#### Dautsches Institut für Bautechnik

#### Zulassungsstelle für Bauprodukte und Bauarten

#### **Bautechnisches Prüfamt**

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Kolonnenstraße 30 B D-10829 Berlin Tel.: +493078730-0 Fax: +493078730-320 E-Mail: dibt@dibt.de www.dibt.de





Mitglied der EOTA

Member of EOTA

# Europäische Technische Zulassung ETA-11/0418

Handelsbezeichnung Trade name

Zulassungsinhaber Holder of approval

Zulassungsgegenstand und Verwendungszweck

Generic type and use of construction product

Geltungsdauer: Validity: vom from bis to

Herstellwerk Manufacturing plant Upat Injektionssystem UPM 55 Upat injection system UPM 55

Upat Vertriebs GmbH Otto-Hahn Straße 15 79211 Denzlingen DEUTSCHLAND

Verbunddübel in den Größen Ø 8 mm bis Ø 40 mm zur Verankerung im Beton

Bonded anchor in the size of  $\emptyset$  8 mm to  $\emptyset$  40 mm for use in concrete

28. September 2011

16. Februar 2015

Upat

Diese Zulassung umfasst This Approval contains 26 Seiten einschließlich 17 Anhänge 26 pages including 17 annexes





Seite 2 von 26 | 28. September 2011

## I RECHTSGRUNDLAGEN UND ALLGEMEINE BESTIMMUNGEN

- Diese europäische technische Zulassung wird vom Deutschen Institut für Bautechnik erteilt in Übereinstimmung mit:
  - der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechtsund Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte<sup>1</sup>, geändert durch die
    Richtlinie 93/68/EWG des Rates<sup>2</sup> und durch die Verordnung (EG) Nr. 1882/2003 des
    Europäischen Parlaments und des Rates<sup>3</sup>;
  - dem Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998<sup>4</sup>, zuletzt geändert durch die Verordnung vom 31. Oktober 2006<sup>5</sup>;
  - den Gemeinsamen Verfahrensregeln für die Beantragung, Vorbereitung und Erteilung von europäischen technischen Zulassungen gemäß dem Anhang zur Entscheidung 94/23/EG der Kommission<sup>6</sup>;
  - der Leitlinie für die europäische technische Zulassung für "Metalldübel zur Verankerung im Beton Teil 5: Verbunddübel", ETAG 001-05.
- Das Deutsche Institut für Bautechnik ist berechtigt zu prüfen, ob die Bestimmungen dieser europäischen technischen Zulassung erfüllt werden. Diese Prüfung kann im Herstellwerk erfolgen. Der Inhaber der europäischen technischen Zulassung bleibt jedoch für die Konformität der Produkte mit der europäischen technischen Zulassung und deren Brauchbarkeit für den vorgesehenen Verwendungszweck verantwortlich.
- Diese europäische technische Zulassung darf nicht auf andere als die auf Seite 1 aufgeführten Hersteller oder Vertreter von Herstellern oder auf andere als die auf Seite 1 dieser europäischen technischen Zulassung hinterlegten Herstellwerke übertragen werden.
- Das Deutsche Institut für Bautechnik kann diese europäische technische Zulassung widerrufen, insbesondere nach einer Mitteilung der Kommission aufgrund von Art. 5 Abs. 1 der Richtlinie 89/106/EWG.
- Diese europäische technische Zulassung darf auch bei elektronischer Übermittlung nur ungekürzt wiedergegeben werden. Mit schriftlicher Zustimmung des Deutschen Instituts für Bautechnik kann jedoch eine teilweise Wiedergabe erfolgen. Eine teilweise Wiedergabe ist als solche zu kennzeichnen. Texte und Zeichnungen von Werbebroschüren dürfen weder im Widerspruch zu der europäischen technischen Zulassung stehen noch diese missbräuchlich verwenden.
- Die europäische technische Zulassung wird von der Zulassungsstelle in ihrer Amtssprache erteilt. Diese Fassung entspricht vollständig der in der EOTA verteilten Fassung. Übersetzungen in andere Sprachen sind als solche zu kennzeichnen.
- Amtsblatt der Europäischen Gemeinschaften L 40 vom 11. Februar 1989, S. 12
- Amtsblatt der Europäischen Gemeinschaften L 220 vom 30. August 1993, S. 1
- Amtsblatt der Europäischen Union L 284 vom 31. Oktober 2003, S. 25
- Bundesgesetzblatt Teil I 1998, S. 812
- Bundesgesetzblatt Teil I 2006, S. 2407, 2416
- Amtsblatt der Europäischen Gemeinschaften L 17 vom 20. Januar 1994, S. 34

Z47439.11



Seite 3 von 26 | 28. September 2011

# II BESONDERE BESTIMMUNGEN DER EUROPÄISCHEN TECHNISCHEN ZULASSUNG

## 1 Beschreibung des Produkts und des Verwendungszwecks

### 1.1 Beschreibung des Bauprodukts

Das Upat Injektionssystem UPM 55 ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionsmörtel UPM 55 und einem Stahlteil besteht. Das Stahlteil besteht aus

- einer Ankerstange in den Größen M8 bis M30,
- einem Innengewindeanker in den Größen M8 bis M20,
- einem Bewehrungsstab mit Durchmesser 8 bis 40 mm oder
- einem Bewehrungsanker FRA in den Größen Durchmesser 12 bis 24 mm.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Im Anhang 1 und 2 sind Produkt und Anwendungsbereich dargestellt.

#### 1.2 Verwendungszweck

Der Dübel ist für Verwendungen vorgesehen, bei denen Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 der Richtlinie 89/106/EWG zu erfüllen sind und bei denen ein Versagen der Verankerungen zu einer Gefahr für Leben oder Gesundheit von Menschen und/oder erheblichen wirtschaftlichen Folgen führt. Der Brandschutz (wesentliche Anforderung 2) ist durch diese europäische technische Zulassung nicht erfasst. Der Dübel darf nur für Verankerungen unter statischer oder quasi-statischer Belastung in bewehrtem oder unbewehrtem Normalbeton der Festigkeitsklasse von mindestens C20/25 und höchstens C50/60 nach EN 206:2000-12 verwendet werden.

Der Dübel darf im gerissenen oder ungerissenen Beton verankert werden.

Der Dübel darf in trockenen oder nassen Beton gesetzt werden.

Der Dübel darf in den folgenden Temperaturbereichen verwendet werden:

Temperaturbereich I: -40 °C bis +60 °C (max. Langzeit-Temperatur +35 °C und

max. Kurzzeit-Temperatur +60 °C)

Temperaturbereich II: -40 °C bis +72 °C (max. Langzeit-Temperatur +50 °C und

max. Kurzzeit-Temperatur +72 °C)

#### Stahlteile aus verzinktem Stahl:

Die Stahlteile aus galvanisch verzinktem oder feuerverzinktem Stahl dürfen nur in Bauteilen unter den Bedingungen trockener Innenräume verwendet werden.

#### Stahlteile aus nichtrostendem Stahl:

Die Stahlteile aus nichtrostendem Stahl dürfen in Bauteilen unter den Bedingungen trockener Innenräume sowie auch im Freien (einschließlich Industrieatmosphäre und Meeresnähe) oder in Feuchträumen verwendet werden, wenn keine besonders aggressiven Bedingungen vorliegen. Zu diesen besonders aggressiven Bedingungen gehören, z. B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).



Seite 4 von 26 | 28. September 2011

### Stahlteile aus hochkorrosionsbeständigem Stahl:

Die Stahlteile aus hochkorrosionsbeständigem Stahl dürfen in Bauteilen unter den Bedingungen trockener Innenräume sowie auch im Freien, in Feuchträumen oder in besonders aggressiven Bedingungen verwendet werden. Zu diesen besonders aggressiven Bedingungen gehören, z. B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

#### Stahlteile aus Betonstahl:

Nachträglich eingemörtelte Betonstähle dürfen als Dübel verwendet und nur nach dem EOTA Technical Report TR 029 bemessen werden. Solche Anwendungen sind z. B. in Betonierfugen oder als Schubdorne oder Wandanschlussbewehrung, die überwiegend Quer- und Druckkräfte auf das Fundament übertragen, wobei die Bewehrungsstäbe als Dübel wirken, um Querkräfte aufzunehmen. Anschlüsse mit nachträglich eingemörtelten Bewehrungsanschlüssen, die nach EN 1992-1-1:2004 bemessen werden, sind nicht durch diese europäische technische Zulassung abgedeckt.

Die Bestimmungen dieser europäischen technischen Zulassung beruhen auf einer angenommenen Nutzungsdauer des Dübels von 50 Jahren. Die Angaben über die Nutzungsdauer können nicht als Garantie des Herstellers ausgelegt werden, sondern sind lediglich als Hilfsmittel zur Auswahl der richtigen Produkte im Hinblick auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks zu betrachten.

#### 2 Merkmale des Produkts und Nachweisverfahren

#### 2.1 Merkmale des Produkts

Der Dübel entspricht den Zeichnungen und Angaben der Anhänge 1 bis 7. Die in den Anhängen 1 bis 7 nicht angegebenen Werkstoffkennwerte, Abmessungen und Toleranzen des Dübels müssen den in der technischen Dokumentation<sup>7</sup> dieser europäischen technischen Zulassung festgelegten Angaben entsprechen.

Die charakteristischen Dübelkennwerte für die Bemessung der Verankerungen sind in den Anhängen 10 bis 17 angegeben.

Die zwei Komponenten des Injektionsmörtels werden unvermischt in Mörtelkartuschen der Größe 390 ml, 585 ml oder 1100 ml gemäß Anhang 1 geliefert. Jede Mörtelkartusche ist mit dem Aufdruck "UPM 55", Verarbeitungshinweisen, Haltbarkeitsdauer, Aushärtezeit, Verarbeitungszeit (temperaturabhängig) und Gefahrenhinweisen gekennzeichnet.

Jede Ankerstange ist mit dem Herstellerkennzeichen und mit der Festigkeitsklasse gemäß Anhang 3 gekennzeichnet.

Jeder Innengewindeanker ist mit dem Herstellerkennzeichen und mit der Nenngröße gemäß Anhang 4 gekennzeichnet. Jeder Innengewindeanker aus nichtrostendem Stahl ist zusätzlich mit der Bezeichnung "A4" gekennzeichnet. Jeder Innengewindeanker aus hochkorrosionsbeständigem Stahl ist zusätzlich mit der Bezeichnung "C" gekennzeichnet.

Jeder Bewehrungsanker FRA ist mit dem Herstellerkennzeichen und dem Handelsnamen gemäß Anhang 7 gekennzeichnet.

Stahlteile aus Betonstahl müssen den Angaben nach Anhang 6 entsprechen.

Die Markierung der Verankerungstiefe darf auf der Baustelle erfolgen.

Z47439.11

Die technische Dokumentation dieser europäischen technischen Zulassung ist beim Deutschen Institut für Bautechnik hinterlegt und, soweit diese für die Aufgaben der in das Verfahren der Konformitätsbescheinigung eingeschalteten zugelassenen Stellen bedeutsam ist, den zugelassenen Stellen auszuhändigen.



Seite 5 von 26 | 28. September 2011

#### 2.2 Nachweisverfahren

Die Beurteilung der Brauchbarkeit des Dübels für den vorgesehenen Verwendungszweck hinsichtlich der Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 erfolgte in Übereinstimmung mit der "Leitlinie für die europäische technische Zulassung für Metalldübel zur Verankerung im Beton", Teil 1 "Dübel - Allgemeines" und Teil 5 "Verbunddübel", auf der Grundlage der Option 1.

In Ergänzung zu den spezifischen Bestimmungen dieser europäischen technischen Zulassung, die sich auf gefährliche Stoffe beziehen, können die Produkte im Geltungsbereich dieser Zulassung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Bauproduktenrichtlinie zu erfüllen, müssen ggf. diese Anforderungen ebenfalls eingehalten werden.

## 3 Bewertung und Bescheinigung der Konformität und CE-Kennzeichnung

### 3.1 System der Konformitätsbescheinigung

Gemäß Entscheidung 96/582/EG der Europäischen Kommission<sup>8</sup> ist das System 2(i) (bezeichnet als System 1) der Konformitätsbescheinigung anzuwenden.

Dieses System der Konformitätsbescheinigung ist im Folgenden beschrieben:

System 1: Zertifizierung der Konformität des Produkts durch eine zugelassene Zertifizierungsstelle aufgrund von:

- (a) Aufgaben des Herstellers:
  - (1) werkseigener Produktionskontrolle:
  - zusätzlicher Prüfung von im Werk entnommenen Proben durch den Hersteller nach festgelegtem Prüfplan;
- (b) Aufgaben der zugelassenen Stelle:
  - (3) Erstprüfung des Produkts;
  - (4) Erstinspektion des Werkes und der werkseigenen Produktionskontrolle;
  - (5) laufender Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle

Anmerkung: Zugelassene Stellen werden auch "notifizierte Stellen" genannt.

