
 - der Leitlinie für die europäische technische Zulassung für "Metalldübel zur Verankerung im Beton Teil 5: Verbunddübel", ETAG 001-05.
- Das Deutsche Institut für Bautechnik ist berechtigt zu prüfen, ob die Bestimmungen dieser europäischen technischen Zulassung erfüllt werden. Diese Prüfung kann im Herstellwerk erfolgen. Der Inhaber der europäischen technischen Zulassung bleibt jedoch für die Konformität der Produkte mit der europäischen technischen Zulassung und deren Brauchbarkeit für den vorgesehenen Verwendungszweck verantwortlich.
- Diese europäische technische Zulassung darf nicht auf andere als die auf Seite 1 aufgeführten Hersteller oder Vertreter von Herstellern oder auf andere als die auf Seite 1 dieser europäischen technischen Zulassung hinterlegten Herstellwerke übertragen werden.
- Das Deutsche Institut für Bautechnik kann diese europäische technische Zulassung widerrufen, insbesondere nach einer Mitteilung der Kommission aufgrund von Art. 5 Abs. 1 der Richtlinie 89/106/EWG.
- Diese europäische technische Zulassung darf auch bei elektronischer Übermittlung nur ungekürzt wiedergegeben werden. Mit schriftlicher Zustimmung des Deutschen Instituts für Bautechnik kann jedoch eine teilweise Wiedergabe erfolgen. Eine teilweise Wiedergabe ist als solche zu kennzeichnen. Texte und Zeichnungen von Werbebroschüren dürfen weder im Widerspruch zu der europäischen technischen Zulassung stehen noch diese missbräuchlich verwenden.
- Die europäische technische Zulassung wird von der Zulassungsstelle in ihrer Amtssprache erteilt. Diese Fassung entspricht vollständig der in der EOTA verteilten Fassung. Übersetzungen in andere Sprachen sind als solche zu kennzeichnen.
- Amtsblatt der Europäischen Gemeinschaften L 40 vom 11. Februar 1989, S. 12
- Amtsblatt der Europäischen Gemeinschaften L 220 vom 30. August 1993, S. 1
- Amtsblatt der Europäischen Union L 284 vom 31. Oktober 2003, S. 25
- Bundesgesetzblatt Teil I 1998, S. 812
- Bundesgesetzblatt Teil I 2011, S. 2178
- Amtsblatt der Europäischen Gemeinschaften L 17 vom 20. Januar 1994, S. 34

Seite 3 von 37 | 26. Juni 2013

II BESONDERE BESTIMMUNGEN DER EUROPÄISCHEN TECHNISCHEN ZULASSUNG

1 Beschreibung des Produkts und des Verwendungszwecks

1.1 Beschreibung des Bauprodukts

Der fischer Superbond ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionsmörtel fischer FIS SB, FIS SB Low Speed oder FIS SB High Speed oder einer Mörtelpatrone fischer RSB und einem Stahlteil besteht. Das Stahlteil besteht aus

- einer fischer Ankerstange FIS A in den Größen M8 bis M30,
- einer fischer Ankerstange RGM in den Größen M8 bis M30,
- einem fischer Innengewindeanker RG MI in den Größen M8 bis M20,
- einem Bewehrungsstab mit Durchmesser 8 bis 32 mm oder
- einem fischer Bewehrungs-Anker FRA in den Größen Durchmesser 12 bis 24 mm.

Beim Mörtelkartuschensystem wird das Stahlteil in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt.

Die Mörtelpatrone wird in ein Bohrloch gesetzt und das Stahlteil wird durch gleichzeitiges Schlagen und Drehen eingetrieben.

Der Dübel wird durch Ausnutzung des Verbundes zwischen Stahlteil, Mörtel und Beton verankert.

In den Anhängen 1 bis 4 sind Produkt und Anwendungsbereich dargestellt.

1.2 Verwendungszweck

Der Dübel ist für Verwendungen vorgesehen, bei denen Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 der Richtlinie 89/106/EWG zu erfüllen sind und bei denen ein Versagen der Verankerungen zu einer Gefahr für Leben oder Gesundheit von Menschen und/oder erheblichen wirtschaftlichen Folgen führt. Der Brandschutz (wesentliche Anforderung 2) ist durch diese europäische technische Zulassung nicht erfasst. Der Dübel darf nur für Verankerungen unter statischer Belastung in bewehrtem oder unbewehrtem Normalbeton der Festigkeitsklasse von mindestens C20/25 und höchstens C50/60 nach EN 206:2000-12 verwendet werden.

Der Dübel darf im gerissenen oder ungerissenen Beton verankert werden.

Der Dübel mit den Mörtelpatronen darf in trockenen oder nassen Beton oder in ein mit Wasser gefülltes Bohrloch gesetzt werden.

Der Dübel mit der Mörtelkartusche darf in trockenem oder nassem Beton jedoch nicht in mit Wasser gefüllte Bohrlöcher gesetzt werden.

Der Dübel darf mit den in Anhang 4 angegebenen Stahlteilen auch für Verankerungen unter seismischer Einwirkung für die Leistungskategorie C1 gemäß Anhang 25 bis 27 verwendet werden.

Der Dübel darf in den folgenden Temperaturbereichen verwendet werden:

Temperaturbereich I: -40 °C bis +40 °C (max. Kurzzeit-Temperatur +40 °C und max. Langzeit-Temperatur +24 °C)

Temperaturbereich II: -40 °C bis +80 °C (max. Kurzzeit-Temperatur +80 °C und

max. Langzeit-Temperatur +50 °C)

Temperaturbereich III: -40 °C bis +120 °C (max. Kurzzeit-Temperatur +120 °C und max. Langzeit-Temperatur +72 °C)

Seite 4 von 37 | 26. Juni 2013

Temperaturbereich IV: -40 °C bis +150 °C

(max. Kurzzeit-Temperatur +150 °C und max. Langzeit-Temperatur +90 °C)

Stahlteile aus galvanisch verzinktem oder feuerverzinktem Stahl:

Die Stahlteile aus galvanisch verzinktem oder feuerverzinktem Stahl dürfen nur in Bauteilen unter den Bedingungen trockener Innenräume verwendet werden.

Stahlteile aus nichtrostendem Stahl A4:

Die Stahlteile aus nichtrostendem Stahl dürfen in Bauteilen unter den Bedingungen trockener Innenräume sowie auch im Freien (einschließlich Industrieatmosphäre und Meeresnähe) oder in Feuchträumen verwendet werden, wenn keine besonders aggressiven Bedingungen vorliegen. Zu diesen besonders aggressiven Bedingungen gehören, z. B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Stahlteile aus hochkorrosionsbeständigem Stahl C:

Die Stahlteile aus hochkorrosionsbeständigem Stahl dürfen in Bauteilen unter den Bedingungen trockener Innenräume sowie auch im Freien, in Feuchträumen oder in besonders aggressiven Bedingungen verwendet werden. Zu diesen besonders aggressiven Bedingungen gehören, z. B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Stahlteile aus Betonstahl:

Nachträglich eingemörtelte Betonstähle dürfen als Dübel verwendet und nur nach den EOTA Technical Reports TR 029 und TR 045 bemessen werden. Solche Anwendungen sind z.B. in Betonierfugen oder als Schubdorne oder Wandanschlussbewehrung, die überwiegend Quer und Druckkräfte auf das Fundament übertragen, wobei die Bewehrungsstäbe als Dübel wirken, um Querkräfte aufzunehmen. Anschlüsse mit nachträglich eingemörtelten Bewehrungsanschlüssen, die nach EN 1992-1-1:2004 bemessen werden, sind nicht durch diese europäische technische Zulassung abgedeckt.

Die Bestimmungen dieser europäischen technischen Zulassung beruhen auf einer angenommenen Nutzungsdauer des Dübels von 50 Jahren. Die Angaben über die Nutzungsdauer können nicht als Garantie des Herstellers ausgelegt werden, sondern sind lediglich als Hilfsmittel zur Auswahl der richtigen Produkte im Hinblick auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks zu betrachten.

2 Merkmale des Produkts und Nachweisverfahren

2.1 Merkmale des Produkts

Der Dübel entspricht den in den Anhängen dargestellten Zeichnungen und Angaben. Die in den Anhängen nicht angegebenen Werkstoffkennwerte, Abmessungen und Toleranzen des Dübels müssen den in der technischen Dokumentation⁷ dieser europäischen technischen Zulassung festgelegten Angaben entsprechen.

Die charakteristischen Dübelkennwerte für die Bemessung der Verankerungen sind in den Anhängen angegeben.

Die zwei Komponenten des Injektionsmörtels werden unvermischt in Mörtelkartuschen fischer FIS SB, FIS SB High Speed oder FIS SB Low Speed der Größe 390 ml, 585 ml, 1100 ml oder 1500 ml oder in Mörtelpatronen RSB gemäß Anhang 1 geliefert.

Die technische Dokumentation dieser europäischen technischen Zulassung ist beim Deutschen Institut für Bautechnik hinterlegt und, soweit diese für die Aufgaben der in das Verfahren der Konformitätsbescheinigung eingeschalteten zugelassenen Stellen bedeutsam ist, den zugelassenen Stellen auszuhändigen.

Seite 5 von 37 | 26. Juni 2013

Jede Mörtelkartusche, jede fischer Mörtelpatrone RSB und jedes Stahlteil ist gemäß den Bestimmungen in den Anhängen gekennzeichnet.

Stahlteile aus Betonstahl müssen den Bestimmungen nach Anhang 9 entsprechen.

Die Markierung der Verankerungstiefe darf auf der Baustelle erfolgen.

2.2 Nachweisverfahren

Die Beurteilung der Brauchbarkeit des Dübels für den vorgesehenen Verwendungszweck hinsichtlich der Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 erfolgte in Übereinstimmung mit der "Leitlinie für die europäische technische Zulassung für Metalldübel zur Verankerung im Beton", Teil 1 "Dübel - Allgemeines" und Teil 5 "Verbunddübel", auf der Grundlage der Option 1 und ETAG 001 Anhang E "Beurteilung von Metalldübeln unter seismischer Einwirkung".

In Ergänzung zu den spezifischen Bestimmungen dieser europäischen technischen Zulassung, die sich auf gefährliche Stoffe beziehen, können die Produkte im Geltungsbereich dieser Zulassung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Bauproduktenrichtlinie zu erfüllen, müssen ggf. diese Anforderungen ebenfalls eingehalten werden.

3 Bewertung und Bescheinigung der Konformität und CE-Kennzeichnung

3.1 System der Konformitätsbescheinigung

Gemäß Entscheidung 96/582/EG der Europäischen Kommission⁸ ist das System 2(i) (bezeichnet als System 1) der Konformitätsbescheinigung anzuwenden.

Dieses System der Konformitätsbescheinigung ist im Folgenden beschrieben:

System 1: Zertifizierung der Konformität des Produkts durch eine zugelassene Zertifizierungsstelle aufgrund von:

- (a) Aufgaben des Herstellers:
 - (1) werkseigener Produktionskontrolle;
 - zusätzlicher Prüfung von im Werk entnommenen Proben durch den Hersteller nach festgelegtem Prüfplan;
- (b) Aufgaben der zugelassenen Stelle:
 - (3) Erstprüfung des Produkts;
 - (4) Erstinspektion des Werkes und der werkseigenen Produktionskontrolle:
 - (5) laufender Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle.

Anmerkung: Zugelassene Stellen werden auch "notifizierte Stellen" genannt.

Amtsblatt der Europäischen Gemeinschaften L 254 vom 08.10.1996.

Seite 6 von 37 | 26. Juni 2013

3.2 Zuständigkeiten

3.2.1 Aufgaben des Herstellers

3.2.1.1 Werkseigene Produktionskontrolle

Der Hersteller muss eine ständige Eigenüberwachung der Produktion durchführen. Alle vom Hersteller vorgegebenen Daten, Anforderungen und Vorschriften sind systematisch in Form schriftlicher Betriebs- und Verfahrensanweisungen festzuhalten, einschließlich der Aufzeichnungen der erzielten Ergebnisse. Die werkseigene Produktionskontrolle hat sicherzustellen, dass das Produkt mit dieser europäischen technischen Zulassung übereinstimmt.

Der Hersteller darf nur Ausgangsstoffe/Rohstoffe/Bestandteile verwenden, die in der technischen Dokumentation dieser europäischen technischen Zulassung aufgeführt sind.

Die werkseigene Produktionskontrolle muss mit dem Prüfplan, der Teil der technischen Dokumentation dieser europäischen technischen Zulassung ist, übereinstimmen. Der Prüfplan ist im Zusammenhang mit dem vom Hersteller betriebenen werkseigenen Produktionskontrollsystem festgelegt und beim Deutschen Institut für Bautechnik hinterlegt.⁹

Die Ergebnisse der werkseigenen Produktionskontrolle sind festzuhalten und ir Übereinstimmung mit den Bestimmungen des Prüfplans auszuwerten.

