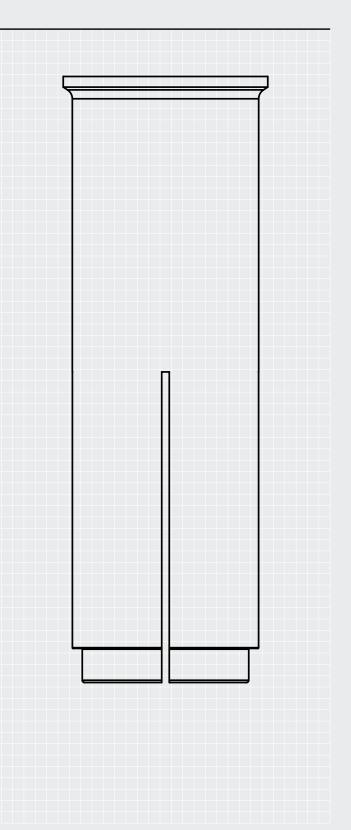
Europäische Technische Zulassung ETA-07/0135

fischer Einschlaganker EA II


Option 7 für ungerissenen Beton

Zul.-Nr. ETA-07/0135 aus galvanisch verzinktem Stahl, aus nicht rostendem Stahl A4. Geltungsdauer bis 22. Juni 2012.

Lieferprogramm fischer Einschlaganker EA II

Zul.-Nr. ETA-07/0135 Geltungsdauer bis 22. Juni 2012.

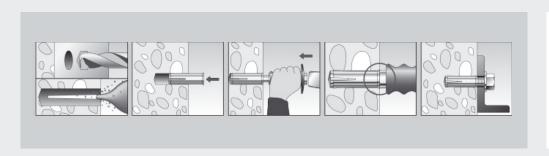
fischer Einschlaganker EA II

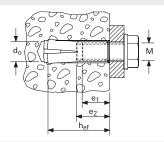
Einschlaganker EA II Stahl, galvanisch verzinkt

Einschlaganker EA II A-4 nicht rostender Stahl

Einschlaganker EA II M 12 D Stahl galvanisch verzinkt, speziell für Diamantbohrgeräte und Diamantsägen.

Setzwerkzeug EAW H plus mit Handschlagschutz für Ihre Sicherheit.


Тур	ArtNr.	Bohrerdurch- messer	mind. Bohr- lochtiefe	min. Veranke- rungstiefe	Dübellänge	Gewinde	min. Einschraubtiefe	max. Einschraubtiefe	Verpackung
		d_0	t	h _{ef}	1	М	e _{1, min}	e _{2, max}	
		[mm]	[mm]	[mm]	[mm]		[mm]	[mm]	[Stück]
EAIIM6	48264	8	32	30	30	M 6	6	13	100
EAIIM8	48284	10	33	30	30	M 8	8	13	100
EA II M 8 x 40	48323	10	43	40	40	M 8	8	13	50
EA II M 10 x 30	48332	12	33	30	30	M 10	10	13	50
EA II M 10	48339	12	43	40	40	M 10	10	17	50
EA II M 12	48406	15	54	50	50	M 12	12	22	25
EA II M 16	48408	20	70	65	65	M 16	16	28	20
EA II M 20	48409	24	85	80	80	M 20	20	34	10
EA II M 6 A4	48410	8	32	30	30	M 6	6	13	100
EA II M 8 A4	48411	10	33	30	30	M 8	8	13	100
EA II M 8 x 40 A4	48412	10	43	40	40	M 8	8	13	50
EA II M 10 A4	48414	12	43	40	40	M 10	10	17	50
EA II M 12 A4	48415	15	54	50	50	M 12	12	22	25
EA II M 16 A4	48416	20	70	65	65	M 16	16	28	20
EA II M 20 A4	48417	24	85	80	80	M 20	20	34	10
EA II M 6 A4 (1.4571)	45711	8	32	30	30	M 6	6	13	100
EA II M 8 A4 (1.4571)	45712	10	33	30	30	M 8	8	13	100
EA II M 10 A4 (1.4571)	45713	12	43	40	40	M 10	10	17	50


