

LEISTUNGSERKLÄRUNG

DoP 0191

für fischer Superbond (Verbunddübel für den Einsatz in Beton)

DE

1. Eindeutiger Kenncode des Produkttyps: DoP 0191

2. Verwendungszweck(e): Nachträgliche Befestigung in gerissenem oder ungerissenem Beton. B1- B15

Siehe Anhang, insbesondere die Anhänge 3. Hersteller: fischerwerke GmbH & Co. KG. Otto-Hahn-Straße 15, 79211 Denzlingen, Deutschland

4. Bevollmächtigter:

5. AVCP - System/e:

6. Europäisches Bewertungsdokument: EAD 330499-01-0601 ETA-12/0258; 2020-06-17 Europäische Technische Bewertung:

DIBt- Deutsches Institut für Bautechnik Technische Bewertungsstelle: Notifizierte Stelle(n): 1343 MPA Darmstadt / 2873 TU Darmstadt

7. Erklärte Leistung(en):

Mechanische Festigkeit und Standsicherheit (BWR 1)

Charakteristischer Widerstand bei Zugbelastung Widerstand für Stahlversagen: Anhänge C1- C3

(statische und quasi-statische Belastung): Widerstand für kombiniertes Versagen Anhänge C4- C10 $\tau_{Rk,100}\text{= NPD}$ Herausziehen und Betonausbruch:

Widerstand für kegelförmigen Betonausbruch: Anhang C4

Randabstand zur Vermeidung von Spaltversagen Anhänge C4

bei Belastung: Robustheit: Anhang C4-C10, C15, C16

Maximales Montagedrehmoment: Anhänge B4- B8

Minimaler Rand- und Achsabstand: Anhänge B4- B8

Charakteristischer Widerstand bei Querbelastung

Widerstand für Stahlversagen: Anhänge C1- C3 (statische und quasi-statische Belastung): Widerstand für Pry-out Versagen: Anhang C4

Widerstand Betonkantenbruch: Anhang C4

Charakteristische Widerstände und Verschiebungen für die seismischen Leistungskategorien C1 und C2:

Widerstand Zugbelastung, Verschiebungen Anhänge C13, C14, C15

Anhänge C13, C14, C16

Anhänge C13, C14, C16

Anhänge C13, C14

Kategorie C1: Widerstand Zugbelastung, Verschiebungen

Kategorie C2:

Widerstand Querbelastung, Verschiebungen, Kategorie C1:

Widerstand Querbelastung, Verschiebungen,

Kategorie C2:

Faktor Ringspalt: Anhang C13

Verschiebungen unter kurz- und langzeitiger

Anhänge C11- C12 Verschiebungen unter kurz- und langzeitiger Belastung: Belastung:

NPA

Hygiene, Gesundheit und Umwelt (BWR 3)

Emission und/ oder Freisetzung von gefährlichen Stoffen

Fischer DATA DOP ECs V21.xlsm 1/2

 Angemessene Technische Dokumentation und/oder Spezifische Technische Dokumentation:

Die Leistung des vorstehenden Produkts entspricht der erklärten Leistung/den erklärten Leistungen. Für die Erstellung der Leistungserklärung im Einklang mit der Verordnung (EU) Nr. 305/2011 ist allein der obengenannte Hersteller verantwortlich.

Unterzeichnet für den Hersteller und im Namen des Herstellers von:

Thilo Pregartner, Dr.-Ing.

Tumlingen, 2020-07-01

i.V. P. Sa

Peter Schillinger, Dipl.-Ing.

Diese Leistungserklärung wurde in mehreren Sprachen erstellt. Für alle Streitigkeiten, die sich aus der Auslegung ergeben, ist die Fassung in englischer Sprache maßgeblich.

Der Anhang enthält freiwillige und ergänzende Informationen in englischer Sprache, die über die (sprachneutral festgelegten) gesetzlichen Anforderungen hinausgehen.

Fischer DATA DOP_ECs_V21.xlsm 2/2

Besonderer Teil

1 Technische Beschreibung des Produkts

Das Injektionssystem fischer Superbond ist ein Verbunddübel, der aus einer Mörtelkartusche mit dem Injektionsmörtel fischer FIS SB oder dem Patronensystem fischer RSB und einem Stahlteil nach Anhang A 5 besteht.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Mörtelpatrone wird in ein Bohrloch gesetzt und das Stahlteil durch gleichzeitiges Schlagen und Drehen eingetrieben. Der Dübel wird durch Ausnutzung des Verbundes zwischen Stahlteil, Mörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß anwendbarem Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

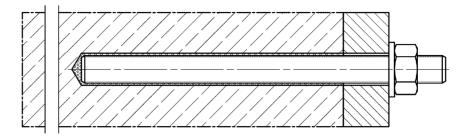
3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung			
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang B 4 bis B 8, C 1 bis C 10			
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 1 bis C 4			
Verschiebungen unter Kurzzeit- und Langzeitbelastung	Siehe Anhang C 11 und C 12			
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C1 und C2	Siehe Anhang C 13 bis C 16			

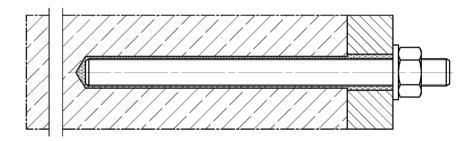
3.2 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentli	ches Merkmal	Leistung
Inhalt, Em Stoffen	ission und/oder Freisetzung von gefährlichen	Leistung nicht bewertet

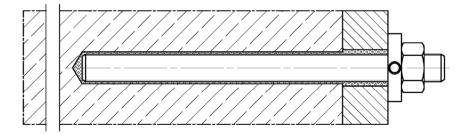
Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage


Gemäß dem Europäischen Bewertungsdokument EAD 330499-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1


Einbauzustände Teil 1

Ankerstange oder fischer Ankerstange RG M mit fischer Injektionssystem FIS SB


Vorsteckmontage

Durchsteckmontage (Ringspalt mit Mörtel verfüllt)

Vor- oder Durchsteckmontage mit nachträglich verpresster fischer Verfüllscheibe (Ringspalt mit Mörtel verfüllt)

Abbildungen nicht maßstäblich

fischer Superbond

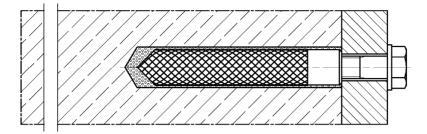
Produktbeschreibung Einbauzustände Teil 1 Anhang A 1

Appendix 3/40

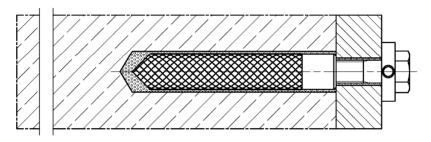
Einbauzustände Teil 2 Betonstahl mit fischer Injektionssystem FIS SB fischer Bewehrungsanker FRA mit fischer Injektionssystem FIS SB Vorsteckmontage Durchsteckmontage (Ringspalt mit Mörtel verfüllt)

Abbildungen nicht maßstäblich

fischer Superbond

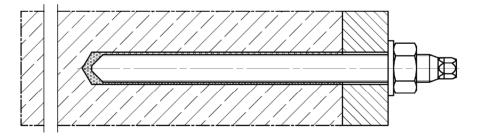

Produktbeschreibung Einbauzustände Teil 2 Anhang A 2

Appendix 4/40

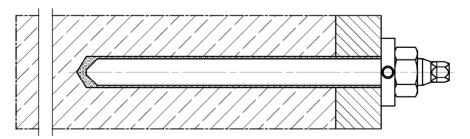

Einbauzustände Teil 3

fischer Innengewindeanker RG MI mit fischer Patronensystem RSB oder fischer Injektionssystem FIS SB

Vorsteckmontage



Vorsteckmontage mit nachträglich verpresster fischer Verfüllscheibe (Ringspalt mit Mörtel verfüllt)



fischer Ankerstange RG M mit fischer Patronensystem RSB

Vorsteckmontage

Vorsteckmontage mit nachträglich verpresster fischer Verfüllscheibe (Ringspalt mit Mörtel verfüllt)

Abbildungen nicht maßstäblich

fischer Superbond

Produktbeschreibung Einbauzustände Teil 3 Anhang A 3

Appendix 5/40

Übersicht Systemkomponenten Teil 1 Injektionskartusche (Shuttlekartusche) mit Verschlusskappe; Größen: 390 ml, 585 ml, 1100 ml, 1500 ml Aufdruck: fischer FIS SB, FIS SB High Speed, Verarbeitungshinweise, Haltbarkeitsdatum, Kolbenwegskala (optional), Aushärteund Verarbeitungszeiten (temperaturabhängig), Gefahrenhinweis, Größe, Volumen Mörtelpatrone Größen: 8, 10 mini, 10, 12 mini, 12, 16 mini, 16, 16 E, 20, 20 E / 24, 30 Statikmischer FIS MR Plus oder UMR Injektionshilfe und Verlängerungsschlauch für Statikmischer Abbildungen nicht maßstäblich fischer Superbond Produktbeschreibung Anhang A 4 Übersicht Systemkomponenten Teil 1; Appendix 6/40 Kartuschen / Patronen / Statikmischer / Injektionshilfe

Übersicht Systemkomponenten Teil 2 **Ankerstange** Größen: M8, M10, M12, M16, M20, M24, M27, M30 fischer Ankerstange RG M Größen: M8, M10, M12, M16, M20, M24, M30 fischer Innengewindeanker RG MI Größen: M8, M10, M12, M16, M20 Schraube / Gewindestange / Scheibe / Mutter fischer Verfüllscheibe mit Injektionshilfe **Betonstahl** Nenndurchmesser: $\phi 8$, $\phi 10$, $\phi 12$, $\phi 14$, $\phi 16$, $\phi 20$, $\phi 25$, $\phi 28$, $\phi 32$ fischer Bewehrungsanker FRA Größen: M12, M16, M20, M24 Abbildungen nicht maßstäblich fischer Superbond Produktbeschreibung Anhang A 5 Übersicht Systemkomponenten Teil 2; Appendix 7/40 Stahlteile

Übersicht Systemkomponenten Teil 3 Reinigungsbürste BS / BSB Ausbläser ABG oder ABP mit Reinigungsdüse Abbildungen nicht maßstäblich fischer Superbond Anhang A 6 Produktbeschreibung Übersicht Systemkomponenten Teil 3; Appendix 8/40 Reinigungsbürste / Ausbläser / Injektionshilfe

Teil	Bezeichnung		Mate	rial			
1	Injektionskartusche		Mörtel, Härte				
		Stahl	Ī	nder Stahl R	Hochkorrosions- beständiger Stahl HCR		
	Stahlart	verzinkt	Korrosionsv klasse CF	088-1:2014 der widerstands- RC III nach -1-4:2015	gemäß EN 10088-1:201 der Korrosionswiderstand klasse CRC V nach EN 1993-1-4:2015		
2	Ankerstange	Festigkeitsklasse 4.8, 5.8 oder 8.8; EN ISO 898-1:2013 galv. verzinkt \geq 5 μ m, ISO 4042:2018/Zn5/An(A2K) oder feuerverzinkt \geq 40 μ m EN ISO 10684:2004 $f_{uk} \leq$ 1000 N/mm² $A_5 >$ 12% Bruchdehnung	50, 70 EN ISO 35 1.4401; 1.4 1.4571; 1.4 1.4062, 1.4 EN 1008 f _{uk} ≤ 100	oitsklasse oder 80 506-1:2009 404; 1.4578; 439; 1.4362; 662, 1.4462; 88-1:2014 10 N/mm ² ruchdehnung	Festigkeitsklasse 50 oder 80 EN ISO 3506-1:2009 oder Festigkeitsklasse 7 mit f_{yk} = 560 N/mm ² 1.4565; 1.4529; EN 10088-1:2014 $f_{uk} \le$ 1000 N/mm ² $A_5 >$ 12% Bruchdehnung		
		Bruchdehnu seismischen Le	ing A₅ > 8%, we eistungskategor	enn keine Anford ie C2 zu berück	derung der sichtigen sind		
3	Unterlegscheibe ISO 7089:2000	galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) oder feuerverzinkt ≥ 40 μm EN ISO 10684:2004	1.4401; 1.4578 1.4439;	1.4404; ;1.4571; ;1.4362; 38-1:2014	1.4565; 1.4529; EN 10088-1:2014		
4	Sechskantmutter	Festigkeitsklasse 4, 5 oder 8; EN ISO 898-2:2012 galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) oder feuerverzinkt ≥ 40 μm EN ISO 10684:2004	50, 70 EN ISO 3! 1.4401; 1.4 1.4571; 1.4	oitsklasse oder 80 506-1:2009 404; 1.4578; 439; 1.4362; 88-1:2014	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014		
5	fischer Innengewindeanker RG MI	Festigkeitsklasse 5.8 ISO 898-1:2013 galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K)	EN ISO 35 1.4401; 1.4 1.4571; 1.4	sklasse 70 506-1:2009 404; 1.4578; 439; 1.4362; 8-1:2014 ⁾	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014		
6	Handelsübliche Schraube oder Gewindestange für fischer Innengewinde- anker RG MI	Festigkeitsklasse 5.8 oder 8.8; EN ISO 898-1:2013 galv. verzinkt ≥ 5 µm, ISO 4042:2018/Zn5/An(A2K) A ₅ > 8 % Bruchdehnung	EN ISO 39 1.4401; 1.4 1.4571; 1.4 EN 1008	sklasse 70 506-1:2009 404; 1.4578; 439; 1.4362; 88-1:2014 uchdehnung	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014 A ₅ > 8 % Bruchdehnung		
7	fischer Verfüllscheibe ähnlich DIN 6319-G	galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) oder feuerverzinkt ≥ 40 μm EN ISO 10684:2004	1.4571; 1.4	404; 1.4578; 439; 1.4362; 88-1:2014	1.4565;1.4529; EN 10088-1:2014		
8	Betonstahl EN 1992-1-1:2004 und AC:2010, Anhang C	Stäbe und Betonstahl vom Rii gemäß NDP oder NCL gemäß fuk = ftk = k·fyk			k		
9	fischer Bewehrungsanker FRA	Betonstahlteil: Stäbe und Betonstahl vom Ring Klasse B oder C mit fyk und k gemäß NDP oder NCL der EN 1992-1-1:2004 + AC:2010 fuk = ftk = k · fyk Gewindeteil: Festigkeitsklasse EN ISO 3506-1:2009 1.4401, 1.4404, 1.4571, 1.457 1.4362, 1.4062 gemäß EN 10 der Korrosionswiderstandskla nach EN 1993-1-4:2015 1.4565; 1.4529, gemäß EN 10 der Korrosionswiderstandskla nach EN 1993-1-4:2015					