3.2.1.2 Sonstige Aufgaben des Herstellers

Der Hersteller hat auf der Grundlage eines Vertrags eine Stelle, die für die Aufgaben nach Abschnitt 3.1 für den Bereich der Dübel zugelassen ist, zur Durchführung der Maßnahmen nach Abschnitt 3.2.2 einzuschalten. Hierfür ist der Prüfplan nach den Abschnitten 3.2.1.1 und 3.2.2 vom Hersteller der zugelassenen Stelle vorzulegen.

Der Hersteller hat eine Konformitätserklärung abzugeben mit der Aussage, dass das Bauprodukt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

3.2.2 Aufgaben der zugelassenen Stellen

Die zugelassene Stelle hat die folgenden Aufgaben in Übereinstimmung mit den Bestimmungen des Prüfplans durchzuführen:

- Erstprüfung des Produkts,
- Erstinspektion des Werks und der werkseigenen Produktionskontrolle.
- laufende Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle.

Die zugelassene Stelle hat die wesentlichen Punkte ihrer oben angeführten Maßnahmen festzuhalten und die erzielten Ergebnisse und die Schlussfolgerungen in einem schriftlichen Bericht zu dokumentieren.

Die vom Hersteller eingeschaltete zugelassene Zertifizierungsstelle hat ein EG-Konformitätszertifikat mit der Aussage zu erteilen, dass das Produkt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

Wenn die Bestimmungen der europäischen technischen Zulassung und des zugehörigen Prüfplans nicht mehr erfüllt sind, hat die Zertifizierungsstelle das Konformitätszertifikat zurückzuziehen und unverzüglich das Deutsche Institut für Bautechnik zu informieren.

Der Prüfplan ist ein vertraulicher Bestandteil der Dokumentation dieser europäischen technischen Zulassung und wird nur der in das Konformitätsbescheinigungsverfahren eingeschalteten zugelassenen Stelle ausgehändigt. Siehe Abschnitt 3.2.2.

Seite 7 von 37 | 26. Juni 2013

3.3 CE-Kennzeichnung

Die CE-Kennzeichnung ist auf jeder Verpackung der Dübel anzubringen. Hinter den Buchstaben "CE" sind ggf. die Kennnummer der zugelassenen Zertifizierungsstelle anzugeben sowie die folgenden zusätzlichen Angaben zu machen:

- Name und Anschrift des Herstellers (für die Herstellung verantwortliche juristische Person),
- die letzten beiden Ziffern des Jahres, in dem die CE-Kennzeichnung angebracht wurde,
- Nummer des EG-Konformitätszertifikats für das Produkt,
- Nummer der europäischen technischen Zulassung,
- Nummer der Leitlinie für die europäische technische Zulassung,
- Nutzungskategorie (ETAG 001-1 Option 1, zusätzlich: seismische Leistungskategorie C1 sofern anwendbar),
- Größe.

4 Annahmen, unter denen die Brauchbarkeit des Produkts für den vorgesehenen Verwendungszweck positiv beurteilt wurde

4.1 Herstellung

Die europäische technische Zulassung wurde für das Produkt auf der Grundlage abgestimmter Daten und Informationen erteilt, die beim Deutschen Institut für Bautechnik hinterlegt sind und der Identifizierung des beurteilten und bewerteten Produkts dienen. Änderungen am Produkt oder am Herstellungsverfahren, die dazu führen könnten, dass die hinterlegten Daten und Informationen nicht mehr korrekt sind, sind vor ihrer Einführung dem Deutschen Institut für Bautechnik mitzuteilen. Das Deutsche Institut für Bautechnik wird darüber entscheiden, ob sich solche Änderungen auf die Zulassung und folglich auf die Gültigkeit der CE-Kennzeichnung auf Grund der Zulassung auswirken oder nicht, und ggf. feststellen, ob eine zusätzliche Beurteilung oder eine Änderung der Zulassung erforderlich ist.

4.2 Bemessung der Verankerungen

Die Brauchbarkeit des Dübels ist unter folgenden Voraussetzungen gegeben:

Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit dem EOTA Technical Report TR 029 "Design of Bonded Anchors" und dem Technical Report TR 045 "Bemessung von Metalldübeln unter seismischer Einwirkung" unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.

Die Verankerungen sind außerhalb kritischer Bereiche (z. B. plastischer Gelenke) der Betonkonstruktion anzuordnen. Eine Abstandsmontage oder die Montage auf Mörtelschicht ist für seismische Einwirkungen nicht durch diese europäische technische Zulassung abgedeckt.

Der EOTA Technical Report TR 029 "Design of Bonded Anchors" ist in Englischer Sprache auf der Website www.eota.eu veröffentlicht.

Seite 8 von 37 | 26. Juni 2013

Nachträgliche eingemörtelte Betonstähle dürfen als Dübel verwendet und nur nach den EOTA Technical Reports TR 029 und TR 045 bemessen werden. Die grundlegenden Annahmen für die Bemessung nach der Dübeltheorie sind zu beachten. Das beinhaltet sowohl die Berücksichtigung von Zug- und Querkräften und die zugehörigen Versagensarten als auch die Annahme, dass der Verankerungsgrund (Betonbauteil) im Grenzzustand der Gebrauchstauglichkeit (gerissen oder ungerissen) verbleibt, wenn der Anschluss bis zum Versagen belastet wird. Solche Anwendungen sind z.B. in Betonierfugen oder als Schubdorne oder Wandanschlussbewehrung, die überwiegend Quer- und Druckkräfte auf das Fundament übertragen, wobei die Bewehrungsstäbe als Dübel wirken, um Querkräfte aufzunehmen. Anschlüsse mit nachträglich eingemörtelten Bewehrungsanschlüssen, die nach EN 1992-1-1:2004 bemessen werden (z.B. Wandanschlussbewehrung, bei der Zugkräfte in mindestens einer Bewehrungslage auftreten), sind nicht durch diese europäische technische Zulassung abgedeckt.

Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen angefertigt.

Für die fischer Innengewindeanker RG MI sind die Befestigungsschrauben oder Gewindestangen hinsichtlich des Materials und der erforderlichen Festigkeitsklasse gemäß Anhang 8 zu spezifizieren. Die minimale und maximale Einschraubtiefe I_E der Befestigungsschraube oder der Gewindestange für die Befestigung der Anbauteile muss den Anforderungen nach Anhang 6, Tabelle 3 genügen. Die Länge der Befestigungsschraube oder der Gewindestange müssen in Abhängigkeit von der Anbauteildicke, zulässigen Toleranzen, der vorhandenen Gewindelänge und der minimalen und maximalen Einschraubtiefe I_E festgelegt werden.

Auf den Konstruktionszeichnungen ist die Lage des Dübels (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.) angegeben.

4.3 Einbau der Dübel

Von der Brauchbarkeit des Dübels kann nur dann ausgegangen werden, wenn folgende Einbaubedingungen eingehalten sind:

- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters,
- Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile,
- Einbau nach den Angaben des Herstellers und den Konstruktionszeichnungen mit den in der technischen Dokumentation dieser europäischen technischen Zulassung angegebenen Werkzeugen,
- Bei Verwendung des Injektionsmörtels fischer FIS SB, fischer FIS SB High Speed und fischer FIS SB Low Speed dürfen auch handelsübliche Ankerstangen, Scheiben und Muttern verwendet werden, wenn die nachfolgend aufgeführten Anforderungen erfüllt sind:
 - Werkstoff, Abmessungen und mechanische Eigenschaften der Stahlteile entsprechen Anhang 8, Tabelle 7,
 - Nachweis von Werkstoff und mechanischen Eigenschaften der Stahlteile durch ein Abnahmeprüfzeugnis 3.1 entsprechend EN 10204:2004, die Nachweise sind aufzubewahren.
 - Markierung der Ankerstange mit der geplanten Verankerungstiefe. Dies kann durch den Hersteller oder vom Baustellenpersonal erfolgen.
- fischer Mörtelpatronen RSB dürfen nur mit zugehörigen fischer Ankerstangen RGM verwendet werden,
- Eingemörtelte Betonstähle müssen mit den Bestimmungen nach Anhang 9 übereinstimmen,
- Überprüfung vor dem Setzen des Dübels, ob die Festigkeitsklasse des Betons, in den der Dübel gesetzt werden soll, nicht niedriger ist als die Festigkeitsklasse des Betons, für den die charakteristischen Tragfähigkeiten gelten,
- Einwandfreie Verdichtung des Betons, z. B. keine signifikanten Hohlräume,

Seite 9 von 37 | 26. Juni 2013

- Markierung und Einhaltung der effektiven Verankerungstiefe,
- Einhaltung der festgelegten Rand- und Achsabstände ohne Minustoleranzen,
- Anordnung der Bohrlöcher ohne Beschädigung der Bewehrung,
- Bohrlochherstellung bei Verwendung der Mörtelkartsuche nur durch Hammerbohren,
- Bohrlochherstellung bei Verwendung der Mörtelpatrone durch Hammer- oder Diamantbohren,
- Bei Fehlbohrungen: Fehlbohrungen sind zu vermörteln,
- Bei Verwendung der Mörtelkartusche darf der Dübel nicht in wassergefüllte Bohrlöcher gesetzt werden,
- Bohrlochlochreinigung und Einbau gemäß Anhang 11 bis 14,
- Bei korrekten Einbau muss Überschussmörtel auf der Betonoberfläche austreten,
- Die Temperatur der Dübelteile beim Einbau beträgt mindestens 0 °C bei Verwendung des Injektionssystems FIS SB und -15 °C bei Verwendung der Mörtelpatronen RSB,
- die Temperatur im Verankerungsgrund während der Aushärtung des Injektionsmörtels bei Verwendung von Injektionsmörtel FIS SB Low Speed unterschreitet nicht 0 °C,
- die Temperatur im Verankerungsgrund während der Aushärtung des Injektionsmörtels bei Verwendung von Injektionsmörtel FIS SB unterschreitet nicht -15 °C,
- die Temperatur im Verankerungsgrund während der Aushärtung des Injektionsmörtels bei Verwendung von Injektionsmörtel FIS SB High Speed unterschreitet nicht -20 °C,
- die Temperatur im Verankerungsgrund während der Aushärtung des Injektionsmörtels bei Verwendung von Mörtelpatronen RSB unterschreitet nicht -30 °C,
- Einhaltung der Wartezeit bis zur Lastaufbringung gemäß Anhang 3, Tabelle 1,
- Montagedrehmomente sind für die Tragfähigkeit des Dübels nicht erforderlich. Die in den Anhängen angegebenen Anzugsdrehmomente dürfen jedoch bei der Montage der Anbauteile nicht überschritten werden.

5 Vorgaben für den Hersteller

5.1 Verpflichtungen des Herstellers

Es ist Aufgabe des Herstellers, dafür zu sorgen, dass alle Beteiligten über die Besonderen Bestimmungen nach den Abschnitten 1 und 2 einschließlich der Anhänge, auf die verwiesen wird, sowie den Abschnitten 4.2, 4.3 und 5.2 unterrichtet werden. Diese Information kann durch Wiedergabe der entsprechenden Teile der europäischen technischen Zulassung erfolgen. Darüber hinaus sind alle Einbaudaten auf der Verpackung und/oder einem Beipackzettel, vorzugsweise bildlich, anzugeben.

Es sind mindestens folgende Angaben zu machen:

- Bohrnenndurchmesser,
- Bohrlochtiefe,
- Ankerstangendurchmesser,
- Mindestverankerungstiefe,
- maximale Dicke der Anschlusskonstruktion.
- Angaben über den Einbauvorgang einschließlich Reinigung des Bohrlochs mit den Reinigungsgeräten, vorzugsweise durch bildliche Darstellung,
- Temperatur der Dübelteile beim Einbau,
- Temperatur im Verankerungsgrund bei Setzen des Dübels,
- Zulässige Verarbeitungszeit des Mörtels,

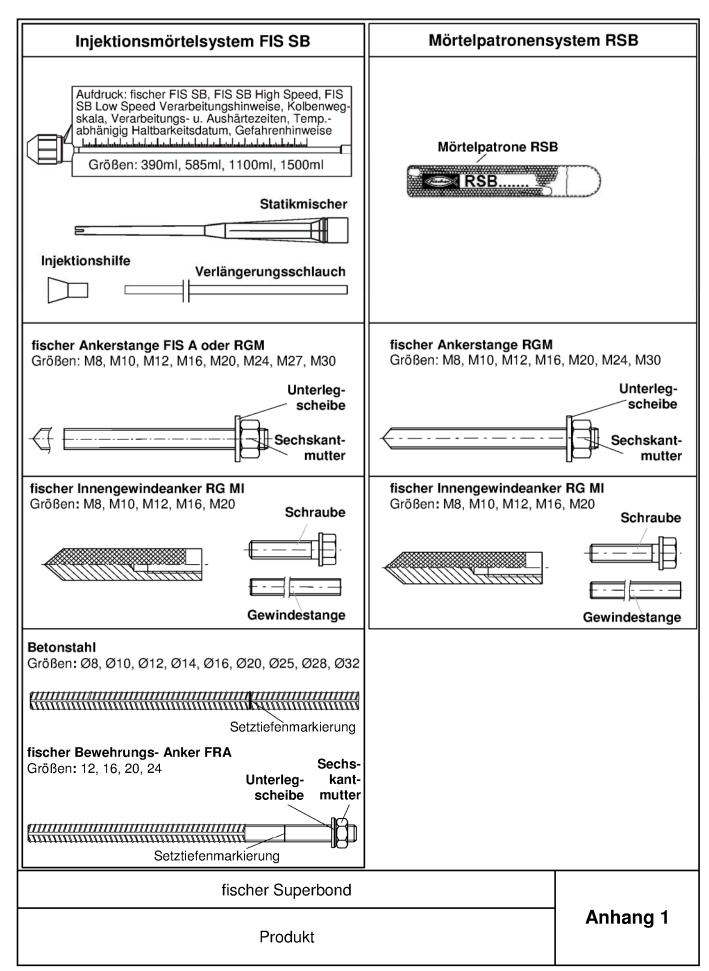
Seite 10 von 37 | 26. Juni 2013

- Wartezeit bis zur Lastaufbringung abhängig von der Temperatur im Verankerungsgrund beim Setzen,
- maximales Drehmoment.
- Herstelllos.