## 3.2 Zuständigkeiten

### 3.2.1 Aufgaben des Herstellers

### 3.2.1.1 Werkseigene Produktionskontrolle

Der Hersteller muss eine ständige Eigenüberwachung der Produktion durchführen. Alle vom Hersteller vorgegebenen Daten, Anforderungen und Vorschriften sind systematisch in Form schriftlicher Betriebs- und Verfahrensanweisungen festzuhalten, einschließlich der Aufzeichnungen der erzielten Ergebnisse. Die werkseigene Produktionskontrolle hat sicherzustellen, dass das Produkt mit dieser europäischen technischen Zulassung übereinstimmt.

Der Hersteller darf nur Ausgangsstoffe/Rohstoffe/Bestandteile verwenden, die in der technischen Dokumentation dieser europäischen technischen Zulassung aufgeführt sind.

Amtsblatt der Europäischen Gemeinschaften L 254 vom 08.10.1996.



Seite 6 von 26 | 28. September 2011

Die werkseigene Produktionskontrolle muss mit dem Prüfplan, der Teil der technischen Dokumentation dieser europäischen technischen Zulassung ist, übereinstimmen. Der Prüfplan ist im Zusammenhang mit dem vom Hersteller betriebenen werkseigenen Produktionskontrollsystem festgelegt und beim Deutschen Institut für Bautechnik hinterlegt.<sup>9</sup>

Die Ergebnisse der werkseigenen Produktionskontrolle sind festzuhalten und in Übereinstimmung mit den Bestimmungen des Prüfplans auszuwerten.

## 3.2.1.2 Sonstige Aufgaben des Herstellers

Der Hersteller hat auf der Grundlage eines Vertrags eine Stelle, die für die Aufgaben nach Abschnitt 3.1 für den Bereich der Dübel zugelassen ist, zur Durchführung der Maßnahmen nach Abschnitt 3.2.2 einzuschalten. Hierfür ist der Prüfplan nach den Abschnitten 3.2.1.1 und 3.2.2 vom Hersteller der zugelassenen Stelle vorzulegen.

Der Hersteller hat eine Konformitätserklärung abzugeben mit der Aussage, dass das Bauprodukt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

## 3.2.2 Aufgaben der zugelassenen Stellen

Die zugelassene Stelle hat die folgenden Aufgaben in Übereinstimmung mit den Bestimmungen des Prüfplans durchzuführen:

- Erstprüfung des Produkts,
- Erstinspektion des Werks und der werkseigenen Produktionskontrolle,
- laufende Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle.

Die zugelassene Stelle hat die wesentlichen Punkte ihrer oben angeführten Maßnahmen festzuhalten und die erzielten Ergebnisse und die Schlussfolgerungen in einem schriftlichen Bericht zu dokumentieren.

Die vom Hersteller eingeschaltete zugelassene Zertifizierungsstelle hat ein EG-Konformitätszertifikat mit der Aussage zu erteilen, dass das Produkt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

Wenn die Bestimmungen der europäischen technischen Zulassung und des zugehörigen Prüfplans nicht mehr erfüllt sind, hat die Zertifizierungsstelle das Konformitätszertifikat zurückzuziehen und unverzüglich das Deutsche Institut für Bautechnik zu informieren.

## 3.3 CE-Kennzeichnung

Die CE-Kennzeichnung ist auf jeder Verpackung der Dübel anzubringen. Hinter den Buchstaben "CE" sind ggf. die Kennnummer der zugelassenen Zertifizierungsstelle anzugeben sowie die folgenden zusätzlichen Angaben zu machen:

- Name und Anschrift des Zulassungsinhabers (für die Herstellung verantwortliche juristische Person),
- die letzten beiden Ziffern des Jahres, in dem die CE-Kennzeichnung angebracht wurde,
- Nummer des EG-Konformitätszertifikats für das Produkt,
- Nummer der europäischen technischen Zulassung,
- Nummer der Leitlinie für die europäische technische Zulassung,
- Nutzungskategorie (ETAG 001-1 Option 1),
- Größe.

Der Prüfplan ist ein vertraulicher Bestandteil der Dokumentation dieser europäischen technischen Zulassung und wird nur der in das Konformitätsbescheinigungsverfahren eingeschalteten zugelassenen Stelle ausgehändigt. Siehe Abschnitt 3.2.2.



Seite 7 von 26 | 28. September 2011

## Annahmen, unter denen die Brauchbarkeit des Produkts für den vorgesehenen Verwendungszweck positiv beurteilt wurde

#### 4.1 Herstellung

Die europäische technische Zulassung wurde für das Produkt auf der Grundlage abgestimmter Daten und Informationen erteilt, die beim Deutschen Institut für Bautechnik hinterlegt sind und der Identifizierung des beurteilten und bewerteten Produkts dienen. Änderungen am Produkt oder am Herstellungsverfahren, die dazu führen könnten, dass die hinterlegten Daten und Informationen nicht mehr korrekt sind, sind vor ihrer Einführung dem Deutschen Institut für Bautechnik mitzuteilen. Das Deutsche Institut für Bautechnik wird darüber entscheiden, ob sich solche Änderungen auf die Zulassung und folglich auf die Gültigkeit der CE-Kennzeichnung auf Grund der Zulassung auswirken oder nicht, und ggf. feststellen, ob eine zusätzliche Beurteilung oder eine Änderung der Zulassung erforderlich ist.

### 4.2 Bemessung der Verankerungen

Die Brauchbarkeit des Dübels ist unter folgenden Voraussetzungen gegeben:

Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit dem EOTA Technical Report TR 029 "Design of Bonded Anchors" unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.

Nachträgliche eingemörtelte Betonstähle dürfen als Dübel verwendet und nur nach dem EOTA Technical Report TR 029 bemessen werden. Die grundlegenden Annahmen für die Bemessung nach der Dübeltheorie sind zu beachten. Das beinhaltet sowohl die Berücksichtigung von Zug- und Querkräften und die zugehörigen Versagensarten als auch die Annahme, dass der Verankerungsgrund (Betonbauteil) im Grenzzustand der Gebrauchstauglichkeit (gerissen oder ungerissen) verbleibt, wenn der Anschluss bis zum Versagen belastet wird. Solche Anwendungen sind z. B. in Betonierfugen oder als Schubdorne oder Wandanschlussbewehrung, die überwiegend Quer- und Druckkräfte auf das Fundament übertragen, wobei die Bewehrungsstäbe als Dübel wirken, um Querkräfte aufzunehmen. Anschlüsse mit nachträglich eingemörtelten Bewehrungsanschlüssen, die nach EN 1992-1-1:2004 bemessen werden (z. B. Wandanschlussbewehrung, bei der Zugkräfte in mindestens einer Bewehrungslage auftreten), sind nicht durch diese europäische technische Zulassung abgedeckt.

Es dürfen anstelle der Ankerstangen auch handelsübliche Gewindestangen, Unterlegscheiben, Sechskantmuttern und Schrauben aus galvanisch verzinktem Stahl oder nichtrostendem Stahl verwendet werden, wenn die nachfolgend aufgeführten Anforderungen erfüllt sind:

- Werkstoff, Abmessungen und mechanische Eigenschaften der Stahlteile entsprechen Anhang 5, Tabelle 3,
- Nachweis von Werkstoff und mechanischen Eigenschaften der Stahlteile durch ein Abnahmeprüfzeugnis 3.1 entsprechend EN 10204:2004, die Nachweise sind aufzubewahren,
- Markierung der Gewindestange mit der geplanten Verankerungstiefe. Dies kann durch den Hersteller oder vom Baustellenpersonal erfolgen.

Für die Innengewindeanker sind die Befestigungsschrauben oder Gewindestangen hinsichtlich des Materials nach und der erforderlichen Festigkeitsklasse gemäß Anhang 5 zu spezifizieren. Die minimale und maximale Einschraubtiefe  $I_E$  der Befestigungsschraube oder der Gewindestange für die Befestigung der Anbauteile muss den Anforderungen nach Anhang 4, Tabelle 2 genügen. Die Länge der Befestigungsschraube oder der Gewindestange müssen in Abhängigkeit von der Anbauteildicke, zulässigen Toleranzen, der vorhandenen Gewindelänge und der minimalen und maximalen Einschraubtiefe  $I_E$  festgelegt werden.

Der EOTA Technical Report TR 029 "Design of Bonded Anchors" ist in Englischer Sprache auf der website <a href="https://www.eota.eu">www.eota.eu</a> veröffentlicht.



Seite 8 von 26 | 28. September 2011

Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen angefertigt.

Auf den Konstruktionszeichnungen ist die Lage des Dübels (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.) angegeben.

#### 4.3 Einbau der Dübel

Von der Brauchbarkeit des Dübels kann nur dann ausgegangen werden, wenn folgende Einbaubedingungen eingehalten sind:

- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters,
- Einbau nach den Angaben des Herstellers und den Konstruktionszeichnungen mit den in der technischen Dokumentation dieser europäischen technischen Zulassung angegebenen Werkzeugen,
- Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile,
- Eingemörtelte Betonstähle müssen mit den Bestimmungen nach Anhang 6 übereinstimmen,
- Überprüfung vor dem Setzen des Dübels, ob die Festigkeitsklasse des Betons, in den der Dübel gesetzt werden soll, nicht niedriger ist als die Festigkeitsklasse des Betons, für den die charakteristischen Tragfähigkeiten gelten,
- Einwandfreie Verdichtung des Betons, z. B. keine signifikanten Hohlräume,
- Markierung und Einhaltung der effektiven Verankerungstiefe,
- Einhaltung der festgelegten Rand- und Achsabstände ohne Minustoleranzen,
- Anordnung der Bohrlöcher ohne Beschädigung der Bewehrung,
- Bohrlochherstellung durch Hammerbohren,
- Bei Fehlbohrungen: Fehlbohrungen sind zu vermörteln,
- Bohrlochlochreinigung und Einbau gemäß Anhang 8 und 9,
- Die Temperatur der Dübelteile beim Einbau beträgt mindestens +5 °C;
- die Temperatur im Verankerungsgrund während der Aushärtung des Injektionsmörtels unterschreitet nicht +5 °C; Einhaltung der Wartezeit bis zur Lastaufbringung gemäß Anhang 5, Tabelle 4.
- Bei Bohrlochtiefen h<sub>0</sub> > 150 mm sind Verlängerungsschläuche entsprechend Anhang 1 zu verwenden,
- Bei Überkopfmontage oder bei Bohrlochtiefen h<sub>0</sub> > 250 mm sind für die Mörtelinjektion die Injektionshilfe zu verwenden.
- Befestigungsschrauben oder Gewindestangen (einschließlich Muttern und Scheiben) müssen hinsichtlich der Stahlgüte und Festigkeitsklasse dem verwendeten Innengewindeanker entsprechen.
- Montagedrehmomente sind für die Tragfähigkeit des Dübels nicht erforderlich. Die in Anhang 3 bis 7 angegebenen Anzugsdrehmomente dürfen jedoch bei der Montage der Anbauteile nicht überschritten werden.

### 5 Vorgaben für den Hersteller

#### 5.1 Verpflichtungen des Herstellers

Es ist Aufgabe des Herstellers, dafür zu sorgen, dass alle Beteiligten über die Besonderen Bestimmungen nach den Abschnitten 1 und 2 einschließlich der Anhänge, auf die verwiesen wird, sowie den Abschnitten 4.2 und 4.3 unterrichtet werden. Diese Information kann durch Wiedergabe der entsprechenden Teile der europäischen technischen Zulassung erfolgen. Darüber hinaus sind alle Einbaudaten auf der Verpackung und/oder einem Beipackzettel, vorzugsweise bildlich, anzugeben.