Produktbeschreibung Werkstoffe Anhang A 7

Appendix 9/40

Spezifizierung des Verwendungszwecks (Teil 1)

Tabelle B1.1: Übersicht Nutzungs- und Leistungskategorien, Injektionssystem FIS SB

Beanspruchung der	· Verankerung				FIS	SB mit .				
		Anker	stange	Inneng	cher ewinde- RG MI		nstahl	Bewehru	scher rungsanker FRA	
Hammerbohren mit Standardbohrer	E-000000000000000000000000000000000000				alle G	rößen				
Hammerbohren mit Hohlbohrer (fischer FHD, Heller "Duster Expert"; Bosch "Speed Clean"; Hilti "TE-CD, TE-YD", DreBo "D-Plus", DreBo "D-Max")				Boh	rernenndu 12 mm b	rchmesse is 35 mm	r (d ₀)			
Diamantbohren					nicht z	ulässig				
Statische und quasi-statische Belastung, im	ungerissenen Beton gerissenen Beton	alle Größen	Tabellen: C1.1 C4.1 C5.1 C11.1	alle Größen	Tabellen: C2.1 C4.1 C7.1 C11.2	alle Größen	Tabellen: C3.1 C4.1 C9.1 C12.1	alle Größen	Tabellen C3.2 C4.1 C10.1 C12.2	
Seismische Leistungs- kategorie (nur Hammer-	sche gs- rie Tabellen: C13.1 Größen C14.2 C15.1			alle Größen	Tabellen: C14.1 C14.2 C15.2					
bohren mit Standardbohrer / Hohlbohrer)	C2	M12 M16 M20 M24	Tabellen: C13.1 C14.2 C16.1			_1)	_1)			
I1 Nutzungs-	Trockener oder nasser Beton				alle G	rößen				
kategorie I2	Wasser- gefülltes Bohrloch				nicht z	ulässig				
Einbaurichtung		D3 (hori	zontale ur					Überkopfn	nontage)	
Einbaumethode					oder Durc					
Einbautemperatur		FIS S	FIS B High Sp		nin = -15 °(nin = -20 °(
<u> </u>	eraturbereich I		C bis +40 °		= +40 °C					
temperatur- ———	eraturbereich II		c bis +80 °		= +80 °C					
bereiche Tempe	eraturbereich III		bis +120		= +120 °C					
<u> </u>	raturbereich IV	-40 °C	bis +150	°C T _{st}	= +150 °C	$C / T_{lt} = +9$	0 °C			
1) keine Leistung	bewertet						ı			
fischer Superbo	ond									
Verwendungszw Spezifikationen (T		jektionssy	stem FIS	SB				Anhan Appendix	_	

Spezifizierung des Verwendungszwecks (Teil 2)

Tabelle B	2.1:	Übersicht Nu	ıtzungs- und Leis	tungskategorien,	Patronensyste	m RSB			
Beanspruch	ung der	· Verankerung		R	SB mit				
			fischer Anker	stange RG M	fischer Innengev	gewindeanker RG MI			
Hammerboh Standardboh		£4999999999		alle G	rößen				
Hammerboh Hohlbohrer (fischer FHD "Duster Expe Bosch "Spee Clean"; Hilti "TE-CD, TE- DreBo "D-PI DreBo "D-M), Heller ert"; ed -YD" us",			Bohrernenndurchmesser (d ₀) alle alle alle Größen ¹⁾					
Diamantboh	ren			alle Gr	ößen¹)				
Statische un		ungerissenen Beton	alle Größen	Tabellen: C1.1	alle Größen	Tabellen: C2.1			
quasi-statisc Belastung, ii		gerissenen Beton	alle Größen ¹⁾	C4.1 C6.1 C11.1	alle Größen ¹⁾	C4.1 C8.1 C11.2			
Seismische Leistungs- kategorie (nur Hamme	Leistungs- C1 categorie		alle Größen	Tabellen: C13.1 C14.2 C15.1 C15.1					
bohren mit Standardbok Hohlbohrer)		C2	-	_2)					
Nutzungs-	l1	Trockener oder nasser Beton	alle Größen						
kategorie	12	Wasser- gefülltes Bohrloch	alle Größen						
Einbaurichtu	ıng		D3 (horizontale ur	nd vertikale Montage	nach unten, sowie	Überkopfmontage)			
Einbaumeth	ode			nur Vorste	ckmontage				
Einbautemp				.,	is $T_{i,max} = +40 ^{\circ}C$				
		eraturbereich I	-40 °C bis +40 °						
Gebrauchs- temperatur-	<u>.</u>	eraturbereich II							
bereiche	·	eraturbereich III			C / T _{It} = +72 °C				
	Tempe	raturbereich IV	-40 °C bis +150	$^{\circ}$ C $T_{st} = +150 ^{\circ}$ C	C / T _{It} = +90 °C				
¹⁾ Bei Diar ²⁾ keine Le		nren im gerisse	nen Beton nur Bohre	ernenndurchmesser	(d₀) ≥ 18 mm erlaub	ot			
fischer S	uperbo	ond							
Verwendu Spezifikatio			atronensystem RSB			Anhang B 2 Appendix 11/40			

Spezifizierung des Verwendungszwecks (Teil 3)

Verankerungsgrund:

 Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern der Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206:2013+A1:2016

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Für alle anderen Bedingungen gemäß EN 1993-1-4:2015 entsprechend der Korrosionswiderstandsklassen nach Anhang A 7 Tabelle A7.1.

Bemessung:

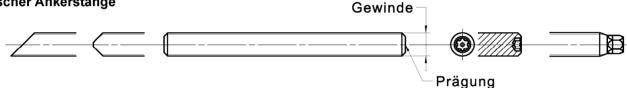
- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Stahlbetonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. Auf den Konstruktionszeichnungen ist die Lage der Dübel angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern).
- Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit: EN 1992-4:2018 und EOTA Technical Report TR 055, Fassung Februar 2018

Einbau:

- Einbau des Dübels durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters
- · Im Fall von Fehlbohrungen sind diese zu vermörteln
- · Effektive Verankerungstiefe markieren und einhalten
- Überkopfmontage erlaubt

fischer Superbond

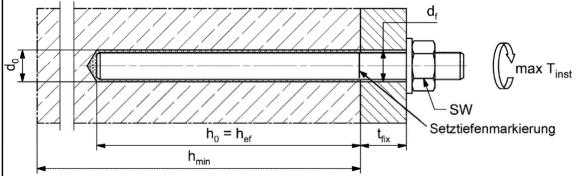
Verwendungszweck


Spezifikationen (Teil 3)

Anhang B 3

Tabelle B4.1: Montagekennwerte für Ankerstangen in Verbindung mit dem Injektionssystem FIS SB

Ankerstangen		G	ewinde	M8	M10	M12	M16	M20	M24	M27	M30
Schlüsselweite SW		SW		13	17	19	24	30	36	41	46
Bohrernenndurchmesser d ₀		d₀		10	12	14	18	24	28	30	35
Bohrlochtiefe		h o					h ₀ =	h _{ef}			
Effektive Verankerungstiefe		h _{ef, min}		60	60	70	80	90	96	108	120
		h _{ef, max}		160	200	240	320	400	480	540	600
Minimaler Achs- und Randabstand	l	S _{min} = C _{min}	[mm]	40	45	55	65	85	105	120	140
Durchmesser des	Vorsteck- montage	df		9	12	14	18	22	26	30	33
Durchgangsloch im Anbauteil	Durchsteck- montage	d _f		11	14	16	20	26	30	33	40
Minimale Dicke des Betonbauteils h _{min}		h _{min}		h _{ef} +	30 (≥	100)			h _{ef} + 2do)	
Maximales Montage	drehmoment	max T _{inst}	[Nm]	10	20	40	60	120	150	200	300


Prägung (an beliebiger Stelle) fischer Ankerstange:

Stahl galvanisch verzinkt FK ¹⁾ 8.8	• oder +	Stahl feuerverzinkt FK¹) 8.8	•
Hochkorrosionsbeständiger Stahl HCR FK ¹⁾ 50	0 •	Hochkorrosionsbeständiger Stahl HCR FK1) 70	-
Hochkorrosionsbeständiger Stahl HCR FK 80	(Nichtrostender Stahl R FK 50	~
Nichtrostender Stahl R FK 80	*		

Alternativ: Farbmarkierung nach DIN 976-1:2016

1) FK = Festigkeitsklasse

Einbauzustände:

Handelsübliche Gewindestangen, Unterlegscheiben und Sechskantmuttern dürfen ebenfalls verwendet werden, wenn die folgenden Anforderungen erfüllt werden:

- Materialien, Abmessungen und mechanische Eigenschaften gemäß Anhang A7, Tabelle A7.1
- Prüfzeugnis 3.1 gemäß EN 10204:2004, die Dokumente müssen aufbewahrt werden
- Markierung der Verankerungstiefe

Abbildungen nicht maßstäblich

fischer Superbond

Verwendungszweck

Montagekennwerte für Ankerstangen in Verbindung mit dem Injektionssystem FIS SB

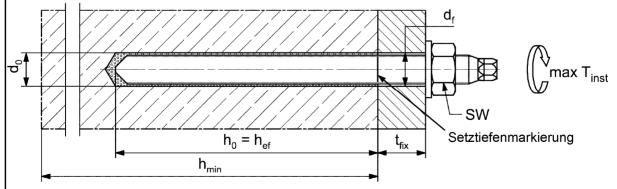
Anhang B 4

Appendix 13/40

Tabelle B5.1: Montagekennwerte für fischer Ankerstangen RG M in Verbindung mit dem Patronensystem RSB

Ankerstangen RG M	G	ewinde	M8	M10	M12	M16	M20	M24	M30
Schlüsselweite	SW		13	17	19	24	30	36	46
Bohrernenndurchmesser	d ₀		10	12	14	18	25	28	35
Bohrlochtiefe	h₀					$h_0 = h_{ef}$			
h _e				75	75	95			
Effektive Verankerungstiefe	h _{ef,2}		80	90	110	125	170	210	280
	h _{ef,3}			150	150	190	210		
Minimaler Achs- und Randabstand	S _{min} = C _{min}	[mm]	40	45	55	65	85	105	140
Durchmesser des Durchgangsloch im Anbauteil nur Vorsteck- montage	df		9	12	14	18	22	26	33
Minimale Dicke des Betonbauteils	cke des Betonbauteils h _{min}		h _{ef} + 30 (≥ 100)			h _{ef} + 2d ₀			
Maximales Montagedrehmoment	max T _{inst}	[Nm]	10	20	40	60	120	150	300

fischer Ankerstange RG M


Prägung (an beliebiger Stelle) fischer Ankerstange RG M:

Stahl galvanisch verzinkt FK¹¹ 8.8	oder +	Stahl feuerverzinkt FK ¹⁾ 8.8	•
Hochkorrosionsbeständiger Stahl HCR FK ¹⁾ 50	•	Hochkorrosionsbeständiger Stahl HCR FK ¹⁾ 70	-
Hochkorrosionsbeständiger Stahl HCR FK 80	(Nichtrostender Stahl R FK 50	~
Nichtrostender Stahl R FK 80	*		
	_	A	/2

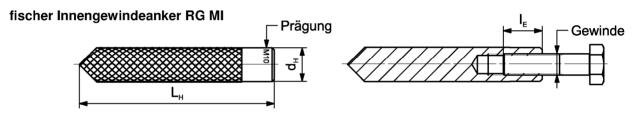
Alternativ: Farbmarkierung nach DIN 976-1:2016