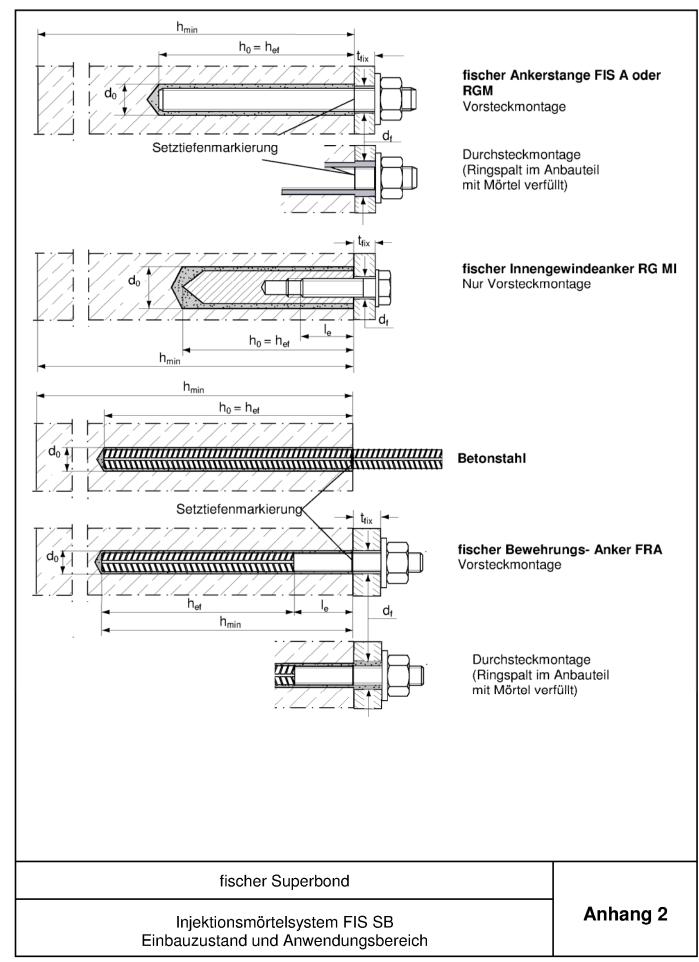
Alle Angaben müssen in deutlicher und verständlicher Form erfolgen.

5.2 Verpackung, Transport und Lagerung

Die Mörtelkartuschen und Mörtelpatronen sind vor Sonneneinstrahlung zu schützen und entsprechend der Montageanleitung trocken bei Temperaturen von mindestens +5 °C bis höchstens +25 °C zu lagern (Kurzzeitlagerung bis zu +35 °C ist zulässig).


Mörtelkartuschen und Mörtelpatronen mit abgelaufenem Haltbarkeitsdatum dürfen nicht mehr verwendet werden.

Der Dübel ist als Befestigungseinheit zu verpacken und zu liefern. Die Mörtelkartuschen und Mörtelpatronen sind separat von den Stahlteilen verpackt.


Die Montageanleitung muss darauf hinweisen, dass die Mörtelkartuschen und Mörtelpatronen nur mit den entsprechenden Stahlteilen verwendet werden dürfen.

Uwe Bender Abteilungsleiter Beglaubigt

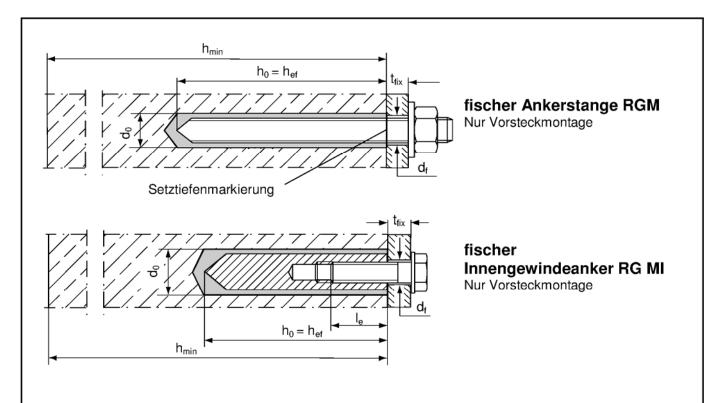


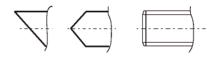
Tabelle 1: Maximale Verarbeitungszeiten und minimale Aushärtezeiten (minimale Kartuschentemperatur 0°C; minimale Patronentemperatur -15°C)

Temperatur im			itungszeiten	Minimale Aushärtezeiten				
Verankerungsgrund		_{ork} [Minu	ten]	t _{cure} [Minuten]				
[°C]	FIS SB Low Speed	FIS SB	FIS SB High Speed	FIS SB Low Speed	FIS SB	FIS SB High Speed	RSB	
-30 bis -20							120 Stunden	
>-20 bis -15			60			24 Stunden	48 Stunden	
>-15 bis -10		60	30		36 Stunden	8 Stunden	30 Stunden	
>-10 bis -5		30	15		24 Stunden	3 Stunden	16 Stunden	
>-5 bis ±0		20	10		8 Stunden	2 Stunden	10 Stunden	
>±0 bis +5	30	13	5	17 Stunden	4 Stunden	1 Stunde	45	
>+5 bis +10	15	9	3	8 Stunden	120	45	30	
>+10 bis +20	12	5	2	4,5 Stunden	60	30	20	
>+20 bis +30	8	4	1	60	45	15	5	
>+30 bis +40	5	2		60	30		3	

fischer Superbond	
Mörtelpatronensystem RSB	Anhang 3
Einbauzustand und Anwendungsbereich	
Verarbeitungs- und Aushärtezeiten FIS SB und RSB	

Anwendungsbereich		Injektionssystem FIS SB / High Speed / Low Speed	Mörtelpatronensystem RSB	
Einbau in gerissenem und ungerissenem Beton	Zulä	ssig für alle Anker und Größen	Zulässig für RGM und RG MI alle Größen	
Einbau in trockenem oder nassem Beton	Zulä	ssig für alle Anker und Größen	Zulässig für RGM und RG MI alle Größen	
Einbau in wassergefüllte Bohrlöcher		Nicht zulässig	Zulässig für RGM und RG MI alle Größen	
Einbau in diamantgebohrten Löchern; ungerissener Beton		Nicht zulässig	Zulässig für RGM und RG MI alle Größen	
Einbau in diamantgebohrten Löchern; gerissener Beton		Nicht zulässig	Zulässig für RGM und RG MI Bohrlöcher ≥ 18mm	
Bemessungsverfahren				
Sta	itische u	nd quasi- statische Beanspruchur	ng	
Bemessung gemäß ETAG 001, TR 029	Zulä	ssig für alle Anker und Größen	Zulässig für RGM und RG MI alle Größen	
Seismische Beanspruchu	ıng/ A nfo	orderungskategorie C1 – nur ham	mergebohrte Bohrlöcher	
Bemessung gemäß ETAG 001, TR 045	- Ar - Ar - Be - Ha	sig für FIS SB mit: nkerstangen FIS A alle Größen nkerstangen RGM alle Größen etonstahl B500B alle Größen andelsübliche Ankerstangen e Größen	Zulässig für RGM alle Größen	
Temperturbereiche				
		Maximale Langzeittemperatur	Maximale Kurzzeittemperatu	
Temperaturbereich I: -40 °C bis +	40℃	+24℃	+40℃	
Temperaturbereich II: -40 ℃ bis +	80℃	+50℃	+80℃	
Temperaturbereich III: -40 ℃ bis +	120℃	+72℃	+120°C	
Temperaturbereich IV: -40°C bis +	 150℃	+90℃	+150℃	

fischer Superbond	
Anwendungsbereiche, Bemessungsverfahren und Temperaturbereiche	Anhang 4


Tabelle 2: Einbaubedingungen für fischer Ankerstangen FIS A und RGM

Dübelgröß	e				M8	M10	M12	M16	M20	M24	M27	M30
	Bohrernenndurch- messer		d_0	[mm]	10	12	14	18	24	28	30	35
	Bohrlochtiefe		h_0	[mm]			$h_0 = h_{ef}$					
Injektions-	Effektive		$h_{ef,min}$	[mm]	60	60	70	80	90	96	108	120
system	Verankerungstiefe		h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
FIS SB	Durchgangs- loch im	Vorsteck- montage	≤d _f	[mm]	9	12	14	18	22	26	30	33
	anzuschlies- senden Bauteil ¹⁾	Durchsteck- montage	≤d _f	[mm]	11	14	16	20	26	30	33	40
	Bohrernenndurch- messer		d_0	[mm]	10	12	14	18	25	28		35
	Bohrlochtiefe		h_0	[mm]				$h_0 = h_{ef}$				
Patronen-	Effektive		h _{ef,1}	[mm]		75	75	95				
system	Verankerungstiefe		h _{ef,2}	[mm]	80	90	110	125	170	210		280
RSB			$h_{\rm ef,3}$	[mm]		150	150	190	210			
NOD	Durchgangs- loch im anzuschlies- senden Bauteil ¹⁾	Nur Vorsteck- montage	≤d _f	[mm]	9	12	14	18	22	26		33
				[mm]	40	45	55	65	85	105	120	140
Minimale Bauteildicke			h_{min}	[mm]	h _{ef} +	- 30 (≥	100)		h	l _{ef} + 20	I_0	
Maximales Montagedre	ehmoment		T _{inst,max}	[Nm]	10	20	40	60	120	150	200	300
Diaka das A	B. I. I. A. I. I. II		$t_{fix,mim}$	[mm]				()			
Dicke des A	Dicke des Anbauteils			[mm]	3000							

¹⁾ Für größere Durchgangslöcher im anzuschließenden Bauteil siehe Kapitel 1.1 des TR 029

fischer Ankerstangen FIS A und RGM

Spitzenvarianten Ankerstangen FIS A

Spitzenvarianten Ankerstangen RGM

Setztiefenmarkierung M M M

Markierung (an beliebiger Stelle):

Bei Festigkeitsklasse 8.8 oder hochkorrosionsbeständigem Stahl C, Festigkeitsklasse 80: • Bei nichtrostendem Stahl A4 und hochkorrosionsbeständigem Stahl C, Festigkeitsklasse 50: • •

fischer Superbond	
fischer Ankerstangen FIS A und RGM Dübelabmessungen und Einbaubedingungen	Anhang 5

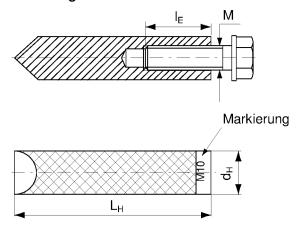


Tabelle 3: Einbaubedingungen für fischer Innengewindeanker RG MI

Dübelgröße			M8	M10	M12	M16	M20
Dübeldurchmesser	d _H	[mm]	12	16	18	22	28
Bohrernenndurchmesser	d_0	[mm]	14	18	20	24	32
Dübellänge	L _H	[mm]	90	90	125	160	200
Effektive Verankerungstiefe h _{ef} und Bohrlochtiefe h ₀	$h_{ef} = h_0$	[mm]	90	90	125	160	200
Minimaler Rand- und Achsabstand	$s_{\text{min}} = c_{\text{min}}$	[mm]	55	65	75	95	125
Durchgangsloch im anzuschliessenden Bauteil	≤d _f	[mm]	9	12	14	18	22
Minimale Bauteildicke	h _{min}	[mm]	120	125	165	205	260
Finanhrauhtinfo	I _{E,min}	[mm]	8	10	12	16	20
Einschraubtiefe	I _{E,max}	[mm]	18	23	26	35	45
Maximales Montagedrehmoment	$T_{inst,max}$	[Nm]	10	20	40	80	120

¹⁾ Für größere Durchgangslöcher im anzuschließenden Bauteil siehe Kapitel 1.1 des TR 029

fischer Innengewindeanker RG MI

Markierung: Werkzeichen und Ankergröße

z.B.: **M10**

Bei nichtrostendem Stahl zusätzlich A4

z.B.: M10 A4

Bei hochkorrosionsbeständigem Stahl

zusätzlich C z.B.: M10 C

fischer Superbond	
fischer Innengewindeanker RG MI Dübelabmessungen und Einbaubedingungen	Anhang 6

Tabelle 4: Zuordnung Mörtelpatronen RSB zu Ankerstangen RGM

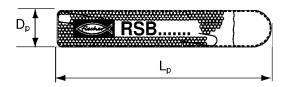

Größe			M8	M10	M12	M16	M20	M24	M30
Bohrernenn- durchmesser	d_0	[mm]	10	12	14	18	25	28	35
Minimale Setztiefe	h _{ef,1}	[mm]		75	75	95			
Zugehörige Mörtel- patrone RSB		[-]		10 mini	12 mini	16 mini			
Mittlere Setztiefe	$h_{\rm ef,2}$	[mm]	80	90	110	125	170	210	280
Zugehörige Mörtel- patrone RSB		[-]	8	10	12	16	20	20E /24	30
Maximale Setztiefe	$h_{\rm ef,3}$	[mm]		150	150	190	210		
Zugehörige Mörtel- patrone RSB		[-]		2x10mini	2x12mini	2x16mini	20E /24		

Tabelle 5: Zuordnung Mörtelpatronen RSB zu Innengewindeankern RG MI.