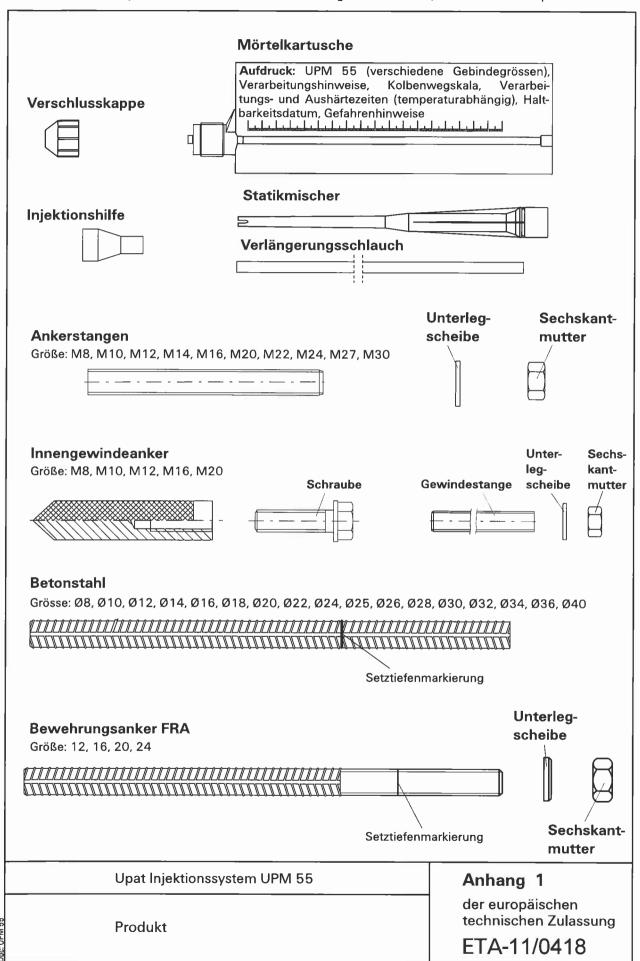
Seite 9 von 26 | 28. September 2011

Es sind mindestens folgende Angaben zu machen:

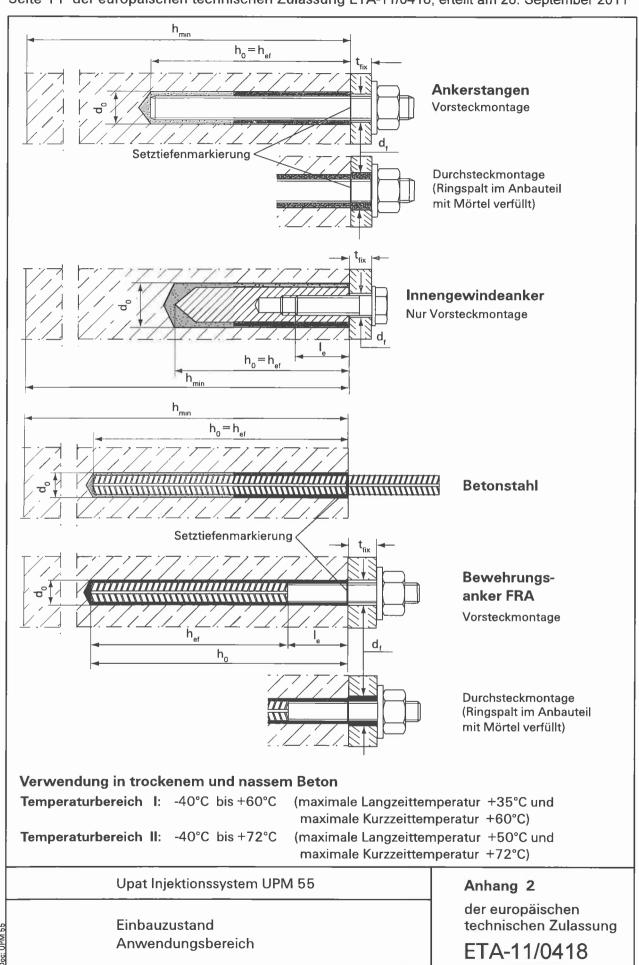
- Bohrnenndurchmesser,
- Nenndurchmesser des Stahlteils,
- Angaben über den Einbauvorgang einschließlich Reinigung des Bohrlochs mit den Reinigungsgeräten, vorzugsweise durch bildliche Darstellung,
- Temperatur der Dübelteile beim Einbau,
- Temperatur im Verankerungsgrund bei Setzen des Dübels,
- Zulässige Verarbeitungszeit des Mörtels,
- Wartezeit bis zur Lastaufbringung abhängig von der Temperatur im Verankerungsgrund beim Setzen.
- Herstelllos.

Alle Angaben müssen in deutlicher und verständlicher Form erfolgen.

### 5.2 Verpackung, Transport und Lagerung


Die Mörtelkartuschen sind vor Sonneneinstrahlung zu schützen und entsprechend der Montageanleitung trocken bei Temperaturen von mindestens +5 °C bis höchstens +30 °C zu lagern.

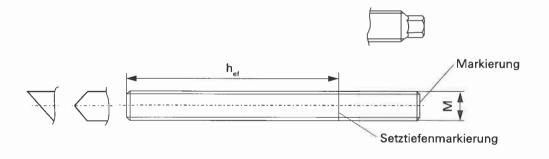
Mörtelkartuschen mit abgelaufenem Haltbarkeitsdatum dürfen nicht mehr verwendet werden. Der Dübel ist als Befestigungseinheit zu verpacken und zu liefern. Die Mörtelkartuschen sind separat von den Stahlteilen verpackt.


Bealaubia

für Bautechnik

Uwe Bender Abteilungsleiter




Seite 11 der europäischen technischen Zulassung ETA-11/0418, erteilt am 28. September 2011



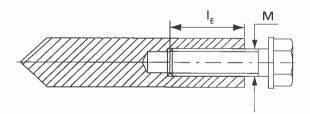
| Tabelle 1: | Einbaubedingungen | für Ankerstangen |
|------------|-------------------|------------------|
|------------|-------------------|------------------|

| Dübelgrösse                                          |                       | [-]           | M8  | M10                  | M12   | M14 | M16              | M20               | M22               | M24               | M27        | M30 |
|------------------------------------------------------|-----------------------|---------------|-----|----------------------|-------|-----|------------------|-------------------|-------------------|-------------------|------------|-----|
| Bohrernenndurchmesser                                | ď                     | [mm]          | 12  | 14                   | 14    | 16  | 18               | 24                | 25                | 28                | <b>3</b> 0 | 35  |
| Bohrlochtiefe                                        | h <sub>o</sub>        | [mm]          |     |                      |       |     | h <sub>o</sub> = | = h <sub>ef</sub> |                   |                   |            |     |
| Effektive                                            | h <sub>ef,min</sub>   | [mm]          | 60  | 60                   | 70    | 75  | 80               | 90                | 93                | 96                | 108        | 120 |
| Verankerungstiefe                                    | h <sub>ef,max</sub>   | [mm]          | 160 | 200                  | 240   | 280 | 320              | 400               | 440               | 480               | 540        | 600 |
| Minimaler Rand-<br>und s <sub>m</sub><br>Achsabstand | e C <sub>min</sub>    | [mm]          | 40  | 45                   | 55    | 60  | 65               | 85                | 95                | 105               | 120        | 140 |
| Durchgangs- Vorsteck<br>loch im montage              | d                     | [m <b>m</b> ] | 9   | 12                   | 14    | 16  | 18               | 22                | 24                | 26                | 30         | 33  |
| anzuschlies- Durchste<br>senden Bauteil montage      | a,                    | [mm]          | 14  | 16                   | 16    | 18  | 20               | 26                | 28                | 30                | 33         | 40  |
| Minimale<br>Bauteildicke                             | h <sub>min</sub>      | [mm]          | ŀ   | n <sub>ef</sub> + 30 | (≥100 | )   |                  |                   | h <sub>ef</sub> + | · 2d <sub>o</sub> |            |     |
| Maximales Montage-<br>drehmoment                     | T <sub>inst,max</sub> | [Nm]          | 10  | 20                   | 40    | 50  | 60               | 120               | 135               | 150               | 200        | 300 |
| Dicke des Anbauteils                                 | t <sub>fix,min</sub>  | [mm]          | _   |                      |       |     | (                | )                 |                   |                   |            |     |
| Dicke des Anbautens                                  | t <sub>fix,max</sub>  | [mm]          |     |                      |       |     | 30               | 00                |                   |                   |            |     |

## **Ankerstange**



## Markierung:


Bei Festigkeitsklasse 8.8 oder hochkorrosionsbeständigem Stahl C, Festigkeitsklasse 80 • Bei nichtrostendem Stahl A4 und hochkorrosionsbeständigem Stahl C, Festigkeitsklasse 50 • •

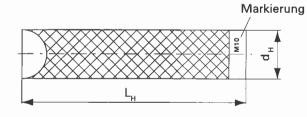

|         | Upat Injektionssystem UPM 55           | Anhang 3                                  |
|---------|----------------------------------------|-------------------------------------------|
| 155     | Ankerstangen                           | der europäischen<br>technischen Zulassung |
| oc: UPN | Dübelabmessungen und Einbaubedingungen | ETA-11/0418                               |

Tabelle 2: Einbaubedingungen Innengewindeanker

|                                                      |                                     |      |     |     |     |     | 1   |
|------------------------------------------------------|-------------------------------------|------|-----|-----|-----|-----|-----|
| Dübelgrösse                                          |                                     |      | M8  | M10 | M12 | M16 | M20 |
| Dübeldurchmesser                                     | d <sub>H</sub>                      | [mm] | 12  | 16  | 18  | 22  | 28  |
| Bohrernenndurchmesser                                | d <sub>o</sub>                      | [mm] | 14  | 18  | 20  | 24  | 32  |
| Dübellänge                                           | L <sub>H</sub>                      | [mm] | 90  | 90  | 125 | 160 | 200 |
| Effektive Verankerungstiefe h<br>und Bohrlochtiefe h | $h_{ef} = h_0$                      | [mm] | 90  | 90  | 125 | 160 | 200 |
| Minimaler Rand-<br>und Achsabstand                   | s <sub>min</sub> = c <sub>min</sub> | [mm] | 55  | 65  | 75  | 95  | 125 |
| Durchgangsloch im anzuschliessenden Bauteil          | d <sub>f</sub>                      | [mm] | 9   | 12  | 14  | 18  | 22  |
| Minimale Bauteildicke                                | $h_{_{min}}$                        | [mm] | 120 | 125 | 165 | 205 | 260 |
| Einschraubtiefe                                      | E,min                               | [mm] | 8   | 10  | 12  | 16  | 20  |
| Linscinaubtiele                                      | I <sub>E,max</sub>                  | [mm] | 18  | 23  | 26  | 35  | 45  |
| Maximales Montage-<br>drehmoment                     | T <sub>inst,max</sub>               | [Nm] | 10  | 20  | 40  | 80  | 120 |

## Innengewindeanker





Markierung: Ankergrösse

z.B.: M10

Bei nichtrostendem Stahl zusätzlich A4

z.B.: M10 A4

Bei hochkorrosionsbeständigem Stahl

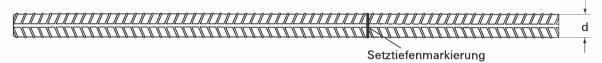
zusätzlich C z.B.: M10 C

| L        |                                        |                                           |
|----------|----------------------------------------|-------------------------------------------|
|          | Upat Injektionssystem UPM 55           | Anhang 4                                  |
| 1 55     | Innengewindeanker                      | der europäischen<br>technischen Zulassung |
| Doc: UPN | Dübelabmessungen und Einbaubedingungen | ETA-11/0418                               |

**Tabelle 3:** Materialien: Ankerstangen, Gewindestangen, Unterlegscheiben, Sechskantmuttern und Schrauben

|                                                                    |                                                                                                                                        | Material                                                                                                       |                                                                                                                                                                                             |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Benennung                                                          | Stahl, verzinkt                                                                                                                        | nichtrostender Stahl<br>A4                                                                                     | hochkorrosions-<br>beständiger Stahl C                                                                                                                                                      |
| Ankerstangen                                                       | Festigkeitsklasse 5.8<br>oder 8.8; EN ISO 898-1<br>galvanisch verzinkt ≥ 5µm,<br>EN ISO 4042 A2K oder<br>feuerverzinkt<br>EN ISO 10684 | Festigkeitsklasse<br>50 und70<br>EN ISO 3506<br>EN 10088<br>1.4401; 1.4404; 1.4578;<br>1.4571; 1.4439; 1.4362  | Festigkeitsklasse 50 oder 80<br>EN ISO 3506<br>oder f <sub>uk</sub> =700N/mm <sup>2</sup><br>f <sub>yk</sub> =560N/mm <sup>2</sup><br>EN 10088<br>1.4462; 1.4539; 1.4565;<br>1.4529; 1.4547 |
| Unterleg-<br>scheiben<br>EN ISO 7089                               | galvanisch verzinkt ≥ 5µm,<br>EN ISO 4042 A2K oder<br>feuerverzinkt<br>EN ISO 10684                                                    | EN 10088<br>1.4401; 1.4404; 1.4578<br>1.4571; 1.4439; 1.4362,                                                  | EN 10088<br>1.4462; 1.4539; 1.4565<br>1.4529; 1.4547                                                                                                                                        |
| Sechskant-<br>muttern<br>EN 24032                                  | Festigkeitsklasse 5 oder 8;<br>EN 20898-2<br>galvanisch verzinkt ≥ 5µm,<br>EN ISO 4042 A2K oder<br>feuerverzinkt<br>EN ISO 10684       | Festigkeitsklasse<br>50 und 70<br>EN ISO 3506<br>EN 10088<br>1.4401; 1.4404; 1.4578;<br>1.4571; 1.4439; 1.4362 | Festigkeitsklasse<br>50, 70 oder 80<br>EN ISO 3506<br>EN 10088<br>1.4462; 1.4539; 1.4565;<br>1.4529; 1.4547                                                                                 |
| Schrauben und<br>Gewinde-<br>stangen für<br>Innengewinde-<br>anker | Festigkeitsklasse 5.8 oder<br>8.8; EN 898-1<br>galvanisch verzinkt ≥ 5µm,<br>EN ISO 4042 A2K oder<br>feuerverzinkt<br>EN ISO 10684     | Festigkeitsklasse 70<br>EN ISO 3506<br>EN 10088<br>1.4401; 1.4404; 1.4578;<br>1.4571; 1.4439; 1.4362           | Festigkeitsklasse 70<br>EN ISO 3506<br>EN 10088<br>1.4462; 1.4539; 1.4565;<br>1.4529; 1.4547                                                                                                |