¹⁾ PC = property class

Einbauzustände:

Abbildungen nicht maßstäblich

fischer Superbond

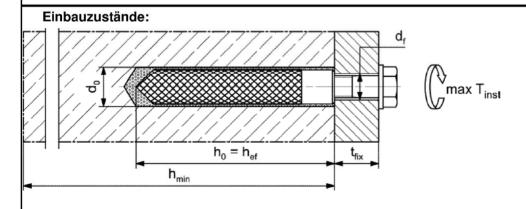

Verwendungszweck

Montagekennwerte für fischer Ankerstangen RG M in Verbindung mit dem Patronensystem RSB

Anhang B 5

Appendix 14/40

Tabelle B6.1: Montageke	Tabelle B6.1: Montagekennwerte für fischer Innengewindeanker RG MI										
Innengewindeanker RG MI	G	ewinde	М8	M10	M12	M16	M20				
Hülsendurchmesser	$d = d_H$		12	16	18	22	28				
Bohrernenndurchmesser	d ₀		14	18	20	24	32				
Bohrlochtiefe	h ₀				$h_0 = h_{ef} = L_H$						
Effektive Verankerungstiefe (h _{ef} = L _H)	h _{ef}		90	90	125	160	200				
Minimaler Achs- und Randabstand	Smin = Cmin	[mm]	55	65	75	95	125				
Durchmesser des Durchgangsloch im Anbauteil	df		9	12	14	18	22				
Mindestdicke des Betonbauteils	h _{min}		120	125	165	205	260				
Maximale Einschraubtiefe	I _{E,max}		18	23	26	35	45				
Minimale Einschraubtiefe	I _{E,min}		8	10	12	16	20				
Maximales Montagedrehmoment	max T _{inst}	[Nm]	10	20	40	80	120				



Prägung: Ankergröße z.B.: M10

Nichtrostender Stahl → zusätzlich R; z.B.: M10 R

Hochkorrosionsbeständiger Stahl → zusätzlich HCR; z.B.: M10 HCR

Befestigungsschraube oder Ankerstangen / Gewindestangen (einschließlich Mutter und Unterlegscheibe) müssen den zugehörigen Materialien und Festigkeitsklassen gemäß Anhang A 7, Tabelle A7.1 entsprechen

Abbildungen nicht maßstäblich

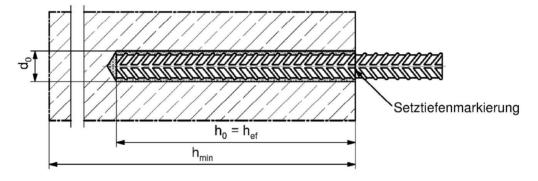
fischer Superbond

Verwendungszweck

Montagekennwerte für fischer Innengewindeanker RG MI

Anhang B 6

Appendix 15/40


Tabelle B7.1: Montagekenn	Tabelle B7.1: Montagekennwerte für Betonstahl										
Stabnenndurchmesser		ф	8 ¹⁾	10 ¹⁾	12 ¹⁾	14	16	20	25	28	32
Bohrernenndurchmesser	d₀		10 12	12 14	14 16	18	20	25	30	35	40
Bohrlochtiefe	h ₀		$h_0 = h_{\text{ef}}$								
Effoktivo Vorankorungstiofo	$h_{\text{ef,min}}$		60	60	70	75	80	90	100	112	128
Effektive Verankerungstiefe	h _{ef,max}		160	200	240	280	320	400	500	560	640
Minimaler Achs- und Randabstand	S _{min} = C _{min}	[mm]	40	45	55	60	65	85	110	130	160
Mindestdicke des Betonbauteils	h _{min}		h _{ef} + 30 (≥ 100) h _{ef} + 20			2d ₀					

¹⁾ Beide Bohrernenndurchmesser sind möglich

Betonstahl

- Mindestwert der bezogenen Rippenfläche f_{R,min} gemäß Anforderung aus EN 1992-1-1:2004 + AC:2010
- Die Rippenhöhe muss im folgenden Bereich liegen: 0,05 · φ ≤ h_{rib} ≤ 0,07 · φ
 (φ = Stabnenndurchmesser, h_{rib} = Rippenhöhe)

Einbauzustände:

Abbildungen nicht maßstäblich

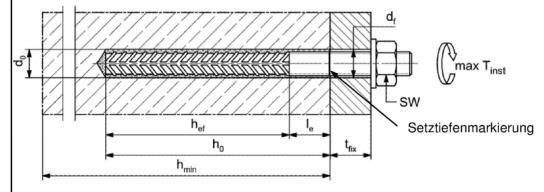
fischer Superbond

Verwendungszweck Montagekennwerte Betonstahl Anhang B 7

Appendix 16/40

Tabelle B8.1: N	Tabelle B8.1: Montagekennwerte für fischer Bewehrungsanker FRA										
Bewehrungsanker F	RA .	G	ewinde	M1	2 ¹⁾	M16	M20	M24			
Stabnenndurchmess	er	ф		1	2	16	20	25			
Schlüsselweite		SW		1	9	24	30	36			
Bohrernenndurchmes	sser	d ₀		14	16	20	25	30			
Bohrlochtiefe		h ₀				h _{ef}	+ le				
Effect the Manager of the Control of		h _{ef,min}		7	0	80	90	96			
Effektive Verankerun	gstiere -	h _{ef,max}		140		220	300	380			
Abstand Betonoberflä Schweißstelle	äche zur	le	[mm]	m] 100							
Minimaler Achs- und Randabstand		S _{min} = C _{min}		5	5	65	85	105			
Durchmesser des	Vorsteck- montage	≤ d _f		1	4	18	22	26			
Durchgangsloch im Anbauteil	Durchsteck- montage	≤ d _f		1	8	22	26	32			
Mindestdicke des Be	Mindestdicke des Betonbauteils h _{min}			h ₀ + 30							
Maximales Montageo	Irehmoment	max T _{inst}	[Nm]	4	0	60	120	150			

¹⁾ Beide Bohrernenndurchmesser sind möglich


fischer Bewehrungsanker FRA

Prägung stirnseitig z. B.:

FRA (für nichtrostenden Stahl);
FRA HCR (für hochkorrosionsbeständigen Stahl)

Einbauzustände:

Abbildungen nicht maßstäblich

fischer Superbond

Verwendungszweck

Montagekennwerte fischer Bewehrungsanker FRA

Anhang B 8

Appendix 17/40

Tabelle B9.1: Abmessungen der Mörtelpatronen RSB													
Mörtelpatrone	RSE	3	RSB 8	RSB 10 mini	RSB 10	RSB 12 mini	RSB 12	RSB 16 mini	RSB 16	RSB 16 E	RSB 20	RSB 20 E / 24	RSB 30
Patronen Durchmesser	d₽	[mm]	9,0	10),5	12	2,5		16,5		23	3,0	27,5
Patronen Länge	L _P	[mm]	85	72	90	72	97	72	95	123	160	190	260

Tabelle B9.2: Zuordnung der Mörtelpatronen RSB zu fischer Ankerstangen RG M

Ankerstange RG M			М8	M10	M12	M16	M20	M24	M30
Effektive Verankerungstiefe	h _{ef, 1}	[mm]		75	75	95			
Zugehörige Mörtelpatrone RSB		[-]		10 mini	12 mini	16 mini			
Effektive Verankerungstiefe	h _{ef, 2}	[mm]	80	90	110	125	170	210	280
Zugehörige Mörtelpatrone RSB		[-]	8	10	12	16	20	20 E/ 24	30
Effektive Verankerungstiefe	h _{ef, 3}	[mm]		150	150	190	210		
Zugehörige Mörtelpatrone RSB		[-]		2 x 10 mini	2 x 12 mini	2 x 16 mini	20 E / 24		

Tabelle B9.3: Zuordnung der Mörtelpatronen RSB zu fischer Innengewindeanker RG MI

Innengewindeanker RG N	I	М8	M10	M12	M16	M20
Effektive Verankerungstiefe	ef [mm]	90	90	125	160	200
Zugehörige Mörtelpatrone RSB	[-]	10	12	16	16 E	20 E / 24

Abbildungen nicht maßstäblich

fischer Superbond

Verwendungszweck

Abmessungen Mörtelpatrone

Zuordnung Mörtelpatronen RSB zu Ankerstange RG M und Innengewindeanker RG MI

Anhang B 9

Appendix 18/40

Tabelle B10.1: Kennwerte der Reinigungsbürsten BS / BSB (Stahlbürste mit Stahlborsten)

Die Größe der Reinigungsbürste bezieht sich auf den Bohrernenndurchmesser

Bohrernenn- durchmesser	d₀		10	12	14	16	18	20	24	25	28	30	32	35	40
Steel brush diameter BS	d _b	[mm]	11	14	16	2	0	25	26	27	30		40		1
Stahlbürsten- durchmesser BSB	dь		-	-	-		-	-	-	1	-		-		42

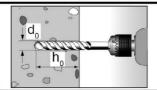
Tabelle B10.2: Maximale Verarbeitungszeit des Mörtels und minimale Aushärtezeit (Die Temperatur im Beton darf während der Aushärtung des Mörtels den angegebenen Mindestwert nicht unterschreiten. Minimale Kartuschentemperatur +5 °C; minimale Patronentemperatur -15 °C)

Temperatur im	Maximale Ver tw	arbeitungszeit	Minimale Aushärtezeit t _{cure}				
Verankerungsgrund [°C]	FIS SB	FIS SB High Speed	FIS SB	FIS SB High Speed	RSB		
-30 bis -20					120 h		
> -20 bis -15		60 min		24 h	48 h		
> -15 bis -10	60 min	30 min	36 h	8 h	30 h		
> -10 bis -5	30 min	15 min	24 h	3 h	16 h		
> -5 bis 0	20 min	10 min	8 h	2 h	10 h		
> 0 bis 5	13 min	5 min	4 h	1 h	45 min		
> 5 bis 10	9 min	3 min	2 h	45 min	30 min		
> 10 bis 20	5 min	2 min	1 h	30 min	20 min		
> 20 bis 30	4 min	1 min	45 min	15 min	5 min		
> 30 bis 40	2 min		30 min		3 min		

Abbildungen nicht maßstäblich

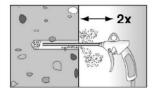
fischer Superbond

Verwendungszweck


Kennwerte der Reinigungsbürsten Verarbeitungs- und Aushärtezeiten Anhang B 10

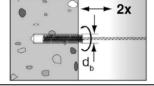
Appendix 19/40

Montageanleitung Teil 1; Injektionssystem FIS SB

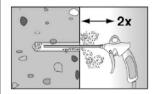

Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Standardbohrer)

1

Bohrloch erstellen. Bohrlochdurchmesser d₀ und Bohrlochtiefe h₀ siehe **Tabellen B4.1**, **B6.1**, **B7.1**, **B8.1**


2

Bohrloch reinigen:
Bohrloch zweimal unter Verwendung
ölfreier Druckluft ausblasen (p > 6 bar)
Im ungerissenen Beton darf der
Ausbläser ABG verwendet werden
(Montagebedingungen:
d₀ < 18 mm und h_{ef} < 10d)



3

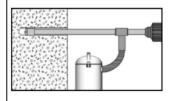
Bohrloch zweimal ausbürsten. Für Bohrlochdurchmesser ≥ 30 mm eine Bohrmaschine benutzen. Bei tiefen Bohrlöchern Verlängerung verwenden. Entsprechende Bürsten siehe **Tabelle B10.1**

4

Bohrloch reinigen:

Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar) Im ungerissenen Beton darf der Ausbläser ABG verwendet werden (Montagebedingungen: d₀ < 18 mm und h_{ef} < 10d)

Mit Schritt 5 fortfahren (Anhang B 12)


Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Hohlbohrer)

1

Einen geeigneten Hohlbohrer (siehe **Tabelle B1.1**) auf Funktion der Staubabsaugung prüfen

2

Verwendung eines geeigneten Staubabsaugsystems wie z.B. fischer FVC 35 M oder eines Staubabsaugsystems mit vergleichbaren Leistungsdaten

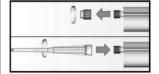
Bohrloch mit Hohlbohrer erstellen. Das Staubabsaugsystem muss den Bohrstaub konstant während des gesamten Bohrvorgangs absaugen und auf maximale Leistung eingestellt sein. Bohrlochdurchmesser d₀ und Bohrlochtiefe h₀ siehe **Tabellen B4.1**, **B6.1**, **B7.1**, **B8.1**

Mit Schritt 5 fortfahren (Anhang B 12)

fischer Superbond

Verwendungszweck

Montageanleitung Teil 1, Injektionssystem FIS SB


Anhang B 11

Appendix 20/40

Montageanleitung Teil 2; Injektionssystem FIS SB

Kartuschenvorbereitung

5

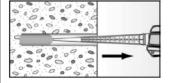
Verschlusskappe abschrauben

Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein)

6

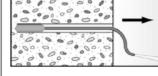
Kartusche in die Auspresspistole legen.