Größe			M8	M10	M12	M16	M20
Bohrernenndurchmesser	d_0	[mm]	14	18	20	24	32
Setztiefe	h _{ef}	[mm]	90	90	125	160	200
Zugehörige Mörtel- patrone RSB		[-]	10	12	16	16E	20E /24

Tabelle 6: Abmessungen der Mörtelpatronen RSB

Mörtelpatrone		[-]	RSB 8	RSB 10 mini	RSB 10	RSB 12 mini	RSB 12	RSB 16 mini	RSB 16	RSB 16E	RSB 20	RSB 20E /24	RSB 30
Durchmesser	D_p	[mm]	9,0	10),5	12	2,5		16,5		23	,0	27,5
Länge	L_P	[mm]	85	72	90	72	97	72	95	123	160	190	260

fischer Superbond

Mörtelpatronen RSB
Abmessungen und Zuordnungen

Anhang 7

Tabelle 7: Materialien: Ankerstangen, Unterlegscheiben, Sechskantmuttern und Schrauben

		Material	
Benennung	Stahl, verzinkt	Nichtrostender Stahl A4	Hochkorrosionsbe- ständiger Stahl C
Ankerstangen	Festigkeitsklasse 5.8 oder 8.8; EN ISO 20898-1 galvanisch verzinkt ≥ 5µm, EN ISO 4042 A2K oder feuerverzinkt EN ISO 10684	Festigkeitsklasse 50, 70 und 80 / EN ISO 3506 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088 oder 1.4062 pr EN 10088:2011	Festigkeitsklasse 50 oder 80 EN ISO 3506 oder Festigkeitsklasse 70 mit f _{yk} =560 N/mm ² 1.4529; 1.4565 EN 10088
Unterlegscheiben EN ISO 7089	galvanisch verzinkt ≥ 5μm, EN ISO 4042 A2K oder feuerverzinkt EN ISO 10684	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088	1.4529; 1.4565 EN 10088
Sechskantmutter EN 24032	Festigkeitsklasse 5 oder 8; EN ISO 20898-2 galvanisch verzinkt ≥ 5μm, EN ISO 4042 A2K oder feuerverzinkt EN ISO 10684	Festigkeitsklasse 50 oder 70 EN ISO 3506 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506 1.4529; 1.4565 EN 10088
Schrauben und Ankerstangen für Innengewinde- anker RG MI	Festigkeitsklasse 5.8 oder 8.8; EN ISO 20898-1 galvanisch verzinkt ≥ 5μm, EN ISO 4042 A2K oder feuerverzinkt EN ISO 10684	Festigkeitsklasse 70 EN ISO 3506 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088	Festigkeitsklasse 70 EN ISO 3506 1.4529; 1.4565 EN 10088

	fischer Superbond
Anhang 8	Materialien

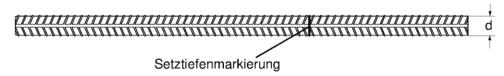


Tabelle 8: Einbaubedingungen Betonstahl

Stabdurchmesser	Ød	[mm]	8 ¹⁾	10 ¹⁾	12	1)	14	16	20	25	28	32
Bohrernenndurchmesser	d_0	[mm]	(10)12	(12)14	(14)	16	18	20	25	30	35	40
Bohrlochtiefe	h_0	[mm]					$h_0 = h$	ef				
Effektive Ver-	h _{ef,min}	[mm]	60	60	70	1	75	80	90	100	112	128
ankerungstiefe	$h_{ef,max}$	[mm]	160	200	240	0	280	320	400	500	560	640
Minimaler Rand- und Achsabstand	$S_{min} = C_{min}$	[mm]	40	45	55	i	60	65	85	110	130	160
Minimale Bauteildicke	h _{min}	[mm]	ı	n _{ef} + 30 ≥ 100				ŀ	n _{ef} + 2	d_0		

¹⁾ Beide Bohrernenndurchmesser sind möglich

Betonstahl

Eigenschaften von Betonstahl: Auszug aus EN 1992-1-1 Anhang C, Tabelle C.1 und C.2N

Produktart		Stäbe und Betor	nstahl vom Ring			
Klasse		В	С			
Charakteristische Streckgrenze	f _{yk} oder f _{0,2k} [MPa]	400 bi	s 600			
Mindoctwort you k (f /f)		≥ 1,15				
Mindestwert von $k = (f_t/f_{yk})$		≥ 1,08	< 1,35			
Charakteristische Dehnung bei I	-löchstlast ε _{uk [%]}	≥ 5,0	≥ 7,5			
Biegbarkeit		Biege- / Rückbiegetest				
	Nenndurchmesser					
Maximale Abweichung von der	des Stabes [mm]					
Nennmasse (Einzelstab) [%]	≤ 8	± 6	5,0			
	> 8	± 4	ł,5			
Mindestwerte der bezogenen	Nenndurchmesser					
Rippenfläche	des Stabes [mm]					
f _{R,min}	8 bis 12	0,0	40			
(Ermittlung nach EN 15630)	> 12	0,0	56			

Rippenhöhe h:

Die Rippenhöhe h muss im Bereich $0.05 \cdot d \le h \le 0.07 \cdot d$ liegen.

d = Nenndurchmesser des Betonstahls

fischer Superbond	
Betonstahl Einbaubedingungen und Werkstoffe	Anhang 9

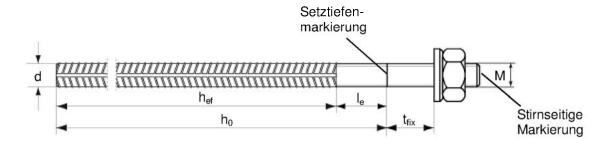


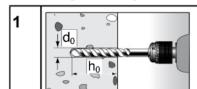
Tabelle 9: Einbaubedingungen fischer Bewehrungs- Anker FRA

Gewindegröße			M12 ¹	1)	M16	M20	M24
Nenndurchmesser	d	[mm]	12		16	20	25
Bohrernenndurchmesser	d_0	[mm]	(14)	16	20	25	30
Bohrlochtiefe ($h_0 = l_{ges}$)	h_0	[mm]			h _{ef} +	l _e	
Effektive	$h_{ m ef,min}$	[mm]	70		80	90	96
Verankerungstiefe	h _{ef,max}	[mm]	140		220	300	380
Abstand Betonoberfläche zur Schweissstelle	I_e	[mm]			100)	
Minimaler Rand- und Achsabstand	s _{min} =c _{min}	[mm]	55		65	85	105
Durchgangsloch im	Vorsteckmontage ≤d _f	[mm]	14		18	22	26
anzuschließenden Bauteil ²⁾	Durchsteckmontage ≤d _f	[mm]	18		22	26	32
Minimale Bauteildicke	h _{min}	[mm]	h _{ef} +30 ≥ 100		h	n _{ef} + 2d _o	
Max. Montagedrehmoment	$T_{inst,max}$	[Nm]	40		60	120	150
Dicke des Anbauteils	minimal t _{fix}	[mm]			5		
Dione des Aribautens	maximal t _{fix}	[mm]			300	0	

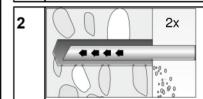
¹⁾ Beide Bohrernenndurchmesser sind möglich

fischer Bewehrungs- Anker FRA

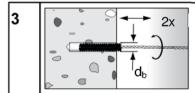
Stirnseitige Markierung z. B.: FRA (nichtrostender Stahl);


FRA C (hochkorrosionsbeständiger Stahl)

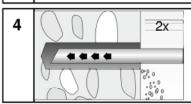
fischer Superbond	
fischer Bewehrungs- Anker FRA Einbaubedingungen	Anhang 10


²⁾ Für größere Durchgangslöcher im anzuschließenden Bauteil siehe Kapitel 1.1 des TR 029

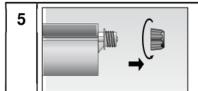
Montage mit Injektionsmörtel FIS SB im hammergebohrten Bohrloch

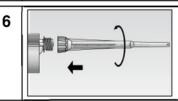


Bohrloch erstellen. Bohrlochdurchmesser d_0 und Bohrlochtiefe h_0 siehe **Tabellen 2, 3, 8** oder **9**


Bohrlochreinigung: Bohrloch zweimal mit ölfreier Druckluft (p ≥ 6 bar) ausblasen. Die Verwendung eines Handausbläsers ist im ungerissenen Beton möglich, wenn gleichzeitig der Bohrdurchmesser kleiner als 18 mm und die Verankerungstiefe h_{ef} kleiner 10d ist.

Bohrloch zweimal mit passender Stahlbürste ausbürsten. Bei tiefen Bohrlöchern Verlängerung verwenden.


<i>□□□□□□□□</i> d ₀ [mm]	10	12	14	16	18	20	24	25	28	30	32	35	40
d ₀ [mm]	11	14	16	20	0	25	26	27	30		40		42

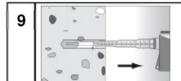

Bohrloch zweimal ausblasen, siehe Punkt 2.

Verschlusskappe abschrauben.

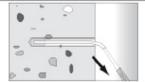
Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein).

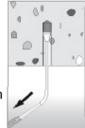
Kartusche in die Auspresspistole legen.

Einen etwa 10 cm langen Mörtelstrang auspressen, bis dieser gleichmässig grau gefärbt ist. Nicht gleichmässig gefärbter Mörtel härtet nicht aus und ist zu verwerfen.

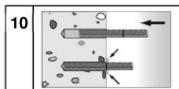

fischer Superbond

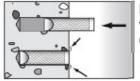
Hammerbohren

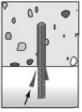

Montageanleitung Injektionsmörtel FIS SB Teil 1


Montage mit Injektionsmörtel FIS SB im hammergebohrten Bohrloch

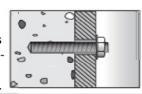
Ca. ²/₃ des Bohrlochs vom Grund her mit Mörtel blasenfrei verfüllen.




Bei Bohrtiefen ≥ 150 mm Verlängerungsschlauch verwenden.

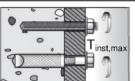

Bei Überkopfmontagen oder tiefen Bohrlöchern $h_0 > 250$ mm Injektionshilfe verwenden.

Montage fischer Ankerstangen FIS A und fischer Innengewindeanker RG MI



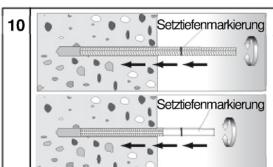
Nur saubere und ölfreie Verankerungselemente verwenden. Setztiefenmarkierung anbringen (falls erforderlich). Das Verankerungselement mit leichten Drehbewegungen in das Bohrloch schieben. Beim Erreichen der Setztiefenmarkierung muss Überschussmörtel am Bohrlochmund austreten.

Bei Überkopfmontagen das Verankerungselement mit keilen fixieren.



Bei Durchsteckmontage muss das Durchgangsloch im Anbauteil ebenfalls mit Mörtel verfüllt werden.

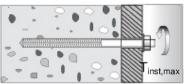
11



Aushärtezeit abwarten. T_{cure} siehe **Tabelle 1.**

Montage des Anbauteils T_{inst,max} siehe **Tabelle 2** oder **3**.

Montage Betonstahl und fischer Bewehrungs- Anker FRA

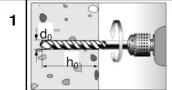


Nur saubere und ölfreie Verankerungselemente verwenden. Setztiefenmarkierung anbringen. Mit leichten Drehbewegungen den Bewehrungsstab oder den fischer Bewehrungs-Gewinde-Anker FRA kräftig bis zur Setztiefenmarkierung in das gefüllte Bohrloch schieben. Beim Erreichen der Setztiefenmarkierung muss an der Betonoberfläche Überschussmörtel auftreten.