Tabelle 4: Maximale Verarbeitungszeiten und minimale Aushärtezeiten


| Systemtemperatur [°C] | Maximale Verarbeitungszeiten [Minuten] | Minimale Aushärtezeiten <sup>1)</sup> [Stunden] |
|-----------------------|----------------------------------------|-------------------------------------------------|
| +5 bis +10            | 120                                    | 40                                              |
| ≥+10 bis +20          | 30                                     | 18                                              |
| ≥+20 bis +30          | 14                                     | 10                                              |
| ≥+30 bis +40          | 7                                      | 5                                               |

<sup>&</sup>lt;sup>1)</sup>In feuchtem Beton muss die Aushärtezeit verdoppelt werden.

|          | Upat Injektionssystem UPM 55      | Anhang 5                                  |
|----------|-----------------------------------|-------------------------------------------|
| 55       | Materialien                       | der europäischen<br>technischen Zulassung |
| Doc: UPM | Verarbeitungs- und Aushärtezeiten | ETA-11/0418                               |

| Tabelle 5:                                                | Einbaube                 | eding                                                              | gung | gen l | 3eto | nstä | hle |     |     |                    |         |     |     |     |     |     |     |     |
|-----------------------------------------------------------|--------------------------|--------------------------------------------------------------------|------|-------|------|------|-----|-----|-----|--------------------|---------|-----|-----|-----|-----|-----|-----|-----|
| Stab-<br>durchmesser                                      | ø <b>d</b> [mm]          | 8                                                                  | 10   | 12    | 14   | 16   | 18  | 20  | 22  | 24                 | 25      | 26  | 28  | 30  | 32  | 34  | 36  | 40  |
| Bohrer-<br>nenn<br>durchmesser                            | d <sub>o</sub> [mm]      | 12                                                                 | 14   | 16    | 18   | 20   | 25  | 25  | 30  | 30                 | 30      | 35  | 35  | 40  | 40  | 40  | 45  | 55  |
| Bohrloch-<br>tiefe                                        | h <sub>o</sub> [mm]      |                                                                    |      |       |      |      |     |     |     | h <sub>0</sub> = I | ٦<br>ef |     |     |     |     |     |     |     |
| Effektive                                                 | h <sub>ef,min</sub> [mm] | 60                                                                 | 60   | 70    | 75   | 80   | 85  | 90  | 94  | 98                 | 100     | 104 | 112 | 120 | 128 | 136 | 144 | 160 |
| Verankerungs-<br>tiefe                                    | h <sub>ef,max</sub> [mm] | 160                                                                | 200  | 240   | 280  | 320  | 360 | 400 | 440 | 480                | 500     | 520 | 560 | 600 | 640 | 680 | 720 | 800 |
| Minimaler<br>Rand-<br>und S <sub>min</sub><br>Achsabstand | = c <sub>min</sub> [mm]  | 40                                                                 | 45   | 55    | 60   | 65   | 75  | 85  | 95  | 105                | 110     | 120 | 130 | 140 | 160 | 170 | 180 | 200 |
| Minimale<br>Bauteildicke                                  | h <sub>min</sub> [mm]    | h <sub>ef</sub> + 30<br>≥ 100<br>h <sub>ef</sub> + 2d <sub>0</sub> |      |       |      |      |     |     |     |                    |         |     |     |     |     |     |     |     |

## **Betonstahl**

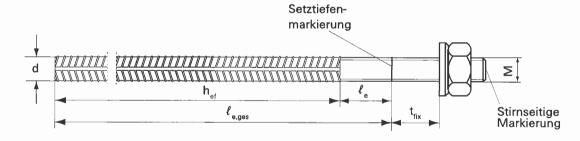


Auszug aus EN 1992-1-1 Anhang C, Tabelle C.1 und C.2N, Eigenschaften von Betonstahl:

| Produktart                                                                                         | Stäbe und Betonstahl vom Ring                          |                       |       |  |  |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------|-------|--|--|
| Klasse                                                                                             | В                                                      | С                     |       |  |  |
| Charakteristische Streckgrenze                                                                     | f <sub>yk</sub> oder f <sub>0,2k</sub> [MPa]           | 400 bis               | 600   |  |  |
| Mindestwert von $k = (f_t/f_{yk})$                                                                 | ≥ 1,08                                                 | ≥ 1,15<br>< 1,35      |       |  |  |
| Charakteristische Dehnung be                                                                       | Höchstlast, $\epsilon_{uk}$ [%]                        | ≥ 5,0                 | ≥ 7,5 |  |  |
| Biegbarkeit                                                                                        |                                                        | Biege-/ Rückbiegetest |       |  |  |
| Maximale Abweichnung<br>von der Nennmasse<br>(Einzelstab) [%]                                      | Nenndurchmesser des<br>Stabes [mm]<br>≤ 8<br>> 8       | ± 6,0<br>± 4,5        |       |  |  |
| Mindestwerte der<br>bezogenen Rippenfläche,<br>f <sub>R.min</sub><br>(Ermittlung nach<br>EN 15630) | Nenndurchmesser des<br>Stabes [mm]<br>8 bis 12<br>> 12 | 0,04<br>0,08          |       |  |  |

## Rippenhöhe h:

Die Rippenhöhe h muss im Bereich | 0,05 • d ≤ h ≤ 0,07 • d | lieger

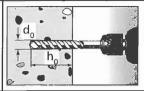

d = Nenndurchmesser des Betonstahls

|         | Upat Injektionssystem UPM 55    | Anhang 6                                  |
|---------|---------------------------------|-------------------------------------------|
| 20      | Betonstahl<br>Einbaubedingungen | der europäischen<br>technischen Zulassung |
| oc: UPN | Werkstoffe                      | ETA-11/0418                               |

| Tabelle 6: Einbaubedingungen Bewehrungsanker FR | Tabelle 6: | Einbaubedingungen | Bewehrungsanker FRA |
|-------------------------------------------------|------------|-------------------|---------------------|
|-------------------------------------------------|------------|-------------------|---------------------|

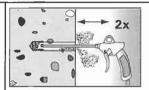
| Gewindegrösse                              |                      |                        |      | M 12                            | M 16              | M 20                    | M 24 |  |  |  |
|--------------------------------------------|----------------------|------------------------|------|---------------------------------|-------------------|-------------------------|------|--|--|--|
| Nenndurchmesser                            |                      | d                      | [mm] | 12                              | 16                | 20                      | 25   |  |  |  |
| Bohrernenndurchmess                        | ser                  | d <sub>o</sub>         | [mm] | 16                              | 20                | 25                      | 30   |  |  |  |
| Bohrlochtiefe $(h_0 = \ell_{e,ges})$ $h_0$ |                      |                        | [mm] |                                 | h <sub>ef</sub> - | + <i>ℓ</i> <sub>e</sub> |      |  |  |  |
| Effektive Verankerungstiefe                |                      | h <sub>ef,mim</sub>    | [mm] | 70                              | 80                | 90                      | 96   |  |  |  |
|                                            |                      | $h_{_{\text{ef,max}}}$ | [mm] | 140                             | 220               | 300                     | 380  |  |  |  |
| Abstand Betonoberflä<br>Schweissstelle     | che zur              | $\ell_{\mathrm{e}}$    | [mm] | 100                             |                   |                         |      |  |  |  |
| Minimaler Rand-<br>und Achsabstand         | S <sub>min</sub>     | = C <sub>min</sub>     | [mm] | 55                              | 65                | 85                      | 105  |  |  |  |
| Durchgangs-<br>loch im anzu-               | Vorsteck-<br>montage | d <sub>f</sub>         | [mm] | 14                              | 18                | 22                      | 26   |  |  |  |
| schliessenden<br>Bauteil                   | Durchstec<br>montage | k- d <sub>r</sub>      | [mm] | 18                              | 22                | 26                      | 32   |  |  |  |
| Minimale Bauteildicke                      |                      | $h_{_{min}}$           | [mm] | h <sub>o</sub> +2d <sub>o</sub> |                   |                         |      |  |  |  |
| Montagedrehmoment                          |                      | T <sub>inst,max</sub>  | [Nm] | 40                              | 60                | 120                     | 150  |  |  |  |
| Dicke des Anbauteils                       | minimum              |                        | [mm] |                                 | Ę                 | 5                       |      |  |  |  |
| Diono doo Ambaatono                        | maximum              | t <sub>fix</sub>       | [mm] |                                 | 30                | 3000                    |      |  |  |  |

## Bewehrungsanker FRA




Stirnseitige Markierung z.B.: FRA (nichtrostender Stahl); FRA C (hochkorrosionsbeständiger Stahl)

|          | Upat Injektionssystem UPM 55 | Anhang 7                                  |
|----------|------------------------------|-------------------------------------------|
| M 55     | Bewehrungsanker FRA          | der europäischen<br>technischen Zulassung |
| Doc: UPA | Einbaubedingungen            | ETA-11/0418                               |

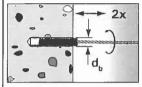

## **Bohrlocherstellung und Bohrlochreinigung**

1



Bohrloch erstellen. Bohrlochdurchmesser  $\mathbf{d}_0$  und Bohrlochtiefe  $\mathbf{h}_0$  siehe **Tabellen 1, 2, 5 oder 6**.

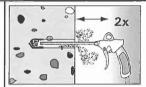
2




Bohrlochreinigung.

Bohrloch zweimal mit ölfreier Pressluft (P > 6 bar) ausblasen.

THE STATE OF THE S

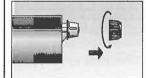

3



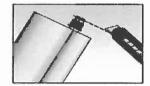
Bohrloch zweimal mit passender Stahlbürste ausbürsten. Bei tiefen Bohrlöchern Verlängerung verwenden.

| d <sub>o</sub> [r | nm] | 12 | 14 | 16 | 18 | 20   | 24 | 25 | 28 | 30 | 32 | 35 | 40 | 45 | 55 |
|-------------------|-----|----|----|----|----|------|----|----|----|----|----|----|----|----|----|
| d <sub>b</sub> [r | nm] | 13 | 16 | 2  | 0  | 21,5 | 26 | 27 | 30 |    | 40 |    | 42 | 47 | 58 |

4

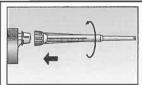



Bohrloch zweimal mit ölfreier Pressluft (P > 6 bar) ausblasen.




### Kartuschenvorbereitung

5

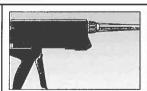



Verschlusskappe nach links drehen und abziehen. (Kartuschen ≤ 600 ml)



Verschlusskappe abschneiden. (Kartuschen 1100 ml)

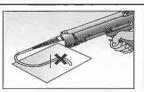
6




Statikmischer aufschrauben.

(die Mischspirale im

(die Mischspirale im Statikmischer muss deutlich sichtbar sein)


7



77

Kartusche in die Auspresspistole legen.

8

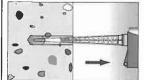




Einen etwa 10 cm langen Mörtelstrang auspressen, bis dieser gleichmässig grau gefärbt ist. Nicht gleichmässig gefärbter Mörtel härtet nicht aus und ist zu verwerfen.

Upat Injektionssystem UPM 55

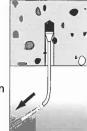
Montageanleitung Teil 1


## Anhang 8

der europäischen technischen Zulassung

ETA-11/0418

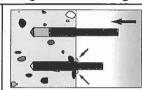
## Mörtelinjektion

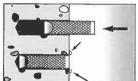

9



Ca. 2/3 des Bohrlochs vom Grund her mit Mörtel blasenfrei verfüllen.



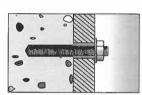

Bei Bohrtiefen ≥ 150 mm Verlängerungsschlauch verwenden.




Bei Überkopfmontagen, tiefen Bohrlöchern  $h_0 > 250$  mm oder Bohrdurchmessern  $d_0 \ge 40$  mm Injektionshilfe verwenden.

## Montage Ankerstangen und Innengewindeanker

10

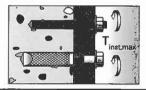





Nur saubere und ölfreie Verankerungselemente verwenden. Setztiefenmarkierung anbringen (falls erforderlich). Das Verankerungselement mit leichten Drehbewegungen in das Bohrloch schieben. Beim Erreichen der Setztiefenmarkierung muss Überschussmörtel am Bohrlochmund austreten.



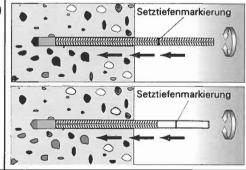
Bei Überkopfmontagen das Verankerungselement mit Keilen fixieren.




Bei Durchsteckmontage muss das Durchgangsloch im Anbauteil ebenfalls mit Mörtel verfüllt werden.

11



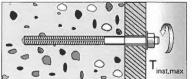

Aushärtezeit abwarten. t<sub>cure</sub> siehe **Tabelle 4**.



Montage des Anbauteils T<sub>inst,max</sub> siehe **Tabelle 1** oder **2**.

### Montage Betonstahl und Bewehrungsanker FRA

10




Nur saubere und ölfreie Verankerungselemente verwenden. Setztiefenmarkierung anbringen. Mit leichten Drehbewegungen den Bewehrungsstab oder den Bewehrungs-Gewinde-Anker FRA kräftig bis zur Setztiefenmarkierung in das gefüllte Bohrloch schieben. Beim Erreichen der Setztiefenmarkierung muss an der Betonoberfläche Überschussmörtel austreten.