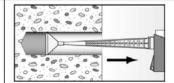
7



Einen etwa 10 cm langen Strang auspressen, bis der Mörtel gleichmäßig grau gefärbt ist. Nicht gleichmäßig grauer Mörtel ist zu verwerfen.

Mörtelinjektion


8


Ca. 2/3 des Bohrlochs mit Mörtel

füllen. Immer am Bohrlochgrund

beginnen und Blasen vermeiden

Bei Bohrlochtiefen ≥ 150 mm Verlängerungsschlauch verwenden

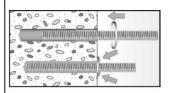
Bei Überkopfmontage, tiefen Bohrlöchern (h₀ > 250 mm) oder großen Bohrlochdurchmessern (d₀ ≥ 40 mm) Injektionshilfe verwenden

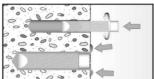
Mit Schritt 9 fortfahren (Anhang B 13)

fischer Superbond

Verwendungszweck

Montageanleitung Teil 2, Injektionssystem FIS SB

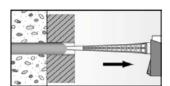

Anhang B 12


Appendix 21/40

Montageanleitung Teil 3; Injektionssystem FIS SB

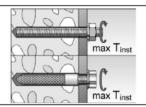
Montage Ankerstange und fischer Innengewindeanker RG MI

9

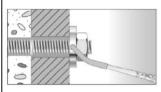


Nur saubere und ölfreie Stahlteile verwenden. Setztiefe der Stahlteiles markieren. Die Ankerstange oder den fischer Innengewindeanker RG MI mit leichten Drehbewegungen in das Bohrloch schieben. Nach dem Setzen der Stahlteile muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein. Falls nicht, das Stahlteil sofort ziehen und Mörtel nachinjizieren.

Bei Überkopfmontage die Stahlteile mit Keilen (z.B. fischer Zentrierkeile) fixieren bis der Mörtel auszuhärten beginnt


Bei Durchsteckmontage den Ringspalt mit Mörtel verfüllen

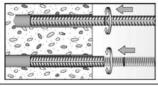
11


Aushärtezeit abwarten, t_{cure} siehe **Tabelle B10.2**

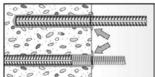
12

Montage des Anbauteils, max T_{inst} siehe **Tabelle B4.1** and **B6.1**

Option


Nachdem die Aushärtezeit erreicht ist, kann der Bereich zwischen Stahlteil und Anbauteil (Ringspalt) über die fischer Verfüllscheibe mit Mörtel befüllt werden.

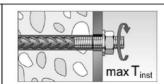
Druckfestigkeit ≥ 50 N/mm² (z.B. fischer Injektionsmörtel FIS HB, FIS SB, FIS V, FIS EM Plus).


ACHTUNG: Bei Verwendung der fischer Verfüllscheibe reduziert sich t_{fix} (Nutzlänge des Ankers)

Montage Betonstahl und fischer Bewehrungsanker FRA

10

Nur sauberen und ölfreien Betonstahl oder fischer Bewehrungsanker FRA verwenden. Die Setztiefe markieren. Mit leichten Drehbewegungen den Bewehrungsstab oder den fischer Bewehrungsanker FRA kräftig bis zur Setztiefenmarkierung in das gefüllte Bohrloch schieben


Nach dem Erreichen der Setztiefenmarkierung muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein. Falls nicht, das Verankerungselement sofort ziehen und Mörtel nachinjizieren.

11

Aushärtezeit abwarten, t_{cure} siehe **Tabelle B10.2**

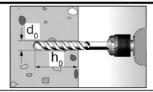
12

Montage des Anbauteils, max T_{inst} siehe **Tabelle B8.1**

fischer Superbond

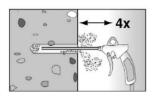
Verwendungszweck

Montageanleitung Teil 3, Injektionssystem FIS SB


Anhang B 13

Appendix 22/40

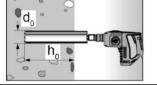
Montageanleitung Teil 4; Patronensystem RSB

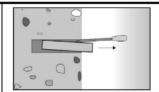

Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Standardbohrer)

1

Bohrloch erstellen. Bohrlochdurchmesser d₀ und Bohrlochtiefe h₀ siehe **Tabellen B5.1** und **B6.1**

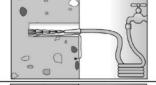
2


Bohrloch reinigen: Bohrloch viermal unter Verwendung ölfreier Druckluft ausblasen (p ≥ 6 bar) Im ungerissenen Beton darf der Ausbläser ABG verwendet werden (Montagebedingungen: d₀ < 18 mm und h_{ef} < 10d)

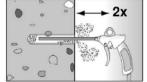

Mit Schritt 6 fortfahren (Anhang B 15)

Bohrlocherstellung und Bohrlochreinigung (Nassbohren mit Diamantbohrkrone)

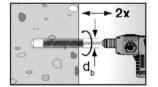
1



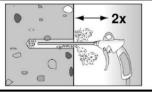
Bohrloch erstellen. Bohrlochdurchmesser d_0 und Bohrlochtiefe h_0 siehe **Tabellen B5.1** und **B6.1**


Bohrkern brechen und herausziehen.

2


Bohrloch spülen, bis das Wasser klar wird.

3


Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)

4

Bohrloch zweimal unter Verwendung einer Bohrmaschine ausbürsten. Entsprechende Bürsten siehe **Tabelle B10.1**

5

Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)

Mit Schritt 6 fortfahren (Anhang B 15)

fischer Superbond

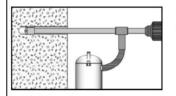
Verwendungszweck

Montageanleitung Teil 4, Patronensystem RSB

Anhang B 14

Appendix 23/40

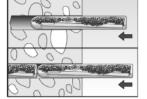
Montageanleitung Teil 5; Patronensystem RSB


Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Hohlbohrer)

1

Einen geeigneten Hohlbohrer (siehe **Tabelle B2.1**) auf Funktion der Staubabsaugung prüfen

2

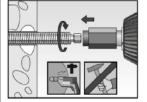

Verwendung eines geeigneten Staubabsaugsystems wie z.B. fischer FVC 35 M oder eines Staubabsaugsystems mit vergleichbaren Leistungsdaten

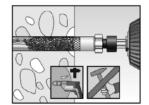
Bohrloch mit Hohlbohrer erstellen. Das Staubabsaugsystem muss den Bohrstaub konstant während des gesamten Bohrvorgangs absaugen und auf maximale Leistung eingestellt sein. Bohrlochdurchmesser **d**₀ und Bohrlochtiefe **h**₀ siehe **Tabellen B5.1** und **B6.1**

Mit Schritt 6 fortfahren (Anhang B 15)

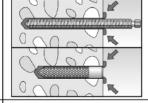
Montage fischer Ankerstange RG M oder fischer Innengewindeanker RG MI

6



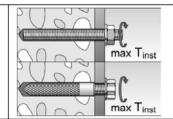

Mörtelpatrone von Hand in das Bohrloch stecken. Passende Mörtelpatrone RSB oder RSB mini siehe **Tabelle B9.2**.

Abhängig vom Stahlteil, passendes Setzwerkzeug / Adapter verwenden


7

Nur saubere und ölfreie Stahlteiles verwenden. fischer Ankerstange RG M oder fischer Innengewindeanker RG MI mit dem Bohrhammer mit eingeschaltetem Schlag und passendem Adapter in die Patrone eintreiben. Anhalten, wenn das Stahlteil den Grund des Bohrlochs erreicht und die korrekte Verankerungstiefe erreicht ist.

8


Nach dem Erreichen der korrekten Setztiefe muss Überschussmörtel aus dem Bohrlochmund austreten. Falls nicht, ist des Stahlteiles sofort zu ziehen und eine zweite Mörtelpatrone in das Bohrloch zu stecken. Setzvorgang (Schritt 7) wiederholen.

9

Aushärtezeit abwarten, toure siehe **Tabelle B10.2**

10

Montage des Anbauteils, max T_{inst} siehe T**abellen B5.1** und **B6.1**

fischer Superbond

Verwendungszweck

Montageanleitung Teil 5, Patronensystem RSB

Anhang B 15

Appendix 24/40

Tabelle C1.1: Charakteristische Werte für die **Stahltragfähigkeit** unter Zug- / Querzugbeanspruchung von **fischer Ankerstangen** und **Standard-Gewindestangen**

	beanspru	icnung	von	TISC	ner An	ikersta	ngen u	ina Sta	naara-	-Gewin	idestar	igen			
Anke	r- / Gewindestange				M8	M10	M12	M16	M20	M24	M27	M30			
Zugtr	agfähigkeit, Stahlversa	gen ³⁾								-					
s,			4.8		15(13)	23(21)	33	63	98	141	184	224			
Ž	Stahl verzinkt	ts-	5.8		19(17)	29(27)	43	79	123	177	230	281			
rakt and		lkei sse	8.8	[LANI]	29(27)	47(43)	68	126	196	282	368	449			
Charakt. Widerstand N _{Rk,s}	Nichtrostender Stahl R	Festigkeits- klasse	50	[kN]	19	29	43	79	123	177	230	281			
/ige	und Hochkorrosions-	e B	70		26	41	59	110	172	247	322	393			
<u> </u>	beständiger Stahl HCR		80		30	47	68	126	196	282	368	449			
Teilsi	cherheitsbeiwerte 1)														
1			4.8					1,	50						
eits Ms,N	Stahl verzinkt	Festigkeits- klasse	5.8					1,	50						
erh ⁴ ∡	Stahl verzinkt Stahl verzinkt Nichtrostender Stahl R und Hochkorrosions-		8.8	[-]				1,	50						
sich Wei			50	[-]		2,86									
Teils bei		Ъ	_70					1,50 ²⁾	/ 1,87						
	beständiger Stahl HCR		80		1,60										
Querzugtragfähigkeit, Stahlversagen ³⁾															
Ohne	Hebelarm														
k,s			4.8		9(8)	14(13)	20	38	59	85	110	135			
ַ לֱ [Stahl verzinkt	its-	5.8		11(10)	17(16)	25	47	74	106	138	168			
rak and		stigkeit klasse	8.8	[kN]	15(13)	23(21)	34	63	98	141	184	225			
Charakt erstand	Nichtrostender Stahl R	Festigkeits- klasse	50	[13, 4]	9	15	21	39	61	89	115	141			
Charakt. Widerstand V ^o Rk,s	und Hochkorrosions-	щ	_70		13	20	30	55	86	124	161	197			
	beständiger Stahl HCR		80		15	23	34	63	98	141	184	225			
	itätsfaktor		k ₇	[-]				1	,0						
Mit H	ebelarm				Г				1	T	T				
<u>_</u>			4.8		15(13)	30(27)	52	133	259	448	665	899			
Charakt. Widerstand M ⁰ Rk,s	Stahl verzinkt	Festigkeits- klasse	5.8		19(16)	37(33)	65	166	324	560	833	1123			
<u>~ ~</u>		stigkeit klasse	8.8	[Nm]	30(26)	60(53)	105	266	519	896	1333	1797			
anc anc	Nichtrostender Stahl R	esti Kla	_50	L	19	37	65	166	324	560	833	1123			
Cha st	und Hochkorrosions-	ட்	70		26	52	92	232	454	784	1167	1573			
	beständiger Stahl HCR		80		30	60	105	266	519	896	1333	1797			
Teilsi	cherheitsbeiwerte 1)				ı										
ا ا ی	. •		4.8						25						
heit. //ws,\		sits-	5.8						25						
herl پتلی		Festigkeii klasse	8.8	[-]	1,25										
sic swe			50		2,38										
₩ Booten			70						/ 1,56						
beständiger Stahl HCR		80					1,	33							

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

fischer Superbond

Leistungen

Charakteristische Werte für die Stahltragfähigheit unter Zug- / Querzugbeanspruchung von fischer Ankerstangen und Standard-Gewindestangen

Anhang C 1

Appendix 25/40

²⁾ Nur zulässig für hochkorrosionsbest. Stahl HCR, mit f_{yk} / $f_{uk} \ge 0.8$ und $A_5 > 12$ % (z.B. fischer Ankerstangen)

³⁾ Die Werte in Klammern gelten für unterdimensionierte Standard-Gewindestangen mit geringerem Spannungsquerschnitt As für feuerverzinkte Gewindestangen gemäß EN ISO 10684:2004+AC:2009.