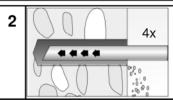
11

Aushärtezeit abwarten. taura siehe **Tabelle 1.**

Montage des Anbauteils T_{inst,max} siehe **Tabelle 9.**

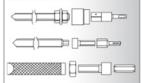

fischer Superbond

Hammerbohren

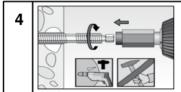

Montageanleitung Injektionsmörtel FIS SB Teil 2

Montage mit Mörtelpatrone RSB im hammergebohrten Bohrloch

Bohrloch erstellen. Bohrlochdurchmesser \mathbf{d}_0 und Bohrlochtiefe \mathbf{h}_0 siehe **Tabellen 2** oder **3**.

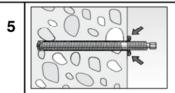


Bohrlochreinigung: Bohrloch viermal mit ölfreier Druckluft (p ≥ 6 bar) ausblasen. Die Verwendung eines Handausbläsers ist möglich, wenn gleichzeitig der Bohrdurchmesser kleiner als 18 mm und die Verankerungstiefe h_{ef} kleiner 10d ist.

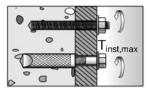


3

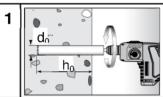
Mörtelpatrone RSB oder zwei RSB mini von Hand in das Bohrloch einstecken.



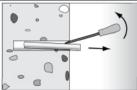
Je nach Verankerungselement passendes Setzwerkzeug verwenden


Nur saubere und ölfreie Ankerstangen verwenden. Ankerstange RGM oder Innengewindeanker RG MI mit dem Bohrhammer mit eingeschaltetem Schlag und passendem Adapter bis zur Setztiefenmarkierung eintreiben. Beim Erreichen der Setztiefenmarkierung Bohrhammer sofort abschalten.

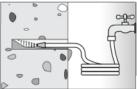
Beim Erreichen der Setztiefenmarkierung muss Überschussmörtel am Bohrlochmund austreten. Falls nicht, ist der Anker sofort zu ziehen und eine zweite Mörtelpatrone in das Bohrloch zu stecken. Setzvorgang wiederholen (4).


Montage des Anbauteils T_{inst,max} siehe **Tabelle 2** oder **3**.

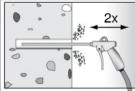
fischer Superbond

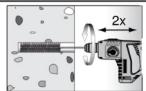

HammerbohrenMontageanleitung Mörtelpatrone RSB

Montage mit Mörtelpatrone RSB im diamantgebohrten Bohrloch

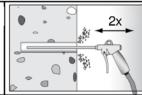


Bohrloch erstellen. Bohrlochnenndurchmesser do und Bohrlochtiefe ho siehe Tabellen 2 oder 3.


Bohrkern ausbrechen und entfernen.

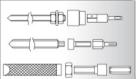


Bohrloch spülen bis das austretende Wasser klar ist.

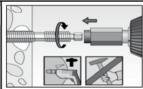


Bohrloch zweimal mit ölfreier Druckluft (p > 6 bar) ausblasen.

Bohrloch zweimal maschinell ausbürsten.

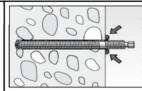


Bohrloch zweimal mit ölfreier Druckluft (p > 6 bar) ausblasen.

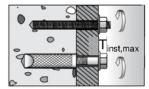


Mörtelpatrone RSB oder zwei RSB mini von Hand in das Bohrloch einstecken.

Je nach Verankerungselement passendes Setzwerkzeug verwenden.



Nur saubere und ölfreie Ankerstangen verwenden. Ankerstange RGM oder Innengewindeanker RG MI mit dem Bohrhammer mit eingeschaltetem Schlag und passendem Adapter bis zur Setztiefenmarkierung eintreiben. Beim Erreichen der Setztiefenmarkierung Bohrhammer sofort abschalten.



Beim Erreichen der Setztiefenmarkierung muss Überschussmörtel am Bohrlochmund austreten. Falls nicht, ist der Anker sofort zu ziehen und eine zweite Mörtelpatrone in das Bohrloch zu stecken. Setzvorgang wiederholen (5).

7

Aushärtezeit abwarten. t_{cure} siehe Tabelle 1.

Montage des Anbauteils $T_{inst,max}$ siehe Tabelle 2 oder 3.

fischer Superbond

Diamantbohren

Montageanleitung Mörtelpatrone RSB

Tabelle 10: Charakteristische Zugtragfähigkeit von fischer Ankerstangen FIS A und RGM mit Mörtel FIS SB oder Patrone RSB im hammergebohrten Bohrloch

Größe	 e				M8	M10	M12	M16	M20	M24	M27 ⁷⁾	M30
Stahlv	/ersagen								l			
		estigkeits-	5.8	[kN]	19	29	43	79	123	177	230	281
Charakteristische Tragfähigkeit N _{Pks}		klasse	8.8	[kN]	30	47	68	126	196	282	368	449
Kteris Higke	nichtrosten-		50	[kN]	19	29	43	79	123	177	230	281
hara agfä	de Stähle A4	estigkeits- klasse	70	[kN]	26	41	59	110	172	247	322	393
0 =			80	[kN]	30	47	68	126	196	282	368	449
γ ≃	F	estigkeits-	5.8	[-]				1,	,50			
Teilsicherheits- beiwert _{Mis,N}		klasse	8.8	[-]				1,	,50			
うし 50 [-] 2,86												
eiwe	de Stähle A4	estigkeits- klasse	70	[-]				1,502	⁾ / 1,87			
≝ ≏	und Stahl C	Masse .	80	[-]				1,	,60			
Komb	oiniertes Versage	n durch H	eraus	ziehen	und Be	tonaus	bruch					
	nerischer Durchme		d	[mm]	8	10	12	16	20	24	27	30
	akteristische Verl	oundfestig										
	eraturbereich I ³⁾	$ au_{Rk,ucr}$		/mm ²]	12	13	13	13	13	12	10	10
	eraturbereich II ³⁾	$ au_{Rk,ucr}$		/mm²]	12	12	12	13	13	12	10	10
	eraturbereich III ³⁾	$ au_{Rk,ucr}$		/mm²]	10	11	11	11	11	11	9	9
	eraturbereich IV ³⁾	$ au_{Rk,ucr}$		/mm²]	10	10	10	11	10	10	8	8
	akteristische Verl	oundfestig				Beton C	20/25					
	eraturbereich I ³⁾	$ au_{Rk,cr}$		/mm ²]	6,5	7,0	7,5	7,5	7,5	7,5	7,5	7,5
	eraturbereich II ³⁾	$ au_{Rk,cr}$		/mm ²]	6,0	6,5	7,5	7,5	7,5	7,5	7,0	7,0
	eraturbereich III ³⁾	$ au_{Rk,cr}$		/mm²]	5,5	6,0	6,5	6,5	6,5	6,5	6,0	6,0
Temp	eraturbereich IV ³⁾	$ au_{Rk,cr}$		/mm ²]	5,0	5,5	6,0	6,0	6,0	6,0	5,5	5,5
			5/30	[-]					,02			
l			0/37	[-]					,04			
	ungsfaktoren 4		5/45	<u>[-]</u>					,07			
für τ _{Rk}	(0/50	[-]					,08			
			-5/55 60/60	[-] [-]					,09 ,10			
Spalte	an .	US	[-]				1,	,10				
•			h / h	_f ≥ 2,0				1 () h _{ef}			
	abstand	2.0 >	h / h _{ef}						– 1,8 h			
C _{cr,sp} [r	mm]			<u>/ 1,3</u>	2,26 h _{ef}							
Achsa	abstand		S _{cr,sp}	[mm]					cr,sp			
	cherheitsbeiwert ¹⁾		en und					1,	,5 ⁺⁾			
$\gamma_{Mp} = \gamma$	$\gamma_{Mc} = \gamma_{Msp}$ [-]	wa	sserge	efüllt ⁶⁾	1,	8 ⁵⁾			1	,5 ⁴⁾		

 $^{^{1)}}$ Falls keine anderen nationalen Regelungen existieren. $^{2)}$ Für Stahl C: $f_{uk} = 700 \text{ N/mm}^2$; $f_{yk} = 560 \text{ N/mm}^2$

fischer Superbond Anhang 15 Hammerbohren fischer Ankerstangen FIS A und RGM Charakteristische Zugtragfähigkeiten

 $^{^{5)}}$ Der Teilsicherheitsbeiwert γ_2 = 1,2 ist enthalten 6) Nur RSB

⁷⁾ Nur für FIS SB

³⁾Siehe Anhang 4 ⁴⁾ Der Teilsicherheitsbeiwert $\gamma_2 = 1,0$ ist enthalten

Tabelle 11: Charakteristische Querzugtragfähigkeit von fischer Ankerstangen FIS A und RGM im hammer- und diamantgebohrten Bohrloch

L						T ==						
Größe					M8	M10	M12	M16	M20	M24	M27 ⁴⁾	M30
Stahly	ersagen ohne					1			ı	1	1	
F 5 %		Festigkeits- klasse	5.8	[kN]	9	15	21	39	61	89	115	141
Charakteristische Tragfähigkeit V _{Rks}		Nidose	8.8	[kN]	15	23	34	63	98	141	184	225
kteri.	nichtrosten-		50	[kN]	9	15	21	39	61	89	115	141
nara agfä	de Stähle A4	Festigkeits- klasse	70	[kN]	13	20	30	55	86	124	161	197
□□□□	und Stahl C		80	[kN]	15	23	34	63	98	141	184	225
Stahl	versagen mit l	Hebelarm										
χ ag		Festigkeits- klasse	5.8	[Nm]	19	37	65	166	324	560	833	1123
lische nt M		NIdSSE	8.8	[Nm]	30	60	105	266	519	896	1333	1797
文 S nichtrosten-											1123	
haral Xgen	de Stähle A4	Festigkeits- klasse	70	[Nm]	26	52	92	232	454	784	1167	1573
	und Stahl C		80	[Nm]	30	60	105	266	519	896	1333	1797
Teilsi	cherheitsbeiw	ert für Stahl	versag	en								
		Festigkeits-	5.8	[-]				1,2				
		klasse	8.8	[-]					25			
γMs,v ¹⁾	nichtrosten-	Festigkeits-	50	[-]				2,				
	de Stähle A4	klasse	70	[-]					/ 1,56			
	und Stahl C		80	[-]				1,	33			
	nausbruch auf		ewandt	en Seit	e							
	r k in Gleichunç											
	echnical Repor		k	[-]				2,0	00			
	9, Kapitel 5.2.3		1)						3/			
	Teilsicherheitsbeiwert $\gamma_{Mxx}^{1)}$ [-] 1,5 $^{3)}$											
	Betonkantenbruch Siehe Technical Report TR 029, Kapitel 5.2.3.4											
	eilsicherheitsbeiwert γ_{Mc}^{-1} [-] 1,5 3											
1) Falls	s keine anderei	n nationalen I	Regelur	ngen ex	istieren.	²⁾ Für	Stahl C	$f_{uk} = 700$	0 N/mm²	² ; f _{yk} = 50	60 N/mm	1 ²
(3) Dor	Teileicherheite	haiwart _% – 1	∩ ict o	nthalton		4) Mur	für EIS	SB		•		

Tabelle 12: Verschiebungen unter Zuglast

Größe		M8	M10	M12	M16	M20	M24	M27	M30
Ungerissener un	d gerissener Beton;	Гетрега	turberei	che I, II,	III und I\	/			
Verschiebung	δ_{N0} [mm/(N/mm ²)]	0,07	0,08	0,09	0,10	0,11	0,12	0,13	0,13
Verschiebung	$\delta_{N\infty}$ [mm/(N/mm ²)]	0,13	0,14	0,15	0,17	0,17	0,18	0,19	0,19

Berechnung der charakteristischen Verschiebung mit $\delta_N = (\delta_{N0} \bullet \tau_{Sd}) / 1,4$

Tabelle 13: Verschiebungen unter Querzuglast

Größe		М8	M10	M12	M16	M20	M24	M27	M30
Verschiebung	δ_{V0} [mm/kN]	0,18	0,15	0,12	0,09	0,07	0,06	0,05	0,05
Verschiebung	δ _{V∞} [mm/kN]	0,27	0,22	0,18	0,14	0,11	0,09	0,08	0,07

Berechnung der charakteristischen Verschiebung mit $\delta_V = (\delta_{V0} \bullet V_{Sd}) / 1,4$

fischer Superbond

Hammer- und Diamantbohren

fischer Ankerstangen FIS A und RGM Charakteristische Querzugtragfähigkeiten und Verschiebungen

 $^{^{3)}}$ Der Teilsicherheitsbeiwert $\gamma_2 = 1,0$ ist enthalten.