11



Aushärtezeit abwarten. t<sub>cure</sub> siehe **Tabelle 4**.



Montage des Anbauteils T<sub>inst.max</sub> siehe **Tabelle 6**.

## Upat Injektionssystem UPM 55

Montageanleitung Teil 2

## Anhang 9

der europäischen technischen Zulassung

ETA-11/0418

Joc: UPM 55

| Größe                                               |                              | cteristische We                                                 | M 8         | M 10     |                                                 |                    | M 16                       |                                                                                    |        |            | M 27    | NA 20  |  |  |
|-----------------------------------------------------|------------------------------|-----------------------------------------------------------------|-------------|----------|-------------------------------------------------|--------------------|----------------------------|------------------------------------------------------------------------------------|--------|------------|---------|--------|--|--|
|                                                     |                              |                                                                 | IAI O       | IVI IU   | IVI IZ                                          | IVI 14             | IVI I O                    | IVI 20                                                                             | IVI ZZ | IVI Z4     | IVI Z / | IVI 30 |  |  |
| Stanive                                             | ersagen<br>_                 | E O FIANT                                                       | 10          |          | 40                                              | F.0                | 70                         | 400                                                                                | 450    | 477        |         |        |  |  |
| ē š                                                 | Fes                          | tigkeits- 5.8 [kN]                                              |             | 29       | 43                                              | 58                 | 79                         | 123                                                                                | 152    | 177        | 230     | 281    |  |  |
| Charakteristische<br>Tragfähigkeit N <sub>RKs</sub> |                              | klasse 8.8 [kN]                                                 | 30          | 47       | 68                                              | 92                 | 126                        | 196                                                                                | 243    | 282        | 368     | 449    |  |  |
| risti<br>Jkeit                                      | nichtrosten-<br>der Stahl A4 | Festig- 50 [kN]                                                 | 19          | 29       | 43                                              | 58                 | 79                         | 123                                                                                | 152    | 177        | 230     | 281    |  |  |
| akte<br>ähig                                        |                              | klasse 70 [kN]                                                  | 26          | 41       | 59                                              | 81                 | 110                        | 172                                                                                | 212    | 247        | 322     | 393    |  |  |
| Charakteristische<br>Tragfähigkeit N <sub>Rks</sub> | hoch-<br>korrosions-         | Festig- 50 [kN]                                                 | 19          | 29       | 43                                              | 58                 | 79                         | 123                                                                                | 152    | 177        | 230     | 281    |  |  |
| 디                                                   | beständiger                  | keits-70 <sup>4)</sup> [kN]                                     | 26          | 41       | 59                                              | 81                 | 110                        | 172                                                                                | 212    | 247        | 322     | 393    |  |  |
|                                                     | Stahl C                      | klasse 80 [kN]                                                  | 30          | 47       | 68                                              | 92                 | 126                        | 196                                                                                | 243    | 282        | 368     | 449    |  |  |
|                                                     | Fes                          | tigkeits- 5.8 [-]                                               | 1,50        |          |                                                 |                    |                            |                                                                                    |        |            |         |        |  |  |
| 다.<br>-                                             |                              | klasse 8.8 [-]                                                  | 1,50        |          |                                                 |                    |                            |                                                                                    |        |            |         |        |  |  |
| Teilsicherheits-<br>beiwert 7 <sub>ms,N</sub>       | nichtrosten-                 | Festig- 50 [-]                                                  | 2,86        |          |                                                 |                    |                            |                                                                                    |        |            |         |        |  |  |
| trt )                                               | der Stahl A4                 | keits-<br>klasse 70 [-]                                         | [-] 1,87    |          |                                                 |                    |                            |                                                                                    |        |            |         |        |  |  |
| ilsic                                               | hoch-                        | 50 [-]                                                          | 50 [-] 2.96 |          |                                                 |                    |                            |                                                                                    |        |            |         |        |  |  |
| De pe                                               | korrosions-                  | Festig- 30 [-] keits- 70 <sup>4)</sup> [-]                      |             |          |                                                 |                    |                            |                                                                                    |        |            |         |        |  |  |
|                                                     | beständiger<br>Stahl C       | klasse 80 [-]                                                   | 1,60        |          |                                                 |                    |                            |                                                                                    |        |            |         |        |  |  |
| Hereus                                              | ziehen und Be                |                                                                 | _           |          |                                                 |                    | .,,                        |                                                                                    |        |            |         |        |  |  |
|                                                     |                              | nesser d [mm]                                                   | 8           | 10       | 12                                              | 14                 | 16                         | 20                                                                                 | 22     | 24         | 27      | 30     |  |  |
|                                                     |                              | rbundfestigkeit i                                               |             |          |                                                 |                    |                            | 20                                                                                 | ~~     | 24         | 21      | _30    |  |  |
|                                                     | aturbereich I                | i buildiestigkeit ii                                            | unge        | 11336116 | iii bett                                        | /// OZO,           | 723                        |                                                                                    |        |            |         |        |  |  |
| (60°C /                                             | 35°C)                        | τ <sub>Rk,ucr</sub> [N/mm²]                                     | 16          | 15       | 15                                              | 14                 | 14                         | 13                                                                                 | 13     | 13         | 13      | 12     |  |  |
| (72°C /                                             |                              | τ <sub>Rk,ucr</sub> [N/mm²]                                     | 13          | 12       | 12                                              | 12                 | 11                         | 11                                                                                 | 11     | 11         | 10      | 10     |  |  |
|                                                     |                              | rbundfestigkeit i                                               | n geris     | senem    | Beton                                           | C20/2              | 5                          |                                                                                    |        |            |         |        |  |  |
| Temper<br>(60°C /                                   | aturbereich I<br>35°C)       | τ <sub>Rk,cr</sub> [N/mm²]                                      | 7,0         |          |                                                 |                    |                            |                                                                                    |        |            |         |        |  |  |
| Temper<br>(72°C /                                   | aturbereich II<br>50°C)      | τ <sub>Rk,cr</sub> [N/mm²]                                      | 6,0         |          |                                                 |                    |                            |                                                                                    |        |            |         |        |  |  |
|                                                     |                              | C25/30 [-]                                                      | 1,02        |          |                                                 |                    |                            |                                                                                    |        |            |         |        |  |  |
|                                                     |                              | C30/37 [-]                                                      | 1,04        |          |                                                 |                    |                            |                                                                                    |        |            |         |        |  |  |
| Erhöhui                                             | 117                          | C35/45 [-]                                                      |             |          |                                                 |                    | 1,0                        | 06                                                                                 |        |            |         |        |  |  |
| faktorer                                            | n fur τ <sub>Rk</sub>        | C40/50 [-]                                                      | 1,07        |          |                                                 |                    |                            |                                                                                    |        |            |         |        |  |  |
|                                                     |                              | C45/55 [-]<br>C50/60 [-]                                        |             |          |                                                 |                    | 1,0                        |                                                                                    |        |            |         |        |  |  |
| Rotona                                              | usbruch                      | C50/60 [-]                                                      |             |          |                                                 |                    | 1,0                        |                                                                                    |        |            |         |        |  |  |
| Detona                                              | dsbruch                      |                                                                 |             |          |                                                 |                    |                            |                                                                                    |        |            | -       |        |  |  |
| Randab                                              |                              | $h / h_{ef} \ge 2.0$<br>2.0 > h / h <sub>ef</sub> > 1.3         | _           |          |                                                 |                    | 1,0<br>4,6 h <sub>ef</sub> |                                                                                    |        |            |         |        |  |  |
| c <sub>cr,sp</sub> [m                               | m]                           | h / h <sub>ef</sub> ≤ 1,3                                       |             |          |                                                 |                    | 2,26                       |                                                                                    |        |            |         |        |  |  |
| Achsab                                              | stand                        | S <sub>cr,sp</sub> [mm]                                         |             |          |                                                 |                    | 2c <sub>c</sub>            |                                                                                    |        |            |         |        |  |  |
| Teilsich<br>beiwert                                 | γ,                           | $\gamma_{\rm Mp} = \gamma_{\rm Mc} = \gamma_{\rm Msp}^{1}  [-]$ |             |          | 5 <sup>2)</sup>                                 |                    |                            | 1,8 <sup>3)</sup>                                                                  |        |            |         |        |  |  |
|                                                     |                              | tionalen Regelung<br>wert $\gamma_2 = 1.2$ ist en               |             |          | <sup>2)</sup> D<br><sup>4)</sup> f <sub>u</sub> | er Teilsi<br>= 700 | cherhei<br>N/mm²           | itsbeiwert $\gamma_2 = 1.0$ ist enthalten<br>$r^2$ ; $f_{yk} = 560 \text{ N/mm}^2$ |        |            |         |        |  |  |
|                                                     | Up                           | at Injektionssys                                                | tem U       | JPM 55   |                                                 |                    |                            |                                                                                    |        | ng 10      | 0       |        |  |  |
|                                                     |                              | kerstangen                                                      |             |          |                                                 |                    |                            | der europäischen<br>technischen Zulassung                                          |        |            |         |        |  |  |
| Charakteristische Zugtragfähigkeit ETA              |                              |                                                                 |             |          |                                                 |                    |                            |                                                                                    | ETA-   | TA-11/0418 |         |        |  |  |

| Tabelle 8: Charakteristische Werte für die Querzugtragfähigkeit von Ankerstangen |
|----------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------|

| C==C=                                               |                                                                                      |                   |                                   | 140   | 8440 | 1446                                           | 244.6 | 2446 | B40C            | B40C | B40 5 | 1405 | 1400 |  |  |
|-----------------------------------------------------|--------------------------------------------------------------------------------------|-------------------|-----------------------------------|-------|------|------------------------------------------------|-------|------|-----------------|------|-------|------|------|--|--|
| Größe                                               | <del></del>                                                                          |                   |                                   | M8    | M10  | M12                                            | M14   | M16  | M20             | M22  | M24   | M27  | M30  |  |  |
| Stahlve                                             | rsagen ohne He                                                                       |                   |                                   |       |      |                                                |       |      |                 |      |       |      | 1    |  |  |
| <b>o</b> 5                                          | Fes                                                                                  |                   | 5.8 [kN]                          | 9     | 15   | 21                                             | 29    | 39   | 61              | 76   | 89    | 115  | 141  |  |  |
| Sch<br>Sch                                          |                                                                                      |                   | 8.8 [kN]                          | 15    | 23   | 34                                             | 46    | 63   | 98              | 122  | 141   | 184  | 225  |  |  |
| istik                                               | nichtrosten-                                                                         | LOITC-            | 50 [kN]                           | 9     | 15   | 21                                             | 29    | 39   | 61              | 76   | 89    | 115  | 141  |  |  |
| ter<br>jgl                                          | der Stahl A4                                                                         | klasse            | 70 [kN]                           | 13    | 20   | 30                                             | 40    | 55   | 86              | 107  | 124   | 161  | 197  |  |  |
| Charakteristische<br>Tragfähigkeit V <sub>Rks</sub> | hoch-<br>korrosions-                                                                 | Festig-           | 50 [kN]                           | 9     | 15   | 21                                             | 29    | 39   | 61              | 76   | 89    | 115  | 141  |  |  |
| Cha<br>Tag                                          | beständiger                                                                          |                   | 70 <sup>3)</sup> [kN]             | 13    | 20   | 30_                                            | 40    | 55   | 86              | 107  | 124   | 161  | 197  |  |  |
| _                                                   | Stahl C                                                                              | Kiasse            | 80 [kN]                           | 15    | 23   | 34                                             | 46    | 63   | 98              | 122  | 141   | 184  | 225  |  |  |
| Stahlversagen mit Hebelarm                          |                                                                                      |                   |                                   |       |      |                                                |       |      |                 |      |       |      |      |  |  |
| Bk.s                                                | Fes                                                                                  |                   | 5.8[Nm]                           | 19    | 37   | 65                                             | 104   | 166  | 324             | 447  | 560   | 833  | 1123 |  |  |
| Š ≥                                                 |                                                                                      |                   | 8.8 [Nm]                          | 30    | 60   | 105                                            | 167   | 266  | 519             | 716  | 896   | 1333 | 1797 |  |  |
| Charakteristisches<br>Biegemoment M <sub>Rk,s</sub> | nichtrosten-<br>der Stahl A4                                                         |                   | 50[Nm]                            | 19    | 37   | 65                                             | 104   | 166  | 324             | 447  | 560   | 833  | 1123 |  |  |
| teri<br>on                                          |                                                                                      | klasse            | 70[Nm]                            | 26    | 52   | 92                                             | 146   | 232  | 454             | 626  | 784   | 1167 | 1573 |  |  |
| em em                                               | hoch-<br>korrosions-<br>beständiger                                                  | Festig-           | 50[Nm]                            | 19    | 37   | 65                                             | 104   | 166  | 324             | 447  | 560   | 833  | 1123 |  |  |
| halieg                                              |                                                                                      | keits-            | \O₃\[ixim]                        | 26    | 52   | 92                                             | 146   | 232  | 454             | 626  | 784   | 1167 | 1573 |  |  |
|                                                     | Stahl C                                                                              |                   | 80[Nm]                            | 30    | _60  | 105                                            | 167   | 266  | 519             | 716  | 896   | 1333 | 1797 |  |  |
| Teilsiche                                           | erheitsbeiwert 1                                                                     | für Stahl         | lversagen                         | 1     |      |                                                |       |      |                 |      |       |      |      |  |  |
|                                                     | Fes                                                                                  | tigkeits-         |                                   |       |      |                                                |       |      |                 |      |       |      |      |  |  |
|                                                     | _                                                                                    | klasse            |                                   |       |      |                                                |       |      |                 |      |       |      |      |  |  |
| ) <sub>24</sub> 1)                                  | nichtrosten-                                                                         | Festig-<br>keits- | 6.3                               |       |      |                                                |       |      |                 |      |       |      |      |  |  |
| γ <sub>Ms,V</sub> 1)                                | der Stahl A4                                                                         | klasse            |                                   |       |      |                                                |       |      | 56              |      |       |      |      |  |  |
|                                                     | hoch-<br>korrosions-                                                                 | Festig-           | 50 [-]                            |       |      |                                                |       | 2,   | 38              |      |       |      |      |  |  |
|                                                     | beständiger                                                                          | keits-            |                                   |       |      |                                                |       | 1,:  | 25              |      |       |      |      |  |  |
|                                                     | Stahl C                                                                              | klasse            |                                   |       |      |                                                |       | 1,:  | 33              |      |       |      |      |  |  |
|                                                     | sbruch auf der                                                                       |                   | ewandter                          | Seite | В    |                                                |       |      |                 |      |       |      |      |  |  |
| Technica                                            | Faktor k in Gleichung (5.7) des<br>Technical Report TR 029, k [-]<br>Kapitel 5.2.3.3 |                   |                                   |       |      | 2,00                                           |       |      |                 |      |       |      |      |  |  |
| Teilsiche                                           | Teilsicherheitsbeiwert $\gamma_{Mcp}^{-1}$ [-]                                       |                   |                                   |       |      | 1,52)                                          |       |      |                 |      |       |      |      |  |  |
| Betonka                                             | etonkantenbruch                                                                      |                   |                                   |       |      | Siehe Technical Report TR 029, Kapitel 5.2.3.4 |       |      |                 |      |       |      |      |  |  |
| Teilsiche                                           | rheitsbeiwert                                                                        |                   | γ <sub>Mc</sub> <sup>1)</sup> [-] |       |      |                                                |       | 1,   | 5 <sup>2)</sup> |      |       | -    |      |  |  |
|                                                     |                                                                                      | -                 |                                   |       |      | a) -                                           |       |      |                 |      |       |      |      |  |  |