Tabelle C2.1: Charakteristische Werte für die **Stahltragfähigkeit** unter Zug- / Querzugbeanspruchung von **fischer Innengewindeankern RG MI**

fischer Innenge	windea	nker RG MI			М8	M10	M12	M16	M20		
Zugtragfähigkei	t, Stahl	versagen									
		Festigkeits-	5.8		19	29	43	79	123		
Charakt. Widerstand mit	NI	klasse	8.8	[kN]	29	47	68	108	179		
Schraube	$N_{Rk,s}$	Festigkeits-	R	[KIN]	26	41	59	110	172		
Comaabo		klasse 70	HCR		26	41	59	110	172		
Teilsicherheitsb	eiwerte	e ¹⁾									
		Festigkeits-	5.8				1,50				
Teilsicherheits-		klasse	8.8	r 1			1,50				
beiwerte	γMs,N	Festigkeits-	R [-]		1,87						
		klasse 70	HCR				1,87				
Querzugtragfäh	igkeit,	Stahlversage	en								
Ohne Hebelarm											
	$V^0_{Rk,s}$	Festigkeits-	5.8	9,2	14,5	21,1	39,2	62,0			
Charakt. Widerstand mit		klasse	8.8	[[V]]	14,6	23,2	33,7	54,0	90,0		
Schraube	V Rk,s	Festigkeits-	R	R [kN]	12,8	20,3	29,5	54,8	86,0		
		klasse 70	HCR		12,8	20,3	29,5	54,8	86,0		
Duktilitätsfaktor			k ₇	[-]	1,0						
Mit Hebelarm											
		Festigkeits-	5.8		20	39	68	173	337		
Charakt. Widerstand mit	M ⁰ Rk,s	klasse	8.8	[Nm]	30	60	105	266	519		
Schraube	IVI HK,S	Festigkeits-	R	ניאווין	26	52	92	232	454		
		klasse 70	HCR		26	52	92	232	454		
Teilsicherheitsb	eiwerte	e ¹⁾									
		Festigkeits-	5.8				1,25				
Teilsicherheits-	20.4	klasse	8.8			1,25					
beiwerte	γMs,V	Festigkeits-	R	— [_1	1,56						
		klasse 70	HCR				1,56				

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

fischer	Superbond
---------	-----------

Leistungen

Charakteristische Werte für die Stahltragfähigkeit unter Zug- / Querzugbeanspruchung von fischer Innengewindeankern RG MI

Anhang C 2

Stabnenndurchmesser		ф	8 10	12	14	16	20	25	28	3
Zugtragfähigkeit, Stahlversage	en							•	-	
Charakteristischer Widerstand	N _{Rk,s}	[kN]				As · fuk1)			
Querzugtragfähigkeit, Stahlve	rsagen									
Ohne Hebelarm										
Charakteristischer Widerstand	$V^0_{Rk,s}$	[kN]	N]							
Duktilitätsfaktor	k ₇	[-]				1,0				
Mit Hebelarm										
Charakteristischer Widerstand	$M^0_{Rk,s}$	[Nm]			1,2	· W _{el} ·	f _{uk} 1)			
	eanspruc		von fischer		hrung		ern FF			
fischer Bewehrungsanker FRA			M12		M16		M20		M2	4
Zugtragfähigkeit, Stahlversage		[LAI]		T	444		170	Т	07	
Charakteristischer Widerstand Teilsicherheitsbeiwert 1)	N _{Rk,s}	[kN]	63		111		173		27	0
Teilsicherheitsbeiwert	****	[-]				1,4				
	γMs,N	[-]				1,4				
Querzugtragfähigkeit, Stahlve Ohne Hebelarm	rsageri									
Charakteristischer Widerstand	$V^0_{Rk,s}$	[kN]	30		55		86		12	4
Duktilitätsfaktor	k ₇	[-]				1,0				
Mit Hebelarm	,	[]				.,,				
Charakteristischer Widerstand	M ⁰ Rk,s	[Nm]	92		233		454		78	 5
Feilsicherheitsbeiwert 1)	,-	[]								
Teilsicherheitsbeiwert	γMs,V	[-]				1,56				
	•		agan yarliagan			.,				
1) Falls keine abweichenden n		-	-							
¹⁾ Falls keine abweichenden n										

Größe								All	e Gr	ößen				
Zugbelastung														
Montagebeiwert		γinst	[-]		siehe	e Anh	ang	C 5	bis C	10 und	I C 15 b	is C16		
Faktoren für Beto	ondruckfestigkeit	en > 0												
	C25/30								1,02	2				
	C30/37			1,04										
Erhöhungs	C35/45	lt/	,						1,0	7				
faktor für τ_{Rk}	C40/50	Ψ_{c}	[-]						1,08	3				
	C45/55								1,09	9				
	C50/60								1,10)				
Versagen durch S	Spalten													
	h / h _{ef} ≥ 2,0								1,0 h	lef				
Randabstand 2	$2.0 > h / h_{ef} > 1.3$	C _{cr,sp}	[mm]	4,6 h _{ef} - 1,8 h										
	h / h _{ef} ≤ 1,3		[······]						2,26	h _{ef}				
Achsabstand		Scr,sp							2 Ccr.	sp				
Versagen durch k	kegelförmigen Be	etonau	sbruc	h										
Ungerissener Beto	on	k _{ucr,N}	[-]						11,0					
Gerissener Beton		k _{cr,N}			7,7									
Randabstand		Ccr,N	[mm]		1,5 h _{ef}									
Achsabstand	[]		2 C _{cr,N}											
Faktoren für die I		ng												
Temperaturbereich			[-]	24 °C	/ 40 °C	50	°C	/ 80 °	°C [72 °C /	120 °C	90 °C /	150 °	
Faktor		$\Psi^0_{ m sus}$	[-]	0,	84		0,86 0,8			34	0,	91		
Querzugbelastun	g													
Montagebeiwert		γinst	[-]	1,0										
Betonausbruch a	uf der lastabgew	andte	n Seite											
Faktor für Betonau	ısbruch	k ₈	[-]		2,0									
Betonkantenausk	oruch													
Effektive Länge de unter Querzugbela		lf	[mm]	für d _{nom} ≤ 24 mm: min (h _{ef} ; 12 d _{nom}) für d _{nom} > 24 mm: min (h _{ef} ; 8 d _{nom} ; 300 mm)										
Rechnerische Du	rchmesser													
Größe				M8	M10	M.	12	M1	16	M20	M24	M27	M30	
fischer Ankerstang Standard-Gewinde		d _{nom}	f	8	10	1	2	16	6	20	24	27	30	
fischer Innengewir	ndeanker RG MI	d_{nom}	[mm]	12	16	1	8	22	2	28	_1)	_1)	_1)	
fischer Bewehrung	jsanker FRA	d_{nom}		_1)	_1)	1	2	16	6	20	25	_1)	_1)	
Stabnenndurchme	ırchmesser φ 8 10 12 14 16 20				25	28	32							
Betonstahl		d _{nom}	[mm]	8	10	12		14	16	20	25	28	32	
¹⁾ Dübelvariante	e nicht Bestandteil	der E	ГА		·					·	·	·	·	
fischer Superb	ond													
Leistungen											٦ ٨	nhang	C A	

Tabelle C5.1: Charakteristische Werte für die Zugtragfähigkeit von fischer
Ankerstangen und Standard-Gewindestangen im hammergebohrten
Bohrloch in Verbindung mit Injektionsmörtel FIS SB; ungerissener oder
gerissener Beton

	gerissener Beton										
Anker- /	Gewindestange			М8	M10	M12	M16	M20	M24	M27	M30
Kombini	iertes Versagen durc	h Herau	ısziehen ı	und Bet	onausbi	ruch					
Gewinde	durchmesser	d	[mm]	8	10	12	16	20	24	27	30
Ungeris	sener Beton										
Charakte	eristische Verbundtr	agfähig	keit im un	igerisse	nen Bet	on C20/	25				
<u>Hammer</u>	bohren mit Standard-	<u>oder Hol</u>	<u>nlbohrer (t</u>	rockene	r oder na	asser Be	ton)				
	I: 24 °C / 40 °C			12	13	13	13	13	12	10	10
Tempe- ratur-	II: 50 °C / 80 °C		[N/mm²]	12	12	12	13	13	12	10	10
bereich	III: 72 °C / 120 °C	τ _{Rk,ucr}	[[N/IIIII-]	10	11	11	11	11	11	9,0	9,0
	IV: 90 °C / 150 °C			10	10	10	11	10	10	8,0	8,0
Montage	ebeiwerte										
Trockene	er oder nasser Beton	γinst	[-]				1	,0			
Gerissei	ner Beton										
Charakte	eristische Verbundtr	agfähig	keit im ge	rissene	n Beton	C20/25					
<u>Hammer</u>	bohren mit Standard-	<u>oder Ho</u>	hlbohrer (1	trockene	<u>r oder na</u>	asser Be	ton)				
	I: 24 °C / 40 °C			6,5	7,0	7,5	7,5	7,5	7,5	7,5	7,5
Tempe- ratur-	II: 50 °C / 80 °C	_	[N/mm²]	6,0	6,5	7,5	7,5	7,5	7,5	7,0	7,0
bereich	III: 72 °C / 120 °C	τ _{Rk,cr}	[13/11111]	5,5	6,0	6,5	6,5	6,5	6,5	6,0	6,0
	IV: 90 °C / 150 °C		5,0	5,5	6,0	6,0	6,0	6,0	5,5	5,5	
Montage	ebeiwerte										
Trockene	er oder nasser Beton	[-]				1	,0				

fischer	Superbond
---------	-----------

Leistungen

Charakteristische Werte für die Zugtragfähigkeit von fischer Ankerstangen und Standard-Gewindestangen mit Injektionsmörtel FIS SB

Tabelle C6.1: Charakteristische Werte für die Zugtragfähigkeit von fischer Ankerstangen RG M im hammergebohrten oder diamantgebohrten Bohrloch in Verbindung mit Mörtelpatrone RSB; ungerissener oder gerissener Beton

Ankersta	ange	RG M			M8	M10	M12	M16	M20	M24	M30
Kombini	ertes	Versagen durc	h Herau	ısziehen i	ınd Beto	nausbrud	ch				
Gewinde	durch	ımesser	d	[mm]	8	10	12	16	20	24	30
Ungeris	sener	Beton									
Charakte	eristi	sche Verbundtr	agfähigl	keit im un	gerisser	en Beton	C20/25				
<u>Hammer</u>	<u>bohre</u>	<u>n mit Standard- (</u>	oder Hol	<u>nlbohrer (t</u>	<u>rockener</u>	oder nass	ser Beton	sowie wa	ssergefüll	tes Bohrle	och)
	l:	24 °C / 40 °C			12	13	13	13	13	12	10
Tempe- ratur-	II:	50 °C / 80 °C	_	[N/mm²]	12	12	12	13	13	12	10
bereich	III:	72 °C / 120 °C	₹Rk,ucr	[18/11111-]	10	11	11	11	11	11	9,0
	IV:	90 °C / 150 °C			10	10	10	11	10	10	8,0
<u>Diamantl</u>	oohre	n (trockener ode	r nasser	Beton so	vie wass	ergefülltes	Bohrlock	<u>1)</u>			
	l:	24 °C / 40 °C			13	13	14	14	14	13	11
Tempe-	II:	50 °C / 80 °C	_	[N1/mm2]	12	13	13	14	13	13	10
ratur- bereich	III:	72 °C / 120 °C	τ _{Rk,ucr}	[N/mm ²]	11	12	12	12	12	11	9,5
	IV:	90 °C / 150 °C			10	11	11	11	11	10	8,5
Montage	beiw	erte						•			•
Trockene	er ode	er nasser Beton	Vinet	[-]				1,0			
		es Bohrloch	γinst	[]	1	,2			1,0		
Gerisser					_						
		sche Verbundtra								. 5.1.1	
<u>Hammer</u>		en mit Standard- o	oder Hol	<u>nibonrer (t</u> 					T -		<u> </u>
Tomno		24 °C / 40 °C			6,5	7,0	7,5	7,5	7,5	7,5	7,5
Tempe- ratur-		50 °C / 80 °C	$ au_{Rk,cr}$	 [N/mm²]	6,0	6,5	7,5	7,5	7,5	7,5	7,0
bereich		72 °C / 120 °C	, -		5,5	6,0	6,5	6,5	6,5	6,5	6,0
		90 °C / 150 °C			5,0	5,5	6,0	6,0	6,0	6,0	5,5
<u>Diamantl</u>		n (trockener ode	<u>r nasser</u>	Beton sov				1			I
_		24 °C / 40 °C			_1)	_1)	_1)	7,5	7,5	7,5	7,5
Tempe- ratur-		50 °C / 80 °C	$ au_{Rk,cr}$	[N/mm²]	_1)	_1)	_1)	7,5	7,5	7,5	7,0
bereich	: 	72 °C / 120 °C	v nk,cr	[]	_1)	_1)	_1)	6,5	6,5	6,5	6,5
	IV:	90 °C / 150 °C			_1)	_1)	_1)	6,0	6,0	6,0	6,0
Montage				1							
		er nasser Beton	γinst	[-]				1,0			
	~f∷ll+≀	es Bohrloch	1.1101	"	1	,2			1,0		

fischer Superbond

Leistungen

Charakteristische Werte für die Zugtragfähigkeit von fischer Ankerstangen RG M mit Mörtelpatrone RSB