⁴⁾ Nur für FIS SB

Tabelle 14: Charakteristische Zugtragfähigkeit von fischer Innengewindeankern RG MI mit Mörtel FIS SB oder Patrone RSB im hammergebohrten Bohrloch

Größe					M 8	M 10	M 12	M 16	M 20
Stahlversagen									
		Festigkeits	- 5.8	[kN]	19	29	43	79	123
Charakteristische		klasse	8.8	[kN]	29	47	68	108	179
Tragfähigkeit	$N_{Rk,s}$	Festigkeits		[kN]	26	41	59	110	172
mit Schraube		Klasse 70	С	[kN]	26	41	59	110	172
		Festigkeits	- 5.8	[-]		•	1,50	•	
Teilsicherheits-	1)	klasse	8.8	[-]			1,50		
beiwert	$\gamma_{Ms,N}^{1)}$	Festigkeits	- A4	[-]			1,87		
		Klasse 70	С	[-]			1,87		
Kombiniertes Ve		lurch Heraus	ziehen	und B			_		
Rechnerischer Durc			d _H	[mm]	12	16	18	22	28
Charakteristisch			enen Be						
Temperaturbereich			$ au_{Rk,ucr}$	[kN]	12	12	11	11	9,5
Temperaturbereich			$\tau_{Rk,ucr}$	[kN]	12	11	11	10	9
Temperaturbereich			$\tau_{Rk,ucr}$	[kN]	11	10	10	9	8
Temperaturbereich	IV (150℃	C / 90℃) ²⁾	$ au_{Rk,ucr}$	[kN]	10	9,5	9	8,5	7,5
Charakteristisch				n C20/2	25				
Temperaturbereich	I (40℃ / :	24℃) ²⁾	$ au_{Rk,cr}$	[kN]			5,0		
Temperaturbereich			$ au_{Rk,cr}$	[kN]			5,0		
Temperaturbereich	III (120℃	; / 72°C) ²⁾	$ au_{Rk,cr}$	[kN]			4,5		
Temperaturbereich	IV (150℃	C / 90℃) ²⁾	$ au_{Rk,cr}$	[kN]			4,0		
		C	25/30	[-]			1,02		
		<u></u>	30/37	[-]			1,04		
Erhöhungsfaktoren		,,, C	35/45	[-]			1,07		
für N _{Rk}		Ψ_{c} C	40/50	[-]			1,08		
			45/55	[-]			1,09		
		C	50/60	[-]			1,10		
Spalten									
				_f ≥ 2,0			1,0 h _{ef}		
Randabstand	c _{cr,sp} [r	nm] <u>2,0</u>	> h / h _e				1,6 h _{ef} – 1,8	h	
			h / h _e	_f ≤ 1,3			2,26 h _{ef}		
Achsabstand	S _{cr,sp}			[mm]			2c _{cr,sp}		
Teilsicherheitsbeiwe	ert' ⁷		ken und		4)	T	1,5 ³⁾	_3/	
$\gamma_{Mp} = \gamma_{Mc} = \gamma_{Msp} [-]$		V	/asserg	efüllt ^{er}	1,8 ⁴⁾		1,	5 ³⁾	

 $^{^{1)}}$ Falls keine anderen nationalen Regelungen existieren. $^{2)}$ Siehe Anhang 4 $^{3)}$ Der Teilsicherheitsbeiwert γ_2 = 1,0 ist enthalten. $^{4)}$ Der Teilsicherheitsbeiwert γ_2 = 1,2 ist enthalten. $^{5)}$ Nur für RSB

fischer Superbond	
Hammerbohren	Anhang 17
fischer Innengewindeanker RG MI	
Charakteristische Zugtragfähigkeit	

Tabelle 15: Charakteristische Querzugtragfähigkeit von fischer Innengewindeankern RG MI im hammer- und diamantgebohrtem Bohrloch

Größe					M 8	M 10	M 12	M 16	M 20		
Stahlversagen ohn	e Hebelar	m			111.0	141 10	IVI 12	1 10	101 20		
		Festigkeits-	5.8	[kN]	9,2	14,5	21,1	39,2	69		
Charakteristische	W	klasse	8.8	[kN]	14,6	23,2	33,7	54,0	90		
Tragfähigkeit	V_{Rks}	Festigkeits-	A4	[kN]	12,8	20,3	29,5	54,8	86		
		Klasse 70	С	[kN]	12,8	20,3	29,5	54,8	86		
		Festigkeits-	5.8	[-]			1,25				
Teilsicherheitsbeiwert $\gamma_{\text{Ms,V}}$		klasse	8.8	[-]	1,25						
		Festigkeits-	A4	[-]			1,56				
		Klasse 70	С	[-]			1,56				
Stahlversagen mit	Hebelarm										
		Festigkeits-	5.8	[Nm]	20	39	68	173	337		
Charakteristisches	$M^{\scriptscriptstyle{0}}_{Rk,s}$	klasse	8.8	[Nm]	30	60	105	266	519		
Biegemoment	IVI HK,S	Festigkeits-	A4	[Nm]	26	52	92	232	454		
		Klasse 70	<u> </u>	[Nm]	26	52	92	232	454		
		Festigkeits-	5.8	[-]			1,25				
Teilsicherheits-	%	klasse	8.8	[-]			1,25				
beiwert	γ̃Ms,V	Festigkeits-	A4_	[-]			1,56				
		Klasse 70	C	[-]	1,56						
Betonausbruch auf			Seite								
Faktor k in Gleichung				[-]			2,0				
Report TR 029, Kap		3		4)	· ·						
Teilsicherheitsbeiwe			γω	cp ^{')} [-]	1,5 ²⁾						
Betonkantenbruch				1)	Siehe Technical Report TR 029, Kapitel 5.2.3.4						
Teilsicherheitsbeiwe	ert		γn	лс ¹⁾ [-]	1,5 ²⁾						

 $^{^{1)}}$ Falls keine anderen nationalen Regelungen existieren. $^{2)}$ Der Teilsicherheitsbeiwert $\gamma_2=$ 1,0 ist enthalten.

Tabelle 16: Verschiebungen unter Zuglast

Größe		M 8	M 10	M 12	M 16	M 20			
Ungerissener und gerissener Beton; Temperaturbereich I, II, III und IV									
Verschiebung	δ_{N0} [mm/(N/mm ²)]	0,09	0,10	0,10	0,11	0,19			
Verschiebung	$\delta_{N\infty}$ [mm/(N/mm ²)]	0,13	0,15	0,15	0,17	0,19			

Berechnung der charakteristischen Verschiebung mit $\delta_N = (\delta_{N0} \bullet \tau_{Sd}) / 1,4$

Tabelle 17: Verschiebungen unter Querzuglast

Größe	М 8	M 10	M 12	M 16	M 20
Verschiebung δ_{V0} [mm/kN]	0,12	0,09	0,08	0,07	0,05
Verschiebung $\delta_{V^{\infty}}$ [mm/kN]	0,18	0,14	0,12	0,10	0,08

Berechnung der charakteristischen Verschiebung mit $\delta_V = (\delta_{V0} \bullet V_{Sd}) / 1,4$

fischer Superbond	
Hammer- und Diamantbohren	Anhang 18
fischer Innengewindeanker RG MI	
Charakteristische Querzugtragfähigkeit	

Tabelle 18: Charakt	teristische	Zuotraofähio	rkeit vo	n fische	er Anke	rstange	n RGM	mit	
		B im diamar				_	aivi		
Größe			M 8	M 10	M 12	M 16	M 20	M 24	M 30
Stahlversagen			Tabelle	: 10	ne Tragfä	higkeit b	ei Stahlv	ersagen	siehe
Kombiniertes Versagen									
Rechnerischer Durchmess		[mm]	8	10	12	16	20	24	30
Charakteristische Verbu	ndfestigkei	t in ungerisser	nem Bet	on C20/2	25				
Temperaturbereich I ¹⁾ (40°C / 24°C)	$ au_{Rk,ucr}$	[N/mm ²]	13	13	14	14	14	13	11
Temperaturbereich II¹¹ (80 °C / 50 °C)	$ au_{Rk,ucr}$	[N/mm ²]	12	13	13	14	13	13	10
Temperaturbereich III ¹⁾ (120 ℃ / 72 ℃)	$ au_{Rk,ucr}$	[N/mm ²]	11	12	12	12	12	11	9,5
Temperaturbereich IV ¹⁾ (150 ℃ / 90 ℃)	$ au_{Rk,ucr}$	[N/mm ²]	10	11	11	11	11	10	8,5
Charakteristische Verbu	ndfestigkei	t in gerissener	n Beton	C20/25					
Temperaturbereich I ¹⁾ (40 °C / 24 °C)	$ au_{Rk,cr}$	[N/mm ²]				7,5	7,5	7,5	7,5
Temperaturbereich II ¹⁾ (80 °C / 50 °C)	$ au_{Rk,cr}$	[N/mm ²]				7,5	7,5	7,5	7,0
Temperaturbereich III¹) (120℃ / 72℃)	$ au_{Rk,cr}$	[N/mm ²]				6,5	6,5	6,5	6,5
Temperaturbereich IV ¹⁾ (150 ℃ / 90 ℃)	$ au_{Rk,cr}$	[N/mm ²]				6,0	6,0	6,0	6,0
	_	C25/30 [-]				1,02			
	_	C30/37 [-]				1,04			
Erhöhungsfaktoren	Ψ_{c} –	C35/45 [-]				1,07			
für τ _{Rk}		C40/50 [-]				1,08			
	_	C45/55 [-]				1,09			
On all an		C50/60 [-]				1,10			
Spalten		- / - > C C	1			1 O I-			
Randabstand c _{cr.sp.} [m	.ml	$h / h_{ef} \ge 2.0$ 0 > h / h _{ef} > 1.3			1	1,0 h _{ef} 6 h _{ef} – 1,8	2 h		
Randabstand c _{cr,sp} [m	h / h _{ef} ≥ 1,3			4,	2,26 h _{ef}				
Achsabstand s _{cr,sp}									
Teilsicherheitsbeiwert ²⁾	tro	cken und nass				2c _{cr,sp} 1,5 ³⁾			
$\gamma_{\text{Mp}} = \gamma_{\text{Mc}} = \gamma_{\text{Msp}}[-]$		wassergefüllt	1,8	4)		.,,	1,5 ³⁾		
TIME TIME TIMES		<u> </u>	,				,		

fischer Superbond	
Diamantbohren	Anhang 19
Charakteristische Zugtragfähigkeit von	
fischer Ankerstangen RGM	

 $^{^{1)}}$ Siehe Anhang 4 $^{2)}$ Falls keine anderen nationalen Regelungen existieren. $^{3)}$ Der Teilsicherheitsbeiwert $\gamma_2=1,0$ ist enthalten. $^{4)}$ Der Teilsicherheitsbeiwert $\gamma_2=1,2$ ist enthalten.

Tabelle 19: Charakteristische Zugtragfähigkeit von fischer Innengewindeankern RG MI mit Mörtelpatrone RSB im diamantgebohrten Bohrloch

	elpatione	nod IIII alai							
Größe			М 8	M 10	M 12	M 16	M 20		
Stahlversagen			Charakteristische Tragfähigkeit bei Stahlversagen siehe						
			Tabelle 14						
Kombiniertes Versagen o									
Rechnerischer Durchmess		[mm]	12	16	18	22	28		
Charakteristische Verbur	ndfestigkeit	ın ungerissei	nem Beton	C20/25		T			
Temperaturbereich I ¹⁾ (40 °C / 24 °C)	$ au_{Rk,ucr}$	[N/mm ²]	13	12	12	11	10		
Temperaturbereich II ¹⁾ (80 °C / 50 °C)	$ au_{Rk,ucr}$	[N/mm ²]	13	12	12	11	9,5		
Temperaturbereich III ¹⁾ (120°C / 72°C)	$ au_{Rk,ucr}$	[N/mm ²]	11	11	10	9,5	8,5		
Temperaturbereich IV¹¹ (150°C / 90°C)	$ au_{Rk,ucr}$	[N/mm ²]	10	10	9,5	9	8		
Charakteristische Verbur	ndfestigkeit	in gerissener	n Beton C2	0/25	•				
Temperaturbereich I ¹⁾ (40 °C / 24 °C)	$ au_{Rk,cr}$	[N/mm ²]		5,0	5,0	5,0	5,0		
Temperaturbereich II¹) (80°C / 50°C)	$ au_{Rk,cr}$	[N/mm ²]		5,0	5,0	5,0	5,0		
Temperaturbereich III ¹⁾ (120°C / 72°C)	τ _{Rk,cr}	[N/mm ²]		4,5	4,5	4,5	4,5		
Temperaturbereich IV ¹⁾ (150°C / 90°C)	$ au_{Rk,cr}$	[N/mm ²]		4,0	4,0	4,0	4,0		
,		C25/30 [-]			1,02	•			
		C30/37 [-]			1,04				
Erhöhungsfaktoren)T(C35/45 [-]			1,07				
für τ _{Rk}	Ψ _c —	C40/50 [-]			1,08				
		C45/55 [-]			1,09				
		C50/60 [-]			1,10				
Spalten									
		h / h _{ef} ≥ 2,0			1,0 h _{ef}				
Randabstand c _{cr,sp} [m	m] <u>2,0</u>	$> h / h_{ef} > 1,3$			4,6 h _{ef} – 1,8 l	า			
		h / h _{ef} ≤ 1,3			2,26 h _{ef}				
Achsabstand s _{cr,sp}		[mm]			2c _{cr,sp} 1,5 ³⁾				
Teilsicherheitsbeiwert ²⁾	troc	ken und nass	4\			_3/			
$\gamma_{Mp} = \gamma_{Mc} = \gamma_{Msp}$ [-]		wassergefüllt	1,8 ⁴⁾		1	,5 ³⁾			

fischer Superbond Diamantbohren Anhang 20 Charakteristische Zugtragfähigkeit von Innengewindeankern RG MI

 $^{^{1)}}$ Siehe Anhang 4 $^{2)}$ Falls keine anderen nationalen Regelungen existieren. $^{3)}$ Der Teilsicherheitsbeiwert $\gamma_2=1,0$ ist enthalten. $^{4)}$ Der Teilsicherheitsbeiwert $\gamma_2=1,2$ ist enthalten.