 $<sup>^{1)}</sup>$  Falls keine anderen nationalen Regelungen existieren.  $^{3)}f_{uk}=700\ N/mm^2$ :  $f_{yk}=560\ N/mm^2$   $^{2)}$  Der Teilsicherheitsbeiwert  $\gamma_2=1,0$  ist enthalten.

Tabelle 9: Verschiebungen von Ankerstangen unter Zuglast

| Größe            |                                                 | M 8   | M 10    | M 12    | M 14   | M 16 | M 20 | M 22 | M 24 | M 27 | M 30 |
|------------------|-------------------------------------------------|-------|---------|---------|--------|------|------|------|------|------|------|
| Ungerissener und | d gerissener Beton; Tem                         | perat | turbere | eiche ( | und II |      |      |      |      |      |      |
| Verschiebung     | $\delta_{NO}$ [mm/(N/mm <sup>2</sup> )] (       | 0,07  | 0,08    | 0,09    | 0,09   | 0,10 | 0,11 | 0,11 | 0,12 | 0,12 | 0,13 |
| Verschiebung     | $\delta_{N\exists}$ [mm/(N/mm <sup>2</sup> )] ( | 0,11  | 0,12    | 0,13    | 0,14   | 0,15 | 0,16 | 0,17 | 0,18 | 0,19 | 0,19 |

Berechnung der charakteristischen Verschiebung mit  $\delta_{N}$  =  $(\delta_{N0} \cdot \tau_{Sd})$  /1,4

Tabelle 10: Verschiebungen von Ankerstangen unter Querzuglast

| Größe        |                               | M 8  | M 10 | M 12 | M 14 | M 16 | M 20 | M 22 | M 24 | M 27 | M 30 |
|--------------|-------------------------------|------|------|------|------|------|------|------|------|------|------|
| Verschiebung | $\delta_{vo}$ [mm/kN]         | 0,18 | 0,15 | 0,12 | 0,10 | 0,09 | 0,07 | 0,07 | 0,06 | 0,05 | 0,05 |
| Verschiebung | $\delta_{V_{\infty}}$ [mm/kN] | 0,27 | 0,22 | 0,18 | 0,16 | 0,14 | 0,11 | 0,10 | 0,09 | 0,08 | 0,07 |

Berechnung der charakteristischen Verschiebung mit  $\delta_{\rm V}$  = ( $\delta_{\rm V0}$  •  $\rm V_{\rm Sd}$ ) /1,4

Upat Injektionssystem UPM 55

| Ankerstangen<br>Charakteristisch<br>Verschiebungen | e Querzugtragfähigkeit |
|----------------------------------------------------|------------------------|

## Anhang 11

der europäischen technischen Zulassung

ETA-11/0418

Tabelle 11: Charakteristische Werte für die Zugtragfähigkeit von Innengewindeankern

| Größe                                                                   |                       | M 8                  | M 10  | M 12                     | M 16 | M 20            |  |  |  |
|-------------------------------------------------------------------------|-----------------------|----------------------|-------|--------------------------|------|-----------------|--|--|--|
| Stahlversagen                                                           |                       |                      |       |                          |      |                 |  |  |  |
| Charakteristische Festigkeits-                                          |                       | 19                   | 29    | 43                       | 79   | 123             |  |  |  |
| Tragfähigkeit N <sub>Rks</sub> klasse {                                 | 8.8 [kN]              | 29                   | 47    | 68                       | 108  | 179             |  |  |  |
| mit Schraube Restigkeits-                                               |                       | 26                   | 41    | 59                       | 110  | 172             |  |  |  |
| klasse 70                                                               | C [kN]                | 26                   | 41    | 59                       | 110  | 172             |  |  |  |
| Festigkeits-                                                            |                       |                      |       | 1,50                     |      |                 |  |  |  |
| Teilsicherheits-                                                        |                       |                      |       | 1,50                     |      |                 |  |  |  |
| restigkeits-                                                            | A4 [-]                |                      |       | 1,87                     |      |                 |  |  |  |
| klasse 70                                                               | C [-]                 | 1,87                 |       |                          |      |                 |  |  |  |
| Herausziehen und Betonausbruch                                          |                       |                      |       |                          |      |                 |  |  |  |
|                                                                         | H [mm]                | 12                   | 16    | 18                       | 22   | 28              |  |  |  |
| <del></del>                                                             | <sub>ef</sub> [mm]    | 90                   | 90    | 125                      | 160  | 200             |  |  |  |
| Charakteristische Werte im ungerissenen Beto                            | on C20/2              | 25                   |       |                          |      |                 |  |  |  |
| Temperaturbereich I (60°C / 35°C) <sup>4)</sup> N <sub>Rk,uc</sub>      | r [kN]                | 50                   | 60    | 95                       | 140  | 200             |  |  |  |
| Temperaturbereich II (72°C / 50°C) <sup>4)</sup> N <sub>Rk,uc</sub>     | kN]                   | 40                   | 50    | 75                       | 115  | 170             |  |  |  |
| Charakteristische Werte im gerissenen Beton                             | C20/25                |                      |       |                          |      |                 |  |  |  |
| Temperaturbereich I (60°C / 35°C) <sup>4)</sup> N <sub>Rk,cr</sub>      | [kN]                  | 20                   | 30    | 50                       | 75   | 115             |  |  |  |
| Temperaturbereich II (72°C / 50°C) <sup>4)</sup> N <sub>Rk,cr</sub>     | [kN]                  | 20                   | 25    | 40                       | 60   | 95              |  |  |  |
| C25                                                                     | /30 [-]               | 1,02                 |       |                          |      |                 |  |  |  |
| C30                                                                     | /37 [-]               |                      |       | 1,04                     |      |                 |  |  |  |
| W                                                                       | /45 [-]               | 1,06                 |       |                          |      |                 |  |  |  |
| für N <sub>Rk</sub> C40                                                 | /50 [-]               |                      |       | 1,07                     |      |                 |  |  |  |
|                                                                         | /55 [-]               | 1,08                 |       |                          |      |                 |  |  |  |
|                                                                         | /60 [-]               |                      |       | 1,09                     |      |                 |  |  |  |
| Betonausbruch                                                           |                       |                      |       |                          |      |                 |  |  |  |
| h /                                                                     | h <sub>ef</sub> ≥ 2,0 | 1,0 h <sub>ef</sub>  |       |                          |      |                 |  |  |  |
| Randabstand $c_{cr,sp}[mm]$ 2,0 > h /                                   | h <sub>ef</sub> > 1,3 |                      |       | 4,6 h <sub>ef</sub> - 1, | 8 h  |                 |  |  |  |
| h /                                                                     | h <sub>ef</sub> ≤ 1,3 | 2,26 h <sub>ef</sub> |       |                          |      |                 |  |  |  |
| Achsabstand S <sub>cr,sp</sub>                                          |                       | 2c <sub>cr.sp</sub>  |       |                          |      |                 |  |  |  |
| Teilsicherheitsbeiwert $\gamma_{Mp} = \gamma_{Mc} = \gamma_{Msp}^{(1)}$ | [-]                   |                      | 1,52) |                          |      | 8 <sup>3)</sup> |  |  |  |

 $<sup>^{1)}</sup>$  Falls keine anderen nationalen Regelungen existieren.  $^{2)}$  Der Teilsicherheitsbeiwert  $\gamma_2=1,0$  ist enthalten  $^{3)}$  Der Teilsicherheitsbeiwert  $\gamma_2=1,2$  ist enthalten  $^{4)}$  Siehe Anhang 2

|            | Upat Injektionssystem UPM 55       | Anhang 12                                 |
|------------|------------------------------------|-------------------------------------------|
| oc: UPM 55 | Innengewindeanker                  | der europäischen<br>technischen Zulassung |
|            | Charakteristische Zugtragfähigkeit | ETA-11/0418                               |

| Tabelle 12: Charakteristische Werte für die Querzugtragfähigkeit |  |
|------------------------------------------------------------------|--|
| von Innengewindeankern                                           |  |

| Größe                                            |                                |                     |          | M 8     | M 10        | M 12              | M 16        | M 20    |
|--------------------------------------------------|--------------------------------|---------------------|----------|---------|-------------|-------------------|-------------|---------|
| Stahlversagen ohne h                             | lebelarm                       |                     | ,        |         | _           |                   |             |         |
|                                                  |                                | Festigkeits-        | 5.8 [kN] | 9,2     | 14,5        | 21,1              | 39,2        | 62      |
| Charakteristische                                | V                              | klasse              | 8.8 [kN] | 14,6    | 23,2        | 33,7              | 54,0        | 90      |
| Tragfähigkeit                                    | $V_{\rm Rk,s}$                 | Festigkeits-        | A4 [kN]  | 12,8    | 20,3        | 29,5              | 54,8        | 86      |
|                                                  |                                | klasse 70           | C [kN]   | 12,8    | 20,3        | 29,5              | 54,8        | 86      |
|                                                  |                                | Festigkeits-        | 5.8 [-]  |         |             | 1,25              |             |         |
| Teilsicherheits-                                 | $\gamma_{Ms,V}$                | klasse              | 8.8 [-]  |         |             | 1,25              |             |         |
| beiwert                                          | * IVIS, V                      | Festigkeits-        | A4 [-]   |         |             | 1,56              |             |         |
|                                                  |                                | klasse 70           | C [-]    |         |             | 1,56              |             |         |
| Stahlversagen mit He                             | belarm                         |                     |          |         |             |                   |             |         |
|                                                  |                                | Festigkeits-        | 5.8[Nm]  | 20      | 39          | 68                | 173         | 337     |
| Charakteristisches                               | N # O                          | klasse              | 8.8[Nm]  | 30      | 60          | 105               | 266         | 519     |
| Biegemoment                                      | $M_{\scriptscriptstyleRk,s}^0$ | Festigkeits-        | A4[Nm]   | 26      | 52          | 92                | 232         | 454     |
|                                                  |                                | klasse 70           | C[Nm]    | 26      | 52          | 92                | 232         | 454     |
|                                                  |                                | Festigkeits-        |          |         |             | 1,25              |             |         |
| Teilsicherheits-                                 | $\gamma_{Ms,V}$                | klasse              | 8.8 [-]  |         |             | 1,25              |             |         |
| beiwert                                          | ' Ms,V                         | Festigkeits-        | A4 [-]   |         |             | 1,56              |             |         |
|                                                  |                                | klasse 70           | C [-]    |         |             | 1,56              |             |         |
| Betonausbruch auf de                             | er lastabge                    | wandten Seit        | e        |         |             |                   |             |         |
| Faktor k in Gleichung (<br>Report TR 029, Kapite | -                              | chnical             | [-]      |         | _           | 2,0               |             |         |
| Teilsicherheitsbeiwert                           |                                | γ <sub>Mcp</sub> 1) | [-]      |         |             | 1,5 <sup>2)</sup> | .,-         |         |
| Betonkantenbruch                                 |                                |                     |          | Siehe T | echnical Re | eport TR 02       | 29, Kapitel | 5.2.3.4 |
| Teilsicherheitsbeiwert                           |                                | γ <sub>Mc</sub> 1)  | [-]      |         |             | 1,52)             |             |         |

<sup>1)</sup> Falls keine anderen nationalen Regelungen existieren.