Anhang C 6

Appendix 30/40

Tabelle C7.1: Charakteristische Werte für die Zugtragfähigkeit von fischer Innengewindeankern RG MI im hammergebohrten Bohrloch in Verbindung mit Injektionsmörtel FIS SB; ungerissener oder gerissener Beton

		mit mjord		0110111	5 05, ang		der gerioo	oner Beter	•
Innenge	wind	eanker RG MI			М8	M10	M12	M16	M20
Kombini	ertes	Versagen durc	h Herau	sziehen i	und Betonau	sbruch			
Hülsendı	urchm	nesser	d	[mm]	12	16	18	22	28
Ungeris	senei	Beton							
Charakte	eristi	sche Verbundtr	agfähigl	keit im un	gerissenen	Beton C20/2	5		
<u>Hammer</u>	<u>bohre</u>	en mit Standard-	<u>oder Hol</u>	<u>ılbohrer (t</u>	rockener ode	r nasser Beto	on)		T
	l:	24 °C / 40 °C			12	12	11	11	9,5
Tempe-	II:	50 °C / 80 °C	_	[N1/mmm2]	12	11	11	10	9,0
ratur- bereich	III:	72 °C / 120 °C	₹Rk,ucr	[N/mm ²]	11	10	10	9,0	8,0
	IV:	90 °C / 150 °C			10	9,5	9,0	8,5	7,5
Montage	beiw	erte					•	•	•
Trockene	er ode	er nasser Beton	γinst	[-]			1,0		
Gerisser	ner B	eton							
Charakte	eristi	sche Verbundtr	agfähigl	keit im ge	rissenen Be	ton C20/25			
<u>Hammer</u>	bohre	en mit Standard- (oder Hol	<u>ılbohrer (t</u>	rockener ode	r nasser Beto	<u>on)</u>		
	l:	24 °C / 40 °C					5,0		
Tempe-	II:	50 °C / 80 °C	_	[N1/mmm2]			5,0		
ratur- bereich	III:	72 °C / 120 °C	$ au_{ ext{Rk,cr}}$	[N/mm²]			4,5		
	IV:	90 °C / 150 °C					4,0		
Montage	beiw	erte							
Trockene	er ode	er nasser Beton	γinst	[-]			1,0		

Leistungen

Charakteristische Werte für die Zugtragfähigkeit von fischer Innengewindeankern RG MI mit Injektionsmörtel FIS SB

Tabelle C8.1: Charakteristische Werte für die Zugtragfähigkeit von fischer Innengewindeankern RG MI im hammergebohrten oder diamantgebohrten Bohrloch in Verbindung mit Mörtelpatrone RSB; ungerissener oder gerissener Beton

Innenge	windeanker RG MI			M8	M10	M12	M16	M20
	ertes Versagen durc	h Herau	ısziehen ι	ınd Betonau	sbruch			
Hülsendı	ırchmesser	d	[mm]	12	16	18	22	28
Ungeriss	sener Beton							
Charakte	eristische Verbundtra	agfähigl	keit im un	gerissenen	Beton C20/25	5		
<u>Hammerl</u>	bohren mit Standard- d	oder Hol	nlbohrer (t	rockener ode	r nasser Beto	n sowie wass	sergefülltes Bo	ohrloch)
	I: 24 °C / 40 °C			12	12	11	11	9,5
Tempe-	II: 50 °C / 80 °C		[[] [] [] [] [] [] [] [] [] [12	11	11	10	9,0
ratur- bereich	III: 72 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm²]	11	10	10	9,0	8,0
	IV: 90 °C / 150 °C			10	9,5	9,0	8,5	7,5
Diamantk	oohren (trockener ode	r nasser	Beton sov	wie wasserge	fülltes Bohrlo	<u>ch)</u>		
	I: 24 °C / 40 °C			13	12	12	11	10
Tempe-	II: 50 °C / 80 °C		FN 1 / 23	13	12	12	11	9,5
ratur- bereich	III: 72 °C / 120 °C	$ au_{Rk,ucr}$	[N/mm²]	11	11	10	9,5	8,5
	IV: 90 °C / 150 °C			10	10	9,5	9,0	8,0
Montage	beiwerte							
Trockene	er oder nasser Beton	20.	Г1			1,0		
Wasserg	efülltes Bohrloch	γinst	[-]	1,2		1	,0	
	ner Beton							
	eristische Verbundtra							
<u>Hammerl</u>	bohren mit Standard- o	oder Hol	nlbohrer (t	rockener ode	r nasser Beto		sergefülltes Be	ohrloch)
-						5,0		
Tempe- ratur-	II: 50 °C / 80 °C	$ au_{Rk,cr}$	 [N/mm²]			5,0		
bereich	III: 72 °C / 120 °C	v nk,cr	[]			4,5		
	IV: 90 °C / 150 °C					4,0		
Diamant	oohren (trockener ode	r nasser	Beton sov	wie wasserge	fülltes Bohrlo	<u>ch)</u>		
	I: 24 °C / 40 °C			_1)		5	,0	
Tempe-	II: 50 °C / 80 °C	_	[N/mm ²¹	_1)		5	,0	
ratur- bereich	III: 72 °C / 120 °C	$ au_{Rk,cr}$	[N/mm²]	_1)		4	,5	
	IV: 90 °C / 150 °C			_1)		4	,0	
Montage	ebeiwerte							
Trockene	er oder nasser Beton	2/:	[.1			1,0	_	
Wassero	efülltes Bohrloch	γinst	[-]	1,2		1	,0	

fischer Superbond

Leistungen

Charakteristische Werte für die Zugtragfähigkeit von fischer Innengewindeankern RG MI mit Mörtelpatrone RSB

Anhang C 8

Appendix 32/40

Tabelle	e C9.1	: Charakte hammerg ungeriss	ebohrte	en Bohrl	och in	Verbi	ndung						
Stabnen	ndurch	nmesser		ф	8	10	12	14	16	20	25	28	32
Kombini	iertes V	/ersagen durc	h Herau	sziehen ı	und Be	tonaus	bruch						
Stabdurd	hmess	er	d	[mm]	8	10	12	14	16	20	25	28	32
Ungeris	sener E	Beton											
Charakt	eristisc	he Verbundtr	agfähigk	eit im un	geriss	enen B	eton C	20/25					
<u>Hammer</u>	<u>bohren</u>	mit Standard-	oder Hoh	ılbohrer (t	rocken	<u>er oder</u>	nasser	Beton)					
	l: 2	4 °C / 40 °C			8,0	8,5	9,0	9,5	9,5	10	9,5	9,0	7,5
Tempe-	II: 5	0 °C / 80 °C		[N/mm ²]	8,0	8,5	9,0	9,0	9,5	9,5	9,0	8,5	7,5
ratur- bereich	III: 7	′2 °C / 120 °C	τ Rk,ucr	[14/11111-]	7,0	7,5	8,0	8,0	8,5	8,5	8,0	7,5	6,5
	IV: 9	00 °C / 150 °C			6,5	7,0	7,0	7,5	7,5	8,0	7,5	7,0	6,0
Montage	ebeiwei	rte											
Trockene	er oder	nasser Beton	γinst	[-]					1,0				
Gerisse	ner Bet	on											
Charakt	eristisc	he Verbundtr	agfähigk	eit im ge	rissen	en Beto	n C20/	25					
<u>Hammer</u>	bohren	mit Standard-	oder Hoh	ılbohrer (t	rocken	er oder	nasser	Beton)					
	l: 2	4 °C / 40 °C			4,5	6,0	6,0	6,0	7,0	6,0	6,0	6,0	6,0
Tempe-	II: 5	60 °C / 80 °C	_	[N]/mm21	4,5	5,5	5,5	5,5	6,5	6,0	6,0	6,0	6,0
ratur- bereich	III: 7	′2 °C / 120 °C	$ au_{Rk,cr}$	[N/mm ²]	4,0	5,0	5,0	5,0	6,0	5,5	5,5	5,5	5,5
1													1

IV: 90 °C / 150 °C			3,5	4,5	4,5	4,5	5,5	5,0	5,0	5,0	5,0
Montagebeiwerte											
Trockener oder nasser Beton	Vinet	[-]					1.0				

fischer Superbond

Leistungen

Charakteristische Werte für die Zugtragfähigkeit von Betonstahl mit Injektionsmörtel FIS SB

Anhang C 9

Appendix 33/40

Tabelle C10.1: Charakteristische Werte für die Zugtragfähigkeit von fischer Bewehrungsanker FRA im hammergebohrten Bohrloch in Verbindung mit Injektionsmörtel FIS SB; ungerissener oder gerissener Beton

		•			, 3	9		
fischer I	3ewe	hrungsanker FF	RA		M12	M16	M20	M24
Kombin	iertes	s Versagen durc	h Herau	sziehen เ	ınd Betonausbı	uch		
Stabdurd	hme	sser	d	[mm]	12	16	20	25
Ungeris	sene	r Beton						
Charakt	eristi	sche Verbundtr	agfähigk	eit im un	gerissenen Bet	on C20/25		
<u>Hammer</u>	bohre	en mit Standard-	oder Hoh	lbohrer (t	<u>rockener oder na</u>	asser Beton)		
	l:	24 °C / 40 °C			9,0	9,5	10	9,5
Tempe-	II:	50 °C / 80 °C	_	[N1/mm2]	9,0	9,5	9,5	9,0
ratur- bereich	III:	72 °C / 120 °C	τ Rk,ucr	[N/mm ²]	8,0	8,5	8,5	8,0
	IV:	90 °C / 150 °C			7,0	7,5	8,0	7,5
Montage	ebeiw	verte						•
Trockene	er ode	er nasser Beton	γinst	[-]		1,	0	
Gerisse	ner B	eton						
Charakt	eristi	sche Verbundtr	agfähigk	eit im ge	rissenen Beton	C20/25		
<u>Hammer</u>	bohre	en mit Standard-	<u>oder Hor</u>	<u>lbohrer (t</u>	rockener oder na	asser Beton)		
	I:	24 °C / 40 °C			6,0	7,0	6,0	6,0
Tempe-	II:	50 °C / 80 °C	_	[NI/mm ²]	5,5	6,5	6,0	6,0
ratur- bereich	III:	72 °C / 120 °C	$ au_{Rk,cr}$	[N/mm ²]	5,0	6,0	5,5	5,5
	IV:	90 °C / 150 °C			4,5	5,5	5,0	5,0
Montage	ebeiw	verte						•
Trockene	er ode	er nasser Beton	γinst	[-]		1,	0	

Leistungen

Charakteristische Werte für die Zugtragfähigkeit von fischer Bewehrungsankern FRA mit Injektionsmörtel FIS SB

Anhang C 10

Appendix 34/40

Ankersta	ange	М8	M10	M12	M16	M20	M24	M27	M30
Verschie	bungs-Faktor	en für Zugl	ast¹)						
Ungeriss	sener oder ger	issener Be	ton; Temp	eraturbere	ich I, II, III, I	V			
δ _{N0-Faktor}	[mm/(N/mm²)]	0,07	0,08	0,09	0,10	0,11	0,12	0,12	0,13
δN∞-Faktor	 [[mm/(18/mm-)]	0,13	0,14	0,15	0,17	0,17	0,18	0,19	0,19
/erschie	bungs-Faktor	en für Que	rlast ²⁾						
Jngeriss	sener oder ger	issener Be	ton; Temp	eraturbere	ich I, II, III, I	V			
5V0-Faktor	[.e /l. N.17	0,18	0,15	0,12	0,09	0,07	0,06	0,05	0,05
δV∞-Faktor	[mm/kN]	0,27	0,22	0,18	0,14	0,11	0,09	0,08	0,07

 $\delta_{N0} = \delta_{N0\text{-Faktor}} \cdot \tau_{Ed}$ $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Faktor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed}: Bemessungswert der einwirkenden Zugspannung) $\delta v_0 = \delta v_0$ -Faktor · V_{Ed} $\delta_{V\infty} = \delta_{V\infty\text{-Faktor}} \cdot V_{Ed}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

Tabelle C11.2: Verschiebungen für fischer Innengewindeanker RG MI

Innenge RG MI	windeanker	M8	M10	M12	M16	M20
Verschie	bungs-Faktor	en für Zuglast¹)				
Ungerise	sener oder ger	issener Beton; To	emperaturbereich	ı I, II, III, IV		
δ N0-Faktor	[mm/(N/mm²)]	0,09	0,10	0,10	0,11	0,19
δ _{N∞-Faktor}	[[[[[[[]]]	0,13	0,15	0,15	0,17	0,19
Verschie	bungs-Faktor	en für Querlast ²⁾				

ungeriss	sener oder ger	issener Beton; i	emperaturbereicr	1 1, 11, 111, 17		
δvo-Faktor	[mm/kN]	0,12	0,09	0,08	0,07	0,05
δv∞-Faktor	[IIIII/KIN]	0,18	0,14	0,12	0,10	0,08

1) Berechnung der effektiven Verschiebung:

 $\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \cdot \tau_{\text{Ed}}$ $\delta_{N\infty} = \delta_{N\infty\text{-Faktor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed}: Bemessungswert der einwirkenden Zugspannung) 2) Berechnung der effektiven Verschiebung:

 $\delta_{V0} = \delta_{V0\text{-Faktor}} \cdot V_{Ed}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Faktor}} \cdot V_{Ed}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

fischer Superbond

Verschiebungen für Ankerstangen und fischer Innengewindeanker RG MI

Anhang C 11

Appendix 35/40

Stabnenn durchmes	A	8	10	12	14	16	20	25	28	32
	ungs-Faktor	en für Zuc	ulast¹)							
	ner oder ger			peraturb	ereich I, I	I, III, IV				
NO-Fackor		0,07	0,08	0,09	0,09	0,10	0,11	0,12	0,13	0,13
N∞-Faktor [ι	mm/(N/mm²)]	0,11	0,13	0,13	0,15	0,16	0,16	0,18	0,20	0,20
	ungs-Faktor	en für Qu	erlast ²⁾			<u>'</u>	<u>'</u>			
Jngerisse	ner oder ger	issener B	eton; Tem	peraturb	ereich I, I	I, III, IV				
OV0-Faktor	[/J.N.17	0,18	0,15	0,12	0,10	0,09	0,07	0,06	0,05	0,05
Sv∞-Faktor	[mm/kN]	0,27	0,22	0,18	0,16	0,14	0,11	0,09	0,08	0,06
1) Berechi	nung der effel	ktiven Vers	schiebung:		²⁾ Ber	echnung d	der effektiv	en Versc	hiebung:	
	I0-Faktor ˙ τEd		3*			$= \delta v_0$ -Faktor			J	
$\delta_{N\infty}=\delta_{N}$	l∞-Faktor ˙ τEd					= δv∞-Faktor				
	messungswe						ungswert o			
einwirke	enden Zugspa	annung)			ein	wirkenden	Querkraft)	l		
ischer Be	wehrungs-	N	<i>I</i> 112		M16		M20		M2	4
		e:: =								
Verschieb	ungs-Faktor	en tur Zug	glast¹)							
	ener oder ger			peraturb	ereich I, I	I, III, IV				
Ungerisse	ener oder ger	issener B		peraturb	ereich I, I 0,10	I, III, IV	0,11		0,1	2
Ungerisse S _{NO-Faktor}		issener B	eton; Tem	peraturb		I, III, IV	0,11 0,16		0,12	
Ungerisse No-Faktor N∞-Faktor	ener oder ger	issener B	eton; Tem 0,09 0,13	peraturb	0,10	I, III, IV	•			
Ungerisse δ _{N0-Faktor} [I δ _{N∞-Faktor}	ener oder ger mm/(N/mm²)]	issener B C en für Qu issener B	eton; Tem 0,09 0,13 erlast ²⁾ eton; Tem		0,10 0,15		0,16			
Ungerisse No-Faktor Verschieb Ungerisse	ener oder ger mm/(N/mm²)] oungs-Faktore ener oder ger	issener B C en für Qu issener B	eton; Tem 0,09 0,13 erlast ²⁾		0,10 0,15		•			8
Ungerisse No-Faktor No-Faktor Verschieb Ungerisse No-Faktor	ener oder ger mm/(N/mm²)] eungs-Faktor	issener B C C en für Qu issener B	eton; Tem 0,09 0,13 erlast ²⁾ eton; Tem		0,10 0,15 ereich I, I		0,16		0,1	6
Ungerisse DNO-Faktor Verschieb Ungerisse DVO-Faktor DV-Faktor	ener oder ger mm/(N/mm²)] oungs-Faktore ener oder ger	issener B C en für Qu issener B	eton; Tem 0,09 0,13 erlast ²⁾ eton; Tem 0,12		0,10 0,15 ereich I, I 0,09 0,14	I, III, IV	0,16	en Versc	0,0	6
Ungerisse No-Faktor Verschieb Ungerisse No-Faktor Verschieb Ungerisse No-Faktor No-Faktor No-Faktor	ener oder ger mm/(N/mm²)] oungs-Faktor ener oder ger [mm/kN]	issener B C en für Qu issener B	eton; Tem 0,09 0,13 erlast ²⁾ eton; Tem 0,12		0,10 0,15 ereich I, I 0,09 0,14	I, III, IV	0,16 0,07 0,11 der effektiv	en Versc	0,0	6
Ungerisse δN0-Faktor Verschieb Ungerisse δV0-Faktor 1) Berecht δN0 = δN	ener oder ger mm/(N/mm²)] eungs-Faktore ener oder ger [mm/kN]	issener B C en für Qu issener B	eton; Tem 0,09 0,13 erlast ²⁾ eton; Tem 0,12		0,10 0,15 ereich I, I 0,09 0,14 ²⁾ Ber δνο δνω	echnung c = δvo-Faktor = δv∞-Faktor	0,16 0,07 0,11 der effektiv · V _{Ed} · V _{Ed}		0,0	6
Ungerisse SNO-Faktor Verschieb Ungerisse SVO-Faktor 1) Berechi δNω = δN (τEd: Be	ener oder ger mm/(N/mm²)] eungs-Faktore ener oder ger [mm/kN] nung der effektion-Faktor · τEd messungswei	issener B con für Qu issener B con controller	eton; Tem 0,09 0,13 erlast ²⁾ eton; Tem 0,12		0,10 0,15 ereich I, I 0,09 0,14 ²⁾ Ber δνο δνω (VE	echnung α = δνο-Faktor = δνω-Faktor d: Bemess	0,16 0,07 0,11 der effektiv · V _{Ed} · V _{Ed} ungswert o	der	0,0	6
Ungerisse SNO-Faktor Verschieb Ungerisse SVO-Faktor 1) Berechi δNω = δN (τEd: Be	ener oder ger mm/(N/mm²)] eungs-Faktore ener oder ger [mm/kN] nung der effektor • ted to-Faktor • ted	issener B con für Qu issener B con controller	eton; Tem 0,09 0,13 erlast ²⁾ eton; Tem 0,12		0,10 0,15 ereich I, I 0,09 0,14 ²⁾ Ber δνο δνω (VE	echnung α $= \delta v_0$ -Faktor $= \delta v_{\infty}$ -Faktor	0,16 0,07 0,11 der effektiv · V _{Ed} · V _{Ed}	der	0,0	6
Ungerisse SNO-Faktor Verschieb Ungerisse SVO-Faktor 1) Berechi δNω = δN (τEd: Be	ener oder ger mm/(N/mm²)] eungs-Faktore ener oder ger [mm/kN] nung der effektion-Faktor · τEd messungswei	issener B con für Qu issener B con controller	eton; Tem 0,09 0,13 erlast ²⁾ eton; Tem 0,12		0,10 0,15 ereich I, I 0,09 0,14 ²⁾ Ber δνο δνω (VE	echnung α $= \delta v_0$ -Faktor $= \delta v_{\infty}$ -Faktor	0,16 0,07 0,11 der effektiv · V _{Ed} · V _{Ed} ungswert o	der	0,0	6
Ungerisse SNO-Faktor Verschieb Ungerisse SVO-Faktor 1) Berechi δNω = δN (τEd: Be	ener oder ger mm/(N/mm²)] eungs-Faktore ener oder ger [mm/kN] nung der effektion-Faktor · τEd messungswei	issener B con für Qu issener B con controller	eton; Tem 0,09 0,13 erlast ²⁾ eton; Tem 0,12		0,10 0,15 ereich I, I 0,09 0,14 ²⁾ Ber δνο δνω (VE	echnung α $= \delta v_0$ -Faktor $= \delta v_{\infty}$ -Faktor	0,16 0,07 0,11 der effektiv · V _{Ed} · V _{Ed} ungswert o	der	0,0	6
Ungerisse SNO-Faktor Verschieb Ungerisse SVO-Faktor 1) Berechi δNω = δN (τEd: Be	ener oder ger mm/(N/mm²)] eungs-Faktore ener oder ger [mm/kN] nung der effektion-Faktor · τEd messungswei	issener B con für Qu issener B con controller	eton; Tem 0,09 0,13 erlast ²⁾ eton; Tem 0,12		0,10 0,15 ereich I, I 0,09 0,14 ²⁾ Ber δνο δνω (VE	echnung α $= \delta v_0$ -Faktor $= \delta v_{\infty}$ -Faktor	0,16 0,07 0,11 der effektiv · V _{Ed} · V _{Ed} ungswert o	der	0,0	6
Ungerisse SNO-Faktor Verschieb Ungerisse SVO-Faktor 1) Berechi δNω = δN (τEd: Be	ener oder ger mm/(N/mm²)] eungs-Faktore ener oder ger [mm/kN] nung der effektion-Faktor · τEd messungswei	issener B con für Qu issener B con controller	eton; Tem 0,09 0,13 erlast ²⁾ eton; Tem 0,12		0,10 0,15 ereich I, I 0,09 0,14 ²⁾ Ber δνο δνω (VE	echnung α $= \delta v_0$ -Faktor $= \delta v_{\infty}$ -Faktor	0,16 0,07 0,11 der effektiv · V _{Ed} · V _{Ed} ungswert o	der	0,0	6
Ungerisse SNO-Faktor Verschieb Ungerisse SVO-Faktor 1) Berechi δNω = δN (τEd: Be	ener oder ger mm/(N/mm²)] eungs-Faktore ener oder ger [mm/kN] nung der effektion-Faktor · τEd messungswei	issener B con für Qu issener B con controller	eton; Tem 0,09 0,13 erlast ²⁾ eton; Tem 0,12		0,10 0,15 ereich I, I 0,09 0,14 ²⁾ Ber δνο δνω (VE	echnung α $= \delta v_0$ -Faktor $= \delta v_{\infty}$ -Faktor	0,16 0,07 0,11 der effektiv · V _{Ed} · V _{Ed} ungswert o	der	0,0	6
Ungerisse δNo-Faktor Verschieb Ungerisse δVo-Faktor 1) Berechi δNω = δN (τEd: Be	ener oder ger mm/(N/mm²)] eungs-Faktore ener oder ger [mm/kN] nung der effektion-Faktor · τEd messungswei	issener B con für Qu issener B con controller	eton; Tem 0,09 0,13 erlast ²⁾ eton; Tem 0,12		0,10 0,15 ereich I, I 0,09 0,14 ²⁾ Ber δνο δνω (VE	echnung α $= \delta v_0$ -Faktor $= \delta v_{\infty}$ -Faktor	0,16 0,07 0,11 der effektiv · V _{Ed} · V _{Ed} ungswert o	der	0,0	6
Jngerisse SN0-Faktor Verschieb Jngerisse SV0-Faktor 1) Berechi δN0 = δN δNω = δN (τEd: Be einwirke	ener oder ger mm/(N/mm²)] eungs-Faktorener oder ger [mm/kN] nung der effekt 10-Faktor · TEd messungsweienden Zugspa	issener B con für Qu issener B con controller	eton; Tem 0,09 0,13 erlast ²⁾ eton; Tem 0,12		0,10 0,15 ereich I, I 0,09 0,14 ²⁾ Ber δνο δνω (VE	echnung α $= \delta v_0$ -Faktor $= \delta v_{\infty}$ -Faktor	0,16 0,07 0,11 der effektiv · V _{Ed} · V _{Ed} ungswert o	der	0,0	6
Ungerisse SNo-Faktor Verschieb Ungerisse SVo-Faktor 1) Berechi δNω = δN (τEd: Be einwirke	ener oder ger mm/(N/mm²)] eungs-Faktore ener oder ger [mm/kN] nung der effektion-Faktor · τEd messungswei	issener B con für Qu issener B con controller	eton; Tem 0,09 0,13 erlast ²⁾ eton; Tem 0,12		0,10 0,15 ereich I, I 0,09 0,14 ²⁾ Ber δνο δνω (VE	echnung α $= \delta v_0$ -Faktor $= \delta v_{\infty}$ -Faktor	0,16 0,07 0,11 der effektiv · V _{Ed} · V _{Ed} ungswert o	der	0,0	6
Ungerisse SNO-Faktor Verschieb Ungerisse SVO-Faktor 1) Berecht δNω = δN (τεd: Be einwirke fischer S Leistung	ener oder ger mm/(N/mm²)] sungs-Faktor ener oder ger [mm/kN] nung der effektion-Faktor · TEd messungsweitenden Zugspa	issener B Continue B Continu	eton; Tem 0,09 0,13 erlast ²⁾ eton; Tem 0,12 0,18 schiebung:	peraturb	0,10 0,15 ereich I, I 0,09 0,14 ²⁾ Ber δνω (Vereinv	echnung α = δνο-Faktor = δνω-Faktor d: Bemess	0,16 0,07 0,11 der effektiv · V _{Ed} · V _{Ed} ungswert o	der	0,0	6 9

Tabelle C13.1: Charakteristische Werte für die Stahltragfähigkeit unter Zug- und Querzugbelastung von fischer Ankerstangen und Standard-Gewindestangen für die seismische Leistungskategorie C1 oder C2