Taballa 00 Observ	lata ata tina	l 7		D		91.1					
Tabelle 20: Chara FIS SI		ne Zugtragfanig <mark>imergebohrten</mark>			etonst	anien	mit in	ijektio	nsmoi	rtei	
Größe		Ø d	8	10	12	14	16	20	25	28	32
Stahlversagen				•	•	•	•	•	•		•
Charakteristische Tragfähigkeit Betonstahl	4) N _{Rk,}	s [kN]	28	44	63	85	111	173	270	339	443
Teilsicherheitsbeiwert	γ _{Ms,N}	⁾ [-]					1,4				
Kombiniertes Versager		erausziehen und l	Betona	ausbru	ch						
Rechnerischer Durchme		d [mm]	8	10	12	14	16	20	25	28	32
Charakteristische Verb	undfestig	keit in ungerisser	nem B	eton C	20/25						
Temperaturbereich I ³⁾ (40 °C / 24 °C)	$ au_{Rk,uc}$	_{er} [N/mm ²]	8,0	8,5	9,0	9,5	9,5	10	9,5	9,0	7,5
Temperaturbereich II ³⁾ (80 °C / 50 °C)	$ au_{Rk,uc}$	_{or} [N/mm ²]	8,0	8,5	9,0	9,0	9,5	9,5	9,0	8,5	7,5
Temperaturbereich III ³⁾ (120 °C / 72 °C)	$ au_{Rk,uc}$	r [N/mm²]	7,0	7,5	8,0	8,0	8,5	8,5	8,0	7,5	6,5
Temperaturbereich IV ³⁾ (150 °C / 90 °C)	$ au_{Rk,uc}$	r [N/mm²]	6,5	7,0	7,0	7,5	7,5	8,0	7,5	7,0	6,0
Charakteristische Verb	undfestig	keit in gerissener	n Betc	n C20	25	•	•	•	•		•
Temperaturbereich I ³⁾ (40°C / 24°C)	$ au_{Rk,c}$	r [N/mm²]	4,5	6,0	6,0	6,0	7,0	6,0	6,0	6,0	6,0
Temperaturbereich II ³⁾ (80 °C / 50 °C)	$ au_{Rk,c}$	r [N/mm²]	4,5	5,5	5,5	5,5	6,5	6,0	6,0	6,0	6,0
Temperaturbereich III ³⁾ (120°C / 72°C)	$ au_{Rk,c}$	r [N/mm²]	4,0	5,0	5,0	5,0	6,0	5,5	5,5	5,5	5,5
Temperaturbereich IV ³⁾ (150 °C / 90 °C)	$ au_{Rk,c}$	r [N/mm²]	3,5	4,5	4,5	4,5	5,5	5,0	5,0	5,0	5,0
		C25/30 [-]		•			1,02	•			
		C30/37 [-]					1,04				
Erhöhungsfaktoren	Ψ_{c}	C35/45 [-]					1,07				
für τ _{Rk}	Ϋ́c	C40/50 [-]					1,08				
		C45/55 [-]					1,09				
-		C50/60 [-]					1,10				
Spalten											
Randabstand		$h / h_{ef} \ge 2.0$					1,0 h _{ef}				
C _{cr,sp} [mm]		$2.0 > h / h_{ef} > 1.3$					$h_{ef} - 1$				
		h / h _{ef} ≤ 1,3					2,26 h _e				
Achsabstand Teilsicherheitsbeiwert	S _{cr,sp}	[mm]					2 c _{cr,sp}	<u> </u>			
rensichemensbeiwert	$\gamma_{Mp} = \gamma_{Mc}$	$= \gamma_{Msp}^{1)}$ [-]					1,5 ′				

¹⁾ Falls keine anderen nationalen Regelungen existieren. ²⁾ Der Teilsicherheitsbeiwert $\gamma_2 = 1,0$ ist enthalten. ³⁾ Siehe Anhang 4

fischer Superbond **Anhang 21** Hammerbohren Charakteristische Zugtragfähigkeit von Betonstahl

⁴⁾ Die angegebenen Werte gelten für Betonstahl B500B mit $f_{uk} = 550 \text{ N/mm}^2$ und $f_{yk} = 500 \text{ N/mm}^2$ Für andere Betonstähle sind die charakteristischen Stahltragfähigkeiten nach TR 029, Gleichung (5.1) zu berechnen.

Tabelle 21: Charakteristische Querzugtragfähigkeit von Betonstählen mit Injektionsmörtel FIS SB im hammergebohrten Bohrloch Größe 25 28 32 \emptyset d 10 12 Stahlversagen ohne Hebelarm Charakteristische $V_{Rk.s}$ [kN] 13,8 21,6 31,1 42,4 55,3 87 135 170 221 Tragfähigkeit¹⁾ Teilsicherheitsbeiwert 1,5 YMs,V Stahlversagen mit Hebelarm Charakteristisches $M^0_{Rk,s}$ [Nm] 33 178 518 1012 1422 2123 65 112 265 Biegemoment¹⁾ Teilsicherheitsbeiwert 1,5 $\gamma_{\mathsf{Ms},\mathsf{V}}$ Betonausbruch auf der lastabgewandten Seite Faktor k in Gleichung (5.7) des Technical Report TR 029, 2,0 [-] Kapitel 5.2.3.3 $1.5^{3)}$ Teilsicherheitsbeiwert γ_{Mcp} Betonkantenbruch Siehe Technical Report TR 029, Kapitel 5.2.3.4 Teilsicherheitsbeiwert

Tabelle 22: Verschiebung von Betonstahl unter Zuglast

Größe		Ød	8	10	12	14	16	20	25	28	32
Gerissener und ungerissener Beton; Temperaturbereich I, II, III und IV											
Verschiebung	δ_{N0}	[mm/(N/mm ²)]	0,07	0,08	0,09	0,09	0,10	0,11	0,12	0,13	0,13
Verschiebung	$\delta_{N^{\boldsymbol{\bowtie}}}$	[mm/(N/mm ²)]	0,12	0,13	0,13	0,15	0,16	0,16	0,18	0,20	0,20

Berechnung der charakteristischen Verschiebung mit $\delta_N = (\delta_{N0} \bullet \tau_{Sd}) / 1,4$

Tabelle 23: Verschiebung von Betonstahl unter Querlast

Größe	Ød	8	10	12	14	16	20	25	28	32
Gerissener und ungerissener Beton; Temperaturbereich I, II, III und IV										
Verschiebung 8	S _{V0} [mm/kN]	0,18	0,15	0,12	0,10	0,09	0,07	0,06	0,05	0,05
Verschiebung	$\delta_{V^{\infty}}$ [mm/kN]	0,27	0,22	0,18	0,16	0,14	0,11	0,09	0,08	0,06

Berechnung der charakteristischen Verschiebung mit $\delta_V = (\delta_{V0} \bullet V_{Sd}) / 1,4$

fischer Superbond	
Hammerbohren	Anhang 22
Charakteristische Querzugtragfähigkeit und Verschiebungen von	
Betonstahl	

¹⁾ Die angegebenen Werte gelten für Betonstahl B500B mit $f_{uk} = 550 \text{ N/mm}^2$ und $f_{yk} = 500 \text{ N/mm}^2$ Für andere Betonstähle sind die charakteristischen Stahlträgerfähigkeiten nach TR 029, Gleichung (5.1) zu berechnen.

²⁾ Falls keine anderen nationalen Regelungen existieren.

³⁾ Der Teilsicherheitsbeiwert $\gamma_2 = 1,0$ ist enthalten.

Tabelle 24: Charakteristische Zugtragfähigkeit von fischer Bewehrungs- Ankern FRA

mit Injek	ktionsmörtel FIS SB	im hammerge	ebohrten Bohr	loch	
Größe		M12	M16	M20	M24
Stahlversagen					
Charakteristische Tragfähigkeit	N _{Rk,s} [kN]	63	111	173	270
Teilsicherheitsbeiwert	γ _{Ms,N} ¹⁾ [-]			,4	
Kombiniertes Versagen	durch Herausziehen	und Betonausl	bruch		
Rechnerischer Durchmes		12	16	20	25
Charakteristische Verbu	ındfestigkeit in unge	rissenem Betor	n C20/25		
Temperaturbereich I ³⁾ (40 °C / 24 °C)	$ au_{Rk,ucr}$ [N/mm 2]	9,0	9,5	10,0	9,5
Temperaturbereich II ³⁾ (80°C / 50°C)	$ au_{Rk,ucr}$ [N/mm 2]	9,0	9,5	9,5	9,0
Temperaturbereich III ³⁾ (120℃ / 72℃)	$ au_{Rk,ucr}$ [N/mm 2]	8,0	8,5	8,5	8,0
Temperaturbereich IV ³⁾ (150 °C / 90 °C)	$ au_{Rk,ucr}$ [N/mm 2]	7,0	7,5	8,0	7,5
Charakteristische Verbu	ındfestigkeit in geris	senem Beton C	20/25		
Temperaturbereich I ³⁾ (40 °C / 24 °C)	$ au_{ m Rk,cr}$ [N/mm 2]	6,0	7,0	6,0	6,0
Temperaturbereich II ³⁾ (80°C / 50°C)	$ au_{ m Rk,cr}~[{ m N/mm}^2]$	5,5	6,5	6,0	6,0
Temperaturbereich III ³⁾ (120 °C / 72 °C)	$ au_{ m Rk,cr}$ [N/mm 2]	5,0	6,0	5,5	5,5
Temperaturbereich IV ³⁾ (150 °C / 90 °C)	$ au_{ m Rk,cr}$ [N/mm 2]	4,5	5,5	5,0	5,0
	C25/30 [-]			02	
Erhöhungs-	C30/37 [-]			04	
faktoren Ψ_c	C35/45 [-]			07	
für τ_{Rk}	C40/50 [-]			08	
I TOT THE	C45/55 [-]			09	
	C50/60 [-]		1,	10	
Spalten					
Randabstand -	h / h _{ef} ≥ 2,0			h _{ef}	
c _{cr,sp} [mm] -	$2.0 > h / h_{ef} > 1.3$			– 1,8 h	
	h / h _{ef} ≤ 1,3			6 h _{ef}	
Achsabstand	s _{cr,sp} [mm]		2 c	5 ² cr,sp	
Teilsicherheitsbeiwert	$\gamma_{\rm Mp} = \gamma_{\rm Mc} = \gamma_{\rm Msp}^{-1}$ [-]		1,	5 ⁻ ′	

 $^{^{1)}}$ Falls keine anderen nationalen Regelungen existieren. $^{2)}$ Der Teilsicherheitsbeiwert $\gamma_2=1,0$ ist enthalten. $^{3)}$ Siehe Anhang 4

fischer Superbond	
Hammerbohren	Anhang 23
Charakteristische Zugtragfähigke	
fischer Bewehrungs- Ankern F	RA

Tabelle 25: Charakteristische Querzugtragfähigkeit für fischer Bewehrungs- Anker FRA mit Injektionsmörtel FIS SR im hammerschahrten Behrlagh

mit Injektionsr Größe	HOILOIT IO		M12	M16	M20	M24
Stahlversagen ohne Hebelarn	<u> </u>		WIIZ	11110	10120	IVIZT
Charakteristische Tragfähigkeit	$V_{Rk,s}$	[kN]	30	55	86	124
Teilsicherheitsbeiwert	γ _{Ms.V}	[-]		1,	56	
Stahlversagen mit Hebelarm	******					
Charakteristisches Biegemoment	$M^0_{Rk,s}$	[Nm]	92	233	454	785
Teilsicherheitsbeiwert	γ _{Ms,V}	[-]		1,	56	•
Betonausbruch auf der lastab		n Seite				
Faktor k in Gleichung (5.7) des Technical Report TR 029, Kapitel 5.2.3.3	k	[-]			,0	
Teilsicherheitsbeiwert	γ _{Mcp} 1)	[-]		1,	5 ²⁾	
Betonkantenbruch			Siehe Te	echnical Report		el 5.2.3.4
Teilsicherheitsbeiwert	γ _{Mc} ¹⁾	[-]	_	1,5	5 ²⁾	•

 $^{^{1)}}$ Falls keine anderen nationalen Regelungen existieren. $^{2)}$ Der Teilsicherheitsbeiwert $\gamma_2=1,0$ ist enthalten.