Tabelle 13: Verschiebungen von Innengewindeankern unter Zuglast

| Größe                  |                                             | M 8        | M 10 | M 12 | M 16 | M 20 |
|------------------------|---------------------------------------------|------------|------|------|------|------|
| Ungerissener und geris | sener Beton; Temperaturber                  | eich I und | 111  |      |      |      |
| Verschiebung           | $\delta_{NO}$ [mm/(N/mm <sup>2</sup> )]     | 0,09       | 0,10 | 0,10 | 0,11 | 0,13 |
| Verschiebung           | $\delta_{\rm Nx}$ [mm/(N/mm <sup>2</sup> )] | 0,13       | 0,15 | 0,15 | 0,17 | 0,19 |

Berechnung der charakteristischen Verschiebung mit  $\delta_{_{N}}$  = ( $\delta_{_{N0}} ^{\bullet}$   $\tau_{_{Sd}})$  /1,4

Tabelle 14: Verschiebungen von Innengewindeankern unter Querzuglast

| Größe        |                            | M 8  | M 10 | M 12 | M 16 | M 20 |
|--------------|----------------------------|------|------|------|------|------|
| Verschiebung | $\delta_{vo}$ [mm/kN]      | 0,12 | 0,09 | 0,08 | 0,07 | 0,05 |
| Verschiebung | $\delta_{V\infty}$ [mm/kN] | 0,18 | 0,14 | 0,12 | 0,10 | 0,08 |

Berechnung der charakteristischen Verschiebung mit  $\delta_{\rm V}$  = ( $\delta_{\rm V0}^{\, \bullet}$  V  $_{\rm Sd}$ ) /1,4

|            | Upat Injektionssystem UPM 55                             | Anhang 13                                 |
|------------|----------------------------------------------------------|-------------------------------------------|
| 155        | Innengewindeanker Charakteristische Querzugtragfähigkeit | der europäischen<br>technischen Zulassung |
| oc: UPM 55 | Verschiebungen                                           | ETA-11/0418                               |

Dog. LIDAN E.E.

 $<sup>^{2)}</sup>$  Der Teilsicherheitsbeiwert  $\gamma_2$  = 1,0 ist enthalten.

| Tabelle 15: Ch                            | arakte                                                                                                                                                                                                              | eristische V                    | Ver    | te fü | ir di           | e Z  | ugtr  | agfa | ähig | ıkei  | t vo              | n B             | etor             | ıstä | hler | 1   |     |     |     |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------|-------|-----------------|------|-------|------|------|-------|-------------------|-----------------|------------------|------|------|-----|-----|-----|-----|
| Größe                                     |                                                                                                                                                                                                                     | Ød                              | 8      | 10    | 12              | 14   | 16    | 18   | 20   | 22    | 24                | 25              | 26               | 28   | 30   | 32  | 34  | 36  | 40  |
| Stahlversagen                             | ·                                                                                                                                                                                                                   |                                 |        |       |                 |      |       |      |      |       |                   |                 |                  |      | _    |     |     |     |     |
| Charakteristische<br>Tragfähigkeit Betons | stahl <sup>5)</sup>                                                                                                                                                                                                 | N <sub>Rk,s</sub> [kN]          | 28     | 44    | 63              | 85   | 111   | 140  | 173  | 209   | 249               | 270             | 292              | 339  | 389  | 443 | 499 | 560 | 691 |
| Teilsicherheitsbeiwe                      |                                                                                                                                                                                                                     | γ <sub>Ms,N</sub> [-]           |        |       |                 |      |       |      |      |       | 1,4               |                 |                  |      |      |     |     |     |     |
| Herausziehen und E                        |                                                                                                                                                                                                                     |                                 |        |       |                 |      |       |      |      |       |                   |                 |                  |      |      |     |     |     |     |
| Rechnerischer Durcl                       | hmesse                                                                                                                                                                                                              | er d [mm]                       | 8      | 10    | 12              | 14   | 16    | 18   | 20   | 22    | 24                | 25              | 26               | 28   | 30   | 32  | 34  | 36  | 40  |
| Charakteristische V                       |                                                                                                                                                                                                                     | dfestigkeit ir                  | า นทรุ | geris | sen             | em E | 3eto  | n C2 | 0/2  | 5     |                   |                 |                  |      |      |     |     |     |     |
| Temperaturbereich<br>(60°C / 35°C)        | [ <sup>4)</sup><br>τ <sub>Rk</sub>                                                                                                                                                                                  | ucr [N/mm²]                     | 16     | 15    | 15              | 14   | 14    | 14   | 13   | 13    | 13                | 13              | 13               | 13   | 12   | 12  | 12  | 12  | 12  |
| Temperaturbereich I<br>(72°C / 50°C)      | [ <sup>4)</sup><br>τ <sub>Rk</sub>                                                                                                                                                                                  | <sub>ucr</sub> [N/mm²]          | 13     | 12    | 12              | 12   | 11    | 11   | 11   | 11    | 11                | 10              | 10               | 10   | 10   | 10  | 10  | 9,5 | 9,5 |
| Charakteristische V                       | /erbund                                                                                                                                                                                                             | dfestigkeit ir                  | n ger  | isse  | nem             | Bet  | ton ( | 20/  | 25   |       |                   |                 |                  |      |      |     |     |     |     |
| Temperaturbereich<br>(60°C / 35°C)        | l <sup>4)</sup><br>τ <sub>Rk</sub>                                                                                                                                                                                  | er [N/mm²]                      | 7      | 7     | 7               | 7    | 7     | 7    | 7    | 7     | 7                 | 7               | 7                | 7    | 7    | 5   | 5   | 5   | 5   |
| Temperaturbereich I<br>(72°C / 50°C)      | (4)<br>τ <sub>Rk</sub>                                                                                                                                                                                              | <sub>.cr</sub> [N/mm²]          | 6      | 6     | 6               | 6    | 6     | 6    | 6    | 6     | 6                 | 6               | 6                | 6    | 6    | 4   | 4   | 4   | 4   |
|                                           |                                                                                                                                                                                                                     | C25/30 [-]                      |        |       |                 |      |       |      |      |       | 1,02              |                 |                  |      |      |     |     |     |     |
|                                           |                                                                                                                                                                                                                     | C30/37 [-]                      |        |       |                 |      |       |      |      |       | 1,04              |                 |                  |      |      |     |     |     |     |
| Erhöhungsfaktoren                         | Ψ.                                                                                                                                                                                                                  | C35/45 [-]                      |        |       |                 |      |       |      |      |       |                   |                 |                  |      |      |     |     |     |     |
| für τ <sub>Rk</sub>                       |                                                                                                                                                                                                                     | C40/50 [-]                      |        |       |                 |      |       |      |      |       | 1,07              |                 |                  |      |      |     |     |     |     |
|                                           |                                                                                                                                                                                                                     | C45/55 [-]                      |        |       |                 |      |       |      |      |       | 1,08              |                 |                  |      |      |     |     |     |     |
|                                           |                                                                                                                                                                                                                     | C50/60 [-]                      | _      |       |                 |      |       |      |      |       | 1,09              |                 |                  |      |      |     |     |     |     |
| Betonausbruch                             |                                                                                                                                                                                                                     |                                 |        |       |                 |      |       |      |      |       |                   |                 |                  |      |      |     |     |     |     |
| Randabstand                               |                                                                                                                                                                                                                     | h / h <sub>ef</sub> ≥ 2,0       |        |       |                 |      |       |      |      | 1     | ,0 h              | ef              |                  |      |      |     |     |     |     |
| c <sub>cr,sp</sub> [mm]                   | 2,0 >                                                                                                                                                                                                               | h / h <sub>ef</sub> >1,3        |        |       |                 |      |       |      |      | 4,6 h | ) - 1             | 1,8 h           |                  |      |      |     |     |     |     |
|                                           |                                                                                                                                                                                                                     | h / h <sub>ef</sub> ≤1,3        |        |       |                 |      |       |      |      | 2,    | 26 I              | ٦ <sub>ef</sub> |                  |      |      |     |     |     |     |
| Achsabstand                               |                                                                                                                                                                                                                     | s <sub>cr,sp</sub> [mm]         |        |       |                 |      |       |      |      | 2     | C <sub>cr,s</sub> | р               |                  |      |      |     |     |     |     |
| Teilsicherheits-<br>beiwert               | $\gamma_{Mp} = \gamma_{N}$                                                                                                                                                                                          | $_{Mc} = \gamma_{Msp}^{1)}$ [-] |        | 1,    | 5 <sup>2)</sup> |      |       |      |      |       |                   |                 | 1,8 <sup>3</sup> | )    |      |     |     |     |     |
| 2) Der Teilsicherheits                    | <sup>1)</sup> Falls keine anderen nationalen Regelungen existieren. <sup>2)</sup> Der Teilsicherheitsbeiwert $\gamma_2 = 1,0$ ist enthalten <sup>3)</sup> Der Teilsicherheitsbeiwert $\gamma_2 = 1,2$ ist enthalten |                                 |        |       |                 |      |       |      |      |       |                   |                 |                  |      |      |     |     |     |     |

<sup>4)</sup> Siehe Anhang 2

|             | Upat Injektionssystem UPM 55       | Anhang 14                                 |
|-------------|------------------------------------|-------------------------------------------|
| 92          | Betonstahl                         | der europäischen<br>technischen Zulassung |
| 00c: UPM 55 | Charakteristische Zugtragfähigkeit | ETA-11/0418                               |

DOC- LIPM SS

<sup>5)</sup> Die angegebenen Werte gelten für Betonstahl BSt 500 mit  $f_{uk}$  = 550 N/mm² und  $f_{yk}$  = 500 N/mm² Für andere Betonstähle sind die charakteristischen Stahltragfähigkeiten nach TR 029, Gleichung (5.1) zu berechnen.