Anker-	/ Gewindestange		M8	M10	M12	M16	M20	M24	M27	M30		
Zugtrag	gfähigkeit, Stahlversage	n ¹⁾										
fischer	Ankerstangen und Stan	dard-0	Gewi	ndes	tangen,	Leistun	gskate	gorie C1	2)			
-	Stahl galvanisch	7	5.8		19(17)	29(27)	43	79	123	177	230	281
Charakt. Widerstand NRk,s,C1	verzinkt	Festigkeits- klasse	8.8		29(27)	47(43)	68	126	196	282	368	449
Charakt. Jiderstan Nrk,s,c1	Nichtrostender Stahl R	stigkeit klasse	50	[kN]	19	29	43	79	123	177	230	281
◌ઙૢૻઽ	and modifications	Fes A	70		26	41	59	110	172	247	322	393
	beständiger Stahl HCR		80		30	47	68	126	196	282	368	449
fischer Ankerstangen und Standard-Gewindestangen, Leistungskategorie C2 ²⁾												
_ ح	Stahl galvanisch	<u>ل</u> م ا	5.8		_4)	_4)	39	72	108	177	_4)	_4)
Charakt. Widerstand NRk,s,c2	verzinkt	Festigkeits- klasse	8.8		_4)	_4)	61	116	173	282	_4)	_4)
hara ders NRK,s	Nichtrostender Stahl R	stigkeit klasse	50	[-]	_4)	_4)	39	72	108	177	_4)	_4)
°§~	und mocnikomosions-	l Res	70		_4)	_4)	53	101	152	247	_4)	_4)
	beständiger Stahl HCR		80		_4)	_4)	61	116	173	282	_4)	_4)
	gtragfähigkeit, Stahlvers											
fischer	Ankerstangen, Leistung	skate	gorie	C1 ²)							
	Stahl galvanisch verzinkt	Festigkeits- klasse	5.8	3.8 50 [kN]	11(10)	17(16)	25	47	74	106	138	168
Charakt. Widerstand VRk,s, C1			8.8		15(13)	23(21)	34	63	98	141	184	225
Charakt. Viderstan Vrk,s, c1	Nichtrostender Stahl R und Hochkorrosions-		50		9	15	21	39	61	89	115	141
ठॗ>			70		13	20	30	55	86	124	161	197
_	beständiger Stahl HCR		80		15	23	34	63	98	141	184	225
Standa	rd-Gewindestangen, Lei	stungs	skate	gorie	C1 2)			•				
	Stahl galvanisch		5.8		8(7)	12(11)	17	33	52	74	97	118
kt. gand	vorsinist	ig o	8.8		11	16(14)	24	44	69	99	129	158
ુ જંળુ	Nichtrostender Stahl R	Festigkeits- klasse	50	[kN]	6	11	15	27	43	62	81	99
ç န္ <u>န</u> ွ	und Hochkorrosions-	est	70		9	14	21	39	60	87	113	138
	beständiger Stahl HCR	"	80		11	16	24	44	69	99	129	158
fischer	Ankerstangen und Stan	dard-0		ndes						I	I	
	Stahl galvanisch		5.8		_4)	_4)	14	27	43	62	_4)	_4)
Charakt. Widerstand VRK.S. C2	verzinkt	Festigkeits- klasse	8.8		_4)	_4)	22	44	69	99	_4)	_4)
Charakt. Viderstan V _{RK.s. C2}		stigkeit klasse	50	[-]	_4)	_4)	14	27	43	62	_4)	_4)
ج <u>ق</u> اح ج	und Hochkorrosions-	est	70		_4)	_4)	20	39	60	87	_4)	_4)
_ >_	beständiger Stahl HCR		80		_4)	_4)	22	44	69	99	_4)	_4)
Faktor f	ür den Ringspalt	αga	ар	[-]				0,5 (1,0) ³⁾			

¹⁾ Teilsicherheitsbeiwerte für die Leistungskategorie C1 oder C2 siehe Tabelle C14.2; für fischer Ankerstangen FIS A / RGM beträgt der Duktilitätsfaktor für Stahl 1,0

fischer Superbond

Leistungen

Charakteristische Werte für die Stahltragfähigkeit von fischer Ankerstangen und Standard-Gewindestangen unter seismischer Einwirkung (Leistungskategorie C1 / C2) Anhang C 13

Appendix 37/40

²⁾ Die Werte in Klammern gelten für unterdimensionierte Standard-Gewindestangen mit geringerem Spannungsquerschnitt Å_s für feuerverzinkte Gewindestangen gemäß EN ISO 10684:2004+AC:2009. ³⁾ Der Wert in Klammer gilt für gefüllte Ringspalte zwischen der Ankerstange und dem Durchgangsloch im

Anbauteil. Die fischer Verfüllscheibe ist zu verwenden nach Anhang A 1 und A 3

⁴⁾ Keine Leistung bewertet

Tabelle C14.1: Charakteristische Werte für die Stahltragfähigkeit unter Zug- und Querzug-
belastung von Betonstahl (B500B) für die seismische Leistungskategorie C1

Stabnenndurchmesser	ф	8	10	12	14	16	20	25	28	32	
ugtragfähigkeit, Stahlversagen¹)											
Betonstabstahl B500B nach DIN	Betonstabstahl B500B nach DIN 488-2:2009-08, Leistungskategorie C1										
Charakteristischer Widerstand	N _{Rk,s,C1} [kN] 28	44	63	85	111	173	270	339	443	

Querzugtragfähigkeit, Stahlversagen ohne Hebelarm¹⁾

Betonstabstahl B500B nach DIN 488-2:2009-08, Leistungskategorie C1

Charakteristischer Widerstand V_{Rk,s,C1} [kN] 10 15 22 30 39 61 95 119 155

Tabelle C14.2: Teilsicherheitsbeiwerte von fischer Ankerstangen, Standard-Gewindestangen und Betonstahl (B500B) für die seismische Leistungskategorie C1 oder C2

Anker-	- / Gewindestange	M8	M8 M10 M12 M16 M20 M24 M27												
Stabne	enndurchmesser	ф	8	10	12	14	16	20	2!	5	28	32			
Zugtra	gfähigkeit, Stahlversa		_	_					_		-	_			
,	Stahl galvanisch		5.8		1,50										
rheits-	verzinkt	eits- e	8.8						1,50)					
Teilsicherheits- beiwert _{YMs,N}	Nichtrostender Stahl R und Hochkorrosions-	Festigkeits klasse	50	r 1	2,86										
eilsicher beiwert		Fes k	70	[-]	1,50 ²⁾ / 1,87										
Teil be	beständiger Stahl HCR		80		1,60										
ı	Betonstahl	B5	500B		1,40										
Querzi	ugtragfähigkeit, Stahl	/ersagei	n¹)												
;	Stahl galvanisch	5.8							1,25	5					
rheits-	verzinkt	eits-	8.8		1,25										
erh€ rt	 Nichtrostender Stahl R	stigkei klasse	50	r 1	2,38										
sich i¥e	und Hochkorrosions-	l m	70	[-]	1,25 ²⁾ / 1,56										
Teil be l	beständiger Stahl HCR		80	1,33											
I	Betonstahl	B5	500B						1,50)					

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

fischer Superbond

Leistungen

Charakteristische Werte der Stahltragfähigkeit von Betonstahl unter seismischer Einwirkung (Leistungskat. C1) sowie Teilsicherheitsbeiwerte (Leistungskat. C1 / C2)

Anhang C 14

¹⁾ Teilsicherheitsbeiwerte für die Leistungskategorie C1 siehe Tabelle C14.2

²⁾ Nur zulässig für hochkorrosionsbeständigen Stahl HCR, mit f_{yk} / f_{uk} ≥ 0,8 und A₅ > 12 % (z.B. fischer Ankerstangen)

Tabelle C15.1: Charakteristische Werte für die Tragfähigkeit von fischer Ankerstangen und Standard-Gewindestangen im hammergebohrten Bohrloch mit Injektionsmörtel FIS SB oder Mörtelpatrone RSB für die seismische Leistungskategorie C1

Anker- /	Gew	indestange			M8	M10	M12	M16	M20	M24	M27 ¹⁾	M30
Charakte	eristi	sche Verbundtra	agfähigl	keit, koml	oinierte	s Versaç	gen durc	h Herau	ıszieher	und Be	etonausl	bruch
Hammerbohren mit Standard- oder Hohlbohrer (trockener oder nasser Beton; Mörtelpatrone RSB zusätzlich im wassergefüllten Bohrloch)												
	l:	24 °C / 40 °C		[N/mm²]	4,6	5,0	5,6	5,6	5,6	5,6	5,6	6,4
Tempe-	II:	50 °C / 80 °C	τ _{Rk,C1}		4,3	4,6	5,6	5,6	5,6	5,6	5,3	6,0
ratur- bereich	III:	72 °C / 120 °C			3,9	4,3	4,9	4,9	4,9	4,9	4,5	5,1
	IV:	90 °C / 150 °C			3,6	3,9	4,5	4,5	4,5	4,5	4,1	4,7
Montage	beiw	verte										
Trockener oder nasser Beton				r 3				1	,0			
Wassergefülltes Bohrloch		γinst	[-]	1,2	1,2 ²⁾ 1,0 ²⁾							

¹⁾ Nur für Injektionsmörtel FIS SB

Tabelle C15.2: Charakteristische Werte für die **Tragfähigkeit** von **Betonstahl** im hammergebohrten Bohrloch mit **Injektionmörtel FIS SB** für die seismische Leistungskategorie **C1**

Stabnenndurchmesser				ф	8	10	12	14	16	20	25	28	32
Charakte	Charakteristische Verbundtragfähigkeit, kombiniertes Versagen durch Herausziehen und Betonausbruch												ruch
Hammer	Hammerbohren mit Standard- oder Hohlbohrer (trockener oder nasser Beton)												
	l:	24 °C / 40 °C		[N/mm²]	3,2	4,3	4,5	4,5	5,3	4,5	4,5	4,5	5,1
Tempe-	II:	50 °C / 80 °C	$ au_{ ext{Rk,C1}}$		3,2	3,9	4,1	4,1	4,9	4,5	4,5	4,5	5,1
ratur- bereich	III:	72 °C / 120 °C			2,8	3,6	3,8	3,8	4,5	4,1	4,1	4,1	4,7
	IV:	90 °C / 150 °C			2,5	3,2	3,4	3,4	4,1	3,8	3,8	3,8	4,3
Montage	Montagebeiwerte												
Trockene	er ode	er nasser Beton	[-]	1,0									

Leistungen

Charakteristische Werte der Tragfähigkeiten unter seismischer Einwirkung (Leistungskategorie C1) für fischer Ankerstangen, Standard-Gewindestangen und Betonstahl

Anhang C 15

Appendix 39/40

²⁾ Wassergefülltes Bohrloch nur in Verbindung mit Mörtelpatrone RSB zulässig.

Tabelle C16.1: Charakteristische Werte für die Tragfähigkeit von fischer Ankerstangen und Standard-Gewindestangen im hammergebohrten Bohrloch mit Injektionsmörtel FIS SB für die seismische Leistungskategorie C2

Anker- /	Gewindestange			M12	M16	M20	M24					
Charakt	eristische Verbundtr	ragfähigl	keit, kom	biniertes Versa	gen durch Herau	ısziehen und Be	etonausbruch					
Hammerbohren mit Standard- oder Hohlbohrer (trockener oder nasser Beton)												
	I: 24 °C / 40 °C			4,5	3,2	2,6	3,0					
Tempe-	II: 50 °C / 80 °C	_	[N]/mayna21	4,5	3,2	2,6	3,0					
ratur- bereich	III: 72 °C / 120 °C	- τ _{Rk,C2}	[N/mm ²]	3,9	2,7	2,3	2,6					
	IV: 90 °C / 150 °C	-		3,6	2,5	2,1	2,4					
Montage	ebeiwerte											
Trockene	er oder nasser Beton	γinst	[-]		1	,0						
Verschie	ebungen unter Zugla	ast¹)										
δN,C2 (DLS)	-Faktor	[mm//N	1/mm2\1	0,09	0,10	0,11	0,12					
δ N,C2 (ULS)	ı-Faktor	[mm/(f	\/mm²)]	0,15	0,17	0,17	0,18					
Verschiebungen unter Querlast ²⁾												
δv,c2 (DLS)	-Faktor	[mn	2/L/N II	0,18	0,10	0,07	0,06					
			I/KIN]	0,25	0,14	0,11	0,09					

1) Berechnung der effektiven Verschiebung:

 $\delta_{N,C2\;(DLS)} = \delta_{N,C2\;(DLS)\text{-Faktor}} \cdot \tau_{Ed}$ $\delta_{N,C2\;(ULS)} = \delta_{N,C2\;(ULS)\text{-Faktor}} \cdot \tau_{Ed}$

(τ_{Ed}: Bemessungswert der einwirkenden Zugspannung)

²⁾ Berechnung der effektiven Verschiebung:

 $\delta_{\text{V,C2 (DLS)}} = \delta_{\text{V,C2 (DLS)-Faktor}} \cdot V_{\text{Ed}}$

 $\delta_{\text{V,C2 (ULS)}} = \delta_{\text{V,C2 (ULS)-Faktor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

fischer Superbond

Leistungen

Charakteristische Werte der Tragfähigkeiten unter seismischer Einwirkung (Leistungskategorie C2) für fischer Ankerstangen und Standard-Gewindestangen

Anhang C 16

Appendix 40/40