Tabelle 26: Verschiebungen von fischer Bewehrungs- Ankern FRA unter Zuglast

Größe	Ø	12	16	20	24
Ungerissener und gerissene	er Beton; Temperaturbereic	h I, II, III und	IV		
Verschiebung	δ_{N0} [mm/(N/mm ²)]	0,09	0,10	0,11	0,12
Verschiebung	$\delta_{N^{\infty}} \left[mm/(N/mm^2) \right]$	0,13	0,16	0,16	0,18

Berechnung der charakteristischen Verschiebung mit $\delta_N = (\delta_{N0} \bullet \tau_{Sd}) / 1,4$

Tabelle 27: Verschiebungen von fischer Bewehrungs - Ankern FRA unter Querlast

Größe 2	12	16	20	24
Verschiebung δ_{V0} [mm/kN]] 0,12	0,09	0,07	0,06
Verschiebung $\delta_{V^{\infty}}$ [mm/kN]] 0,18	0,14	0,11	0,09

Berechnung der charakteristischen Verschiebung mit $\delta_V = (\delta_{V0} \, \bullet \, V_{Sd}) \, / \, 1,4$

fischer Superbond	Anhana 04
Hammerbohren	Anhang 24
Charakteristische Querzugtragfähigkeit und Verschiebungen von	
fischer Bewehrungs- Ankern FRA	

Seismik Bemessung nach TR045 "Design of metal anchors under seismic action"

Die empfohlenen seismischen Leistungskategorien sind in Tabelle 28 angegeben. Der Wert ag oder das Produkt ag S welche in einem Mitgliedstaat verwendet werden, um Schwellenwerte für die Seismizitätsklassen zu definieren, kann dem nationalen Anhang der EN 1998-1:2004 entnommen werden. Dieser Wert kann von den in Tabelle 28 aufgeführten Werten abweichen. Darüber hinaus liegt die Zuordnung der seismischen Leistungskategorien C1 und C2 zu den Seismizitätsklassen und den Bedeutungskategorien der Gebäude in der Verantwortung jedes einzelnen Mitgliedstaats.

Tabelle 28: Empfohlene seismische Leistungskategorien für Anker

Se	ismizitätsgrad ¹⁾	Bedeutungskategorie gemäß EN 1998-1:2004,4.2.						
Klasse	a _g ⋅S³)	I II III IV						
Sehr gering ²⁾	a _g ·S ≤ 0,05 g		Keine zusätzlic	he Anforderung				
Gering ²⁾	$0.05 \text{ g} < a_g \cdot \text{S} \le 0.1 \text{ g}$	C1	C1 ⁴⁾ c	or C2 ⁵⁾	C2			
> gering	a _g ⋅S > 0,1 g	C1		C2				

¹⁾ Die Werte zur Bestimmung des Seismizitätsgrades siehe nationalem Anhang der EN 1988-1:2004

Der Bemessungswert unter seismischer Einwirkung R_{d,seis} ist wie folgt zu ermitteln:

$$R_{d,seis} = R_{k,seis} / \gamma_{M,seis}$$

Der charakteristische Widerstand unter seismischer Einwirkung $R_{k,seis}$ ist wie folgt zu ermitteln:

$$R_{k,seis} = \alpha_{gap} \ x \ \alpha_{seis} \ x \ R^0_{k,seis}$$

Der charakteristische Grundwiderstand unter seismischer Einwirkung $R^0_{k,seis}$ für die Versagensarten "Stahlversagen", "kombiniertes Versagen durch Herausziehen und Betonausbruch" bei zentrischer Zuglast sowie "Stahlversagen" bei Querlast ist Tabelle 30 zu entnehmen. Für alle anderen Versagensarten ist $R^0_{k,seis}$ analog zur Bemessung unter statischer und quasi-statischer Einwirkung nach Tabellen 10, 11, 20 und 21 zu bestimmen. Die Abminderungsfaktoren α_{seis} und α_{gap} sind in Tabelle 29 angegeben.

Tabelle 29: Abminderungsfaktoren α_{seis} und α_{gap}

Last-	Versagensart	α	seis	C	(_{gap}	
richtung		Einzel- anker	Anker- gruppe	Befestigungen mit Lochspiel ¹⁾	Befestigung ohne Lochspiel ¹⁾	
	Stahlversagen	1,0	1,0			
Zentrischer Zug	Kombiniertes Versagen durch Herausziehen und Betonausbruch	1,0	0,85	1,00	1,00	
	Betonausbruch	0,85	0,75			
	Spalten	1,0	0,85			
	Stahlversagen	1,0	0,85			
Ouerzua	Betonkantenbruch	1,0	0,85	0.50		
Querzug	Betonausbruch auf der lastabgewandten Seite	0,85	0,75	- 0,50		

Verbindungen mit Lochspiel gemäß CEN/TS 1992-4-4: 2009, Tabelle 1

fischer Superbond	A I 05
Empfohlene seismische Leistungskategorie und Abminderungsfaktoren für Lasten unter seismischer Einwirkung	Anhang 25

²⁾ Definition nach EN 1998-1:2004, 3.2.

³⁾ a_g = Bemessungs-Bodenbeschleunigung für Baugrundklasse A (EN 1998-1:2004, 3.2.1)

⁴⁾ C1 für die Befestigung von nicht- tragenden Bauteilen an Gebäuden

⁵⁾ C2 für die Befestigung von tragenden Bauteilen an Gebäuden

Tabelle 30A: Charakteristische Werte unter seismischer Einwirkung Leistungskategorie C1 für fischer Ankerstangen FIS A und RGM mit FIS SB oder RSB im hammergebohrten Bohrloch

	namm	ergebonrt	en b	OHHOU	- II							
Größe				М8	M10	M12	M16	M20	M24	M27	M30	
Charakte	ristische Zu	ıgtragfähigk	eit, St	ahlvers	agen	•	•	•	•			
		Festigkeits-	5.8	19	29	43	79	123	177	230	281	
$N_{Rk,s,seis}$		klasse	8.8	30	47	68	126	196	282	368	449	
	nichtrosten-		50	19	29	43	79	123	177	230	281	
[kN]	de Stähle A4 und	Festigkeits- klasse	70	26	41	59	110	172	247	322	393	
	Stahl C			30	47	68	126	196	282	368	449	
		Festigkeits-	5.8				1,	50				
γ _{M,s,seis} 1)		klasse	8.8	8 1,50								
. , ,	nichtrosten-	Continueito	_50					86				
[-]	de Stähle A4 und	Festigkeits- klasse	_70				1,50 ²⁾	/ 1,87				
	Stahl C		80					,6				
Charakte Betonaus		erbundfestig	keit, k	combini	iertes V	ersager	durch	Heraus	ziehen ι	ınd		
Temperatu	urbereich I ³⁾	$ au_{Rk,seis}$ [N/I	mm²]	4,6	5,0	5,6	5,6	5,6	5,6	5,6	6,4	
Temperatu	urbereich II ³⁾		mm²]	4,3	4,6	5,6	5,6	5,6	5,6	5,3	6,0	
Temperatu	urbereich III ³⁾		mm²]	3,9	4,3	4,9	4,9	4,9	4,9	4,5	5,1	
Temperatu	urbereich IV ³⁾		mm²]	3,6	3,9	4,5	4,5	4,5	4,5	4,1	4,7	
1)	trocke	n und nass	[-]	1,5 ⁴⁾								
γM,p,seis	was	ssergefüllt ⁶⁾	[-]	1,8 ⁵⁾ 1,5 ⁴⁾								
Charakte	ristische Qu	uerzugtragfä	higke	it, Stah	Iversag	en ohne	e Hebela	arm				
		Festigkeits-	5.8	9	15	21	39	61	89	115	141	
$V_{\text{Rk},s,\text{seis}}^{7)}$		klasse	8.8	15	23	34	63	98	141	184	225	
	nichtrosten- de Stähle		_50	9	15	21	39	61	89	115	141	
[kN]	A4 und	Festigkeits- klasse	_70	13	20	30	55	86	124	161	197	
	Stahl C		80	15	23	34	63	98	141	184	225	
		Festigkeits-	5.8				1,	25				
γ _{M,s,seis} 1)		klasse	8.8				1,	25				
. , ,	nichtrosten- de Stähle		_50					38				
[-]	de Stanie A4 und	Festigkeits- klasse	_70				1,25 ²⁾	/ 1,56				
	Stahl C		80		1,33							

¹⁾ Falls keine anderen nationalen Regelungen existieren

fischer Superbond

Hammerbohren

Charakteristische Werte unter seismischer Einwirkung Leistungskategorie C1; fischer Ankerstangen FIS A und RGM

³⁾ Siehe Anhang 4

 $^{^{5)}}$ Der Teilsicherheitsbeiwert $\gamma_2=1,2$ ist enthalten $^{7)}$ Für fischer Ankerstangen FIS A und RGM ist der Duktilitätsfaktor 1,0

 $^{^{2)}}$ Für Stahl C mit $f_{yk}=560\ N/mm^2$ $^{4)}$ Der Teilsicherheitsbeiwert $\gamma_2=1,0$ ist enthalten

⁶⁾ Nur RSB

Tabelle 30B: Charakteristische Werte unter seismischer Einwirkung Leistungskategorie C1 für Standard Ankerstangen mit **FIS SB** im **hammergebohrten Bohrloch**

Größe				М8	M10	M12	M16	M20	M24	M27	M30
Charakt	eristische Zu	eit									
Stahlve	rsagen					S	Siehe Ta	belle 30	Α		
Charakt kombini Herausz			S	Siehe Ta	belle 30	A					
Charakt	eristische Q	uerzugtragfäl	higke	it, Stah	lversag	en ohne	Hebela	ırm			
		Festigkeits-	5.8	6	11	15	27	43	62	81	99
$V_{Rk,s,seis}$		klasse	8.8	11	16	24	44	69	99	129	158
	nichtrosten-		50	6	11	15	27	43	62	81	99
[kN]	de Stähle A4	Festigkeits- : klasse .	70	9	14	21	39	60	87	113	138
	und Stahl C		80	11	16	24	44	69	99	129	158
		Festigkeits-	5.8				1,:	25			
γM,s,seis		klasse	8.8				1,3	25			
'/	nichtrosten-		50				2,	38			
[-]	de Stähle A4	Festigkeits- : klasse .	70				1,	56			
	und Stahl C		80				1,	33			

¹⁾ Falls keine anderen nationalen Regelungen existieren

Tabelle 30C: Charakteristische Werte unter seismischer Einwirkung Leistungskategorie C1 für Betonstahl mit **FIS SB** im **hammergebohrten Bohrloch**

Betonstahl B500B		Größe	8	10	12	14	16	20	25	28	32
Charakteristische Zug	tragfähigkeit	, Stahlversa	gen				•		•		
$N_{Rk,s,seis}$		[kN]	28	44	63	85	111	173	270	339	443
$\gamma_{M,s,seis}$ 1)		[-]					1,4				
Charakteristische Verb	oundfestigke	it, kombinie	rtes Ve	rsagen	durch F	łerausz	iehen u	nd Bet	onausb	ruch	
Temperaturbereich I ³⁾	$ au_{Rk,s,seis}$	[N/mm²]	3,2	4,3	4,5	4,5	5,3	4,5	4,5	4,5	5,1
Temperaturbereich II ³⁾	$ au_{Rk,s,seis}$	[N/mm²]	3,2	3,9	4,1	4,1	4,9	4,5	4,5	4,5	5,1
Temperaturbereich III ³⁾	$ au_{Rk,s,seis}$	[N/mm²]	2,8	3,6	3,8	3,8	4,5	4,1	4,1	4,1	4,7
Temperaturbereich IV ³⁾	$ au_{Rk,s,seis}$	[N/mm²]	2,5	3,2	3,4	3,4	4,1	3,8	3,8	3,8	4,3
γ _{M,p,seis} 1)		[-]					1,5 ²⁾				
Charakteristische Que	rzugtragfähi	gkeit, Stahlv	ersage	n ohne	Hebela	rm					
$V_{Rk,s,seis}$		[kN]	9,7	15,1	21,8	29,7	38,7	60,9	94,5	119,0	154,7
γ _{M,s,seis} 1)		[-]					1,5 ²⁾				
1\				2	\						

¹⁾Falls keine anderen nationalen Regelungen existieren ²⁾ Der Teilsicherheitsbeiwert $\gamma_2 = 1,0$ ist enthalten ³⁾Siehe Anhang 4

fischer Superbond

Hammerbohren
Charakteristische Werte unter seismischer Einwirkung
Leistungskategorie C1; Standard Ankerstangen; Betonstahl