| Seite 24 der europa                                                                                                                              | aisc                  | hen                   | tech                   | nisch            | nen 2           | Zula           | ssun   | g E           | <b>A-1</b>                    | 1/04            | 18, 6         | erteil<br>——    | t an                     | n 28        | . Se | ptem  | ber 2            | 2011 |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|------------------------|------------------|-----------------|----------------|--------|---------------|-------------------------------|-----------------|---------------|-----------------|--------------------------|-------------|------|-------|------------------|------|
| Tabelle 16: Cha                                                                                                                                  | arak                  | teris                 | tisch                  | e W              | erte            | für            | die C  | uer           | zugt                          | ragf            | ähig          | keit            | vor                      | n Be        | tons | stähl | en <sup>1)</sup> |      |
| Größe Ø d                                                                                                                                        | 8                     | 10                    | 12                     | 14               | 16              | 18             | 20     | 22            | 24                            | 25              | 26            | 28              | 3                        | 0           | 32   | 34    | 36               | 40   |
| Stahlversagen ohne                                                                                                                               | Heb                   | elarn                 | 1                      |                  |                 |                | ,      |               |                               |                 |               |                 |                          |             |      |       |                  |      |
| Charak-<br>teristische V <sub>Rk,s</sub> [kN]<br>Tragfähigkeit                                                                                   | 13,8                  | 3 21,6                | 31,1                   | 42,4             | 55,3            | 70             | 87     | 105           | 125                           | 135             | 146           | 170             | ) 1                      | 95          | 221  | 250   | 280              | 346  |
| Teilsicher-<br>heitsbeiwert γ <sub>Ms,V</sub> [-                                                                                                 |                       | 1,5                   |                        |                  |                 |                |        |               |                               |                 |               |                 |                          |             |      |       |                  |      |
| Stahlversagen mit H                                                                                                                              | ebela                 | arm                   |                        |                  |                 |                |        |               |                               |                 |               |                 |                          |             |      |       |                  |      |
| Charakte-<br>ristisches M <sub>Rk,s</sub> [Nm<br>Biegemoment                                                                                     | 33                    |                       |                        |                  |                 |                |        |               |                               |                 |               |                 |                          |             |      |       |                  |      |
| Teil-sicherheits- $\gamma_{\rm Ms,V}$ [-] 1,5 beiwert                                                                                            |                       |                       |                        |                  |                 |                |        |               |                               |                 |               |                 |                          |             |      |       |                  |      |
| Betonausbruch auf d                                                                                                                              | er la                 | stab                  | gewa                   | ndter            | Sei             | te             |        |               |                               |                 |               |                 |                          |             |      |       |                  |      |
| Faktor k in Gleichung<br>(5.7) des Technical<br>Report TR 029,<br>Kapitel 5.2.3.3                                                                |                       | 2,0                   |                        |                  |                 |                |        |               |                               |                 |               |                 |                          |             |      |       |                  |      |
| Teil-<br>sicherheits- $\gamma_{Mcp}^{2}$ [-]<br>beiwert                                                                                          |                       |                       |                        |                  |                 |                |        |               | 1,                            | 5³)             |               |                 |                          |             |      |       |                  |      |
| Betonkantenbruch                                                                                                                                 |                       |                       |                        |                  | Sie             | he Te          | chnic  | al Re         | port                          | TR C            | 29, 1         | <b>Capit</b>    | el 5.                    | 2.3.4       | 4    |       |                  |      |
| Teil-sicherheits- $\gamma_{Mc}^{\ \ 2)}$ [-] beiwert                                                                                             |                       |                       |                        |                  |                 |                |        |               | 1,                            | 5³}             |               |                 |                          |             |      |       |                  |      |
| <ol> <li>Die angegebenen V<br/>Für andere Betonst<br/>Gleichung (5.1) zu I</li> <li>Falls keine anderen</li> <li>Der Teilsicherheitst</li> </ol> | ähle<br>pered<br>nati | sind<br>chne<br>onale | die ch<br>n.<br>en Reg | arakto<br>jelung | eristi<br>gen e | sche<br>xistie | n Stal | mit<br>hltrag | f <sub>uk</sub> = {<br>gfähiç | 550 l<br>gkeite | N/mi<br>en na | m² un<br>ich Ti | df <sub>yk</sub><br>R 02 | = 50<br>!9, | 00 N | /mm²  | 2.               |      |
| Tabelle 17: Verso                                                                                                                                | hiel                  | oung                  | von                    | Beto             | onst            |                |        | т-            |                               |                 |               |                 |                          |             |      |       | 1                | 1    |
| Größe                                                                                                                                            | Ø                     | 8                     | . –                    | . —   .          |                 | . –            |        | 1             |                               | 24              | 25            | 26              | 28                       | 30          | 32   | 34    | 36               | 40   |
| Gerissener und unge                                                                                                                              | risse                 | ner                   | seton                  | ; iem            | pera            | turbe          | ereich | n I ur        |                               | -               |               | -               |                          |             |      | 1     |                  |      |
| Verschiebung $\delta_{N0} \left[ \frac{mm}{(N/mm)} \right]$                                                                                      | <u>-</u>              | ),07                  | 0,08                   | ,09 0,           | 09 0            | , <b>10</b> 0  | ,10 0  | ,11 C         | ,11 (                         | ),12 (          | ),12          | 0,12            | 0,13                     | 0,13        | 0,13 | 0,14  | 0,14             | 0,15 |
| Verschiebung $\delta_{N\alpha} \left[ \frac{mm}{(N/mm)} \right]$                                                                                 | $\frac{1}{2}$         | ),11                  | 0,12                   | ,13 0,           | 14 0            | , <b>15</b> 0  | ,16 0  | ,16 0         | ,17 0                         | ),18            | ),18          | 0,18            | 0,19                     | 0,19        | 0,20 | 0,20  | 0,21             | 0,22 |
| Berechnung der charakteristischen Verschiebung mit $\delta_N = (\delta_{NO} \cdot \tau_{sd})/1,4$                                                |                       |                       |                        |                  |                 |                |        |               |                               |                 |               |                 |                          |             |      |       |                  |      |

Berechnung der charakteristischen Verschiebung mit  $\delta_{_{N}}$  = ( $\delta_{_{NO}}$  •  $\tau_{_{Sd}}$ )/1,4

Tabelle 18: Verschiebung von Betonstahl unter Querlast

| Größe             | Ø                            | 8    | 10   | 12   | 14   | 16   | 18   | 20   | 22   | 24   | 25   | 26   | 28   | 30   | 32   | 34   | 36   | 40   |
|-------------------|------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Verschie-<br>bung | $\delta_{\text{VO}}$ [mm/kN] | 0,18 | 0,15 | 0,12 | 0,10 | 0,09 | 0,08 | 0,07 | 0,07 | 0,06 | 0,06 | 0,06 | 0,05 | 0,05 | 0,05 | 0,05 | 0,05 | 0,04 |
| Verschie-<br>bung | $\delta_{V\infty}$ [mm/kN]   | 0,27 | 0,22 | 0,18 | 0,16 | 0,14 | 0,12 | 0,11 | 0,10 | 0,09 | 0,09 | 80,0 | 0,08 | 0,07 | 0,06 | 0,06 | 0,06 | 0,05 |

Berechnung der charakteristischen Verschiebung mit  $\delta_{\rm V} = (\delta_{\rm V0} \cdot {\rm V}_{\rm sd})/1.4$ 

Doc: UPM 55

| Upat Injektionssystem UPM 55                         | Anhang 15                                 |
|------------------------------------------------------|-------------------------------------------|
| Betonstahl<br>Charakteristische Querzugtragfähigkeit | der europäischen<br>technischen Zulassung |
| Verschiebungen                                       | ETA-11/0418                               |

Tabelle 19: Charakteristische Werte für die Zugtragfähigkeit von Bewehrungsankern FRA

| Größe                                               |                                                | M12               | M16                   | M20               | M24 |
|-----------------------------------------------------|------------------------------------------------|-------------------|-----------------------|-------------------|-----|
| Stahlversagen                                       |                                                |                   |                       |                   |     |
| Charakteristische Tragfähigkeit                     | $N_{Rk,s}$ [kN]                                | 68                | 126                   | 196               | 283 |
| Teilsicherheitsbeiwert                              | γ <sub>Ms,N</sub> <sup>1)</sup> [-]            |                   | 1,5                   | 6                 |     |
| Herausziehen und Betonausbrud                       |                                                |                   |                       |                   |     |
| Rechnerischer Durchmesser                           | d [mm]                                         | 12                | 16                    | 20                | 25  |
| Charakteristische Verbundfestig                     | keit in ungerissenen                           | Beton C20,        | /25                   | 1                 |     |
| Temperaturbereich I <sup>4)</sup><br>(60°C / 35°C)  | τ <sub>Rk,ucr</sub> [N/mm²]                    | 15                | 14                    | 13                | 13  |
| Temperaturbereich II <sup>4)</sup><br>(72°C / 50°C) | τ <sub>Rk,ucr</sub> [N/mm²]                    | 12                | 11                    | 11                | 11  |
| Charakteristische Verbundfestig                     | keit in gerissenem B                           | eton C20/2!       | 5                     | <del></del>       |     |
| Temperaturbereich I <sup>4)</sup><br>(60°C / 35°C)  | τ <sub>Rk,cr</sub> [N/mm²]                     |                   | 7                     |                   |     |
| Temperaturbereich II <sup>4)</sup><br>(72°C / 50°C) | τ <sub>Rk,cr</sub> [N/mm²]                     |                   | 6                     |                   |     |
|                                                     | C25/30 [-]                                     |                   | 1,0                   | 2                 |     |
|                                                     | C30/37 [-]                                     |                   | 1,04                  |                   |     |
| Erhöhungs-<br>foktoren für σ                        | C35/45 [-]                                     |                   | 1,00                  |                   |     |
| faktoren für τ <sub>Rk</sub>                        | C40/50 [-]                                     |                   | 1,0                   |                   |     |
|                                                     | C45/55 [-]                                     |                   | 1,08                  |                   |     |
|                                                     | C50/60 [-]                                     |                   | 1,09                  | <del></del>       |     |
| Betonausbruch                                       |                                                |                   |                       |                   |     |
|                                                     | h / h <sub>ef</sub> ≥ 2,0                      |                   | 1,0                   | h <sub>ef</sub>   |     |
| Randabstand c <sub>cr,sp</sub> [mm]                 | 2,0 > h / h <sub>ef</sub> > 1,3                |                   | 4,6 h <sub>ef</sub> - | 1,8 h             |     |
|                                                     | h / h <sub>e1</sub> ≤ 1,3                      |                   | 2,26                  |                   |     |
| Achsabstand                                         | S <sub>cr.sp</sub> [mm]                        |                   | 2 c <sub>cr</sub>     | ,sp               |     |
| Teilsicherheitsbeiwert $\gamma_{Mp} = \gamma$       | $\gamma_{\rm Mc} = \gamma_{\rm Msp}^{(1)}$ [-] | 1,5 <sup>2)</sup> |                       | 1,8 <sup>3)</sup> |     |

 $<sup>^{1)}</sup>$  Falls keine anderen nationalen Regelungen existieren.  $^{2)}$  Der Teilsicherheitsbeiwert  $\,\gamma_2^{}=\,$  1,0 ist enthalten.  $^{3)}$  Der Teilsicherheitsbeiwert  $\,\gamma_2^{}=\,$  1,2 ist enthalten.  $^{4)}$  Siehe Anhang 2

| Upat Injektionssystem UPM 55       | Anhang 16                                 |
|------------------------------------|-------------------------------------------|
| Bewehrungsanker FRA                | der europäischen<br>technischen Zulassung |
| Charakteristische Zugtragfähigkeit | ETA-11/0418                               |

**Tabelle 20:** Charakteristische Querzugtragfähigkeit für Bewehrungsanker FRA

| Größe                                                                     |                                |      | M12      | M16            | M20             | M24                                           |
|---------------------------------------------------------------------------|--------------------------------|------|----------|----------------|-----------------|-----------------------------------------------|
| Stahlversagen ohne Hebelarm                                               |                                |      |          |                |                 |                                               |
| Charakteristische Tragfähigkeit                                           | $V_{Rk,s}$                     | [kN] | 33,7     | 63             | 98              | 141                                           |
| Teilsicherheitsbeiwert                                                    | $\gamma_{Ms,V}$                | [-]  |          | 1,             | 25              |                                               |
| Stahlversagen mit Hebelarm                                                |                                |      |          |                |                 | _                                             |
| Charakteristisches Biegemoment                                            | M <sub>Rk,s</sub> [            | Nm]  | 105      | 266            | 519             | 896                                           |
| Teilsicherheitsbeiwert                                                    | $\gamma_{Ms,V}$                | [-]  |          | 1,             | 25              | <u>,                                     </u> |
| Betonausbruch auf der lastabgewand                                        | dten Seit                      | е    |          |                |                 |                                               |
| Faktor k in Gleichung (5.7) des<br>Technical Report TR 029, Kapitel 5.2.3 | 3.3 k                          | [-]  |          | 2              | ,0              |                                               |
| Teilsicherheitsbeiwert                                                    | γ <sub>Mcp</sub> <sup>1)</sup> | [-]  |          | 1,             | 5 <sup>2)</sup> |                                               |
| Betonkantenbruch                                                          |                                |      | Siehe Te | chnical Report | t TR 029, Kapit | el 5.2.3.4                                    |
| Teilsicherheitsbeiwert                                                    | γ <sub>Mc</sub> 1)             | [-]  |          | 1,             | 5 <sup>2)</sup> |                                               |

<sup>&</sup>lt;sup>1)</sup> Falls keine anderen nationalen Regelungen existieren.

**Tabelle 21:** Verschiebungen von Bewehrungsankern FRA unter Zuglast

| Größe                                                         |                                                          |              | 12   | 16   | 20   | 24   |  |
|---------------------------------------------------------------|----------------------------------------------------------|--------------|------|------|------|------|--|
| Ungerissener und gerissener Beton; Temperaturbereich I und II |                                                          |              |      |      |      |      |  |
| Verschiebung                                                  | δ <sub>NO</sub> [ (                                      | mm<br>N/mm²) | 0,09 | 0,10 | 0,11 | 0,12 |  |
| Verschiebung                                                  | $\delta_{N\infty}$ $\left[ \overline{(1 - 1)^n} \right]$ | mm N/mm²)    | 0,13 | 0,15 | 0,16 | 0,18 |  |

Berechnung der charakteristischen Verschiebung mit  $\delta_{N} = (\delta_{N0} \cdot \tau_{Sd}) / 1.4$ 

**Tabelle 22:** Verschiebungen von Bewehrungsankern FRA unter Querlast

| Größe        | Ø                       | 12   | 16   | 20   | 24   |
|--------------|-------------------------|------|------|------|------|
| Verschiebung | $\delta_{vo}$ [mm/kN]   | 0,12 | 0,09 | 0,07 | 0,06 |
| Verschiebung | δ <sub>v∞</sub> [mm/kN] | 0,18 | 0,14 | 0,11 | 0,09 |

Berechnung der charakteristischen Verschiebung mit  $\delta_{\rm v}$  = ( $\delta_{\rm vo}$  • V<sub>sd</sub>) /1,4

|             | Upat Injektionssystem UPM 55                                                    | Anhang 17                                          |  |  |
|-------------|---------------------------------------------------------------------------------|----------------------------------------------------|--|--|
| Joc: UPM 55 | Bewehrungsanker FRA<br>Charakteristische Querzugtragfähigkeit<br>Verschiebungen | der europäischen technischen Zulassung ETA-11/0418 |  |  |

<sup>&</sup>lt;sup>2)</sup> Der Teilsicherheitsbeiwert  $\gamma_2 = 1.0$  ist enthalten.