Einschlaganker EA II M 12 D

Тур	ArtNr.	Bohrerdurch- messer	mind. Bohr- lochtiefe	min. Veranke- rungstiefe	Dübellänge	Gewinde	min. Einschraubtiefe	max. Einschraubtiefe	Verpackung
		d_0	t	h _{ef}	1	M	e _{1, min}	e _{2, max}	
		[mm]	[mm]	[mm]	[mm]		[mm]	[mm]	[Stück]
EA II M 12 D	48407	16	54	50	50	M 12	12	22	25

Setzwerkzeug EAW H plus

Тур	ArtNr.	passend zu	Verpackung
			70 - 13
			[Stück]
EAW H 6 plus	44630	EA II M 6	1
EAW H 8 x 30 plus	44631	EA II M 8	1
EAW H 8 x 40 plus	44632	EA II M 8 x 40	1
EAW H 10 plus	44633	EA II M 10	1
EAW H 10 x 30 plus	48487	EA II M 10 x 30	1
EAW H 12 plus	44634	EA II M 12 / EA II M 12 D	1
EAW H 16 plus	44635	EA II M 16	1
EAW H 20 plus	44636	EA II M 20	1

Größte zulässige Lasten¹⁾ eines Dübels in ungerissenem Normalbeton C20/25²⁾. Bei der Bemessung ist der gesamte Zulassungsbescheid ETA-07/0135 zu beachten.

Dübeltyp			E	A II M6	4)				A II M8	4)			EA	II M8 x 4	40		EA II M10 x 30 ⁴⁾				
			g	VZ		A4		ç	VZ		A4		g	/Z		A4		gv	z		A4
Qualität der eingedrehten Schraube		4,6	5,6	5,8	8,8	A4-70	4.6	5.6	5.8	8.8	A4-70	4.6	5.6	5.8	8.8	A4-70	4,6	5,6	5,8	8,8	A4-70
Effektive Verankerungstiefe	h _{ef} [mm			30					30					40					30		
Zulässige zentrische Zuglast eines Einzeldübels	ohne Randeinflus	s N _{zul} d	h. Ran	dabstar	ıd c ≧ 1,	5 x h _{ef}	und Ac	hsabs	and s ≧	3 x h _{ef}	F										
Ungerissener Beton C20/25 ²⁾	N _{zul} [kN]	2,9	3,6	3,	.9	3,9		3	1,9		3,9	5,2		6,1		6,1		3,9)		3,9
Zulässiges Querkraft eines Einzeldübels ohne F	landeinfluss V _{zul} ,	l. h. Rar	ıdabsta	nd c ≧ 1	0 x h _{ef} ı	ınd Acl	hsabst	and s ≧	3 x h _{ef}												
Ungerissener Beton C20/25 ²⁾	V _{zul} [kN]	1,7	2,1	2,9	3,9	3,2	3,1		3,9		3,9	3,1	3,9	4,9	3	5,6		3,9)		3,9
Zulässiges Biegemoment	M _{zul} [Nm]	2,6	3,3	4,3	6,9	5,0	6,4	8,1	10,9	17,1	11,9	6,4	8,1	10,9	17,1	11,9	12,8	15,8	21,1	34,3	23,8
Bauteilabmessungen und Montagekennwerte																					
Charakteristischer Achsabstand	s _{cr, N} [mm										= 3	x h _{ef}									
Charakteristischer Randabstand	c _{cr, N} [mm										= 1,5	x h _{ef}									
Minimaler Achsabstand ³⁾	s _{min} [mm			65					95					95					85		
Minimaler Randabstand ³⁾	c _{min} [mm			115				140					140			140					
Mindestbauteildicke	h _{min} [mm			100			100			100				120							
Bohrnenndurchmesser	d ₀ [mm			8				10			10				12						
Bohrlochtiefe	h ₁ ≥ [mm			32					33				43						33		
Minimale Einschraubtiefe	min I _s [mm			6					8				8						10		
Maximale Einschraubtiefe	max I _s [mm			13				13				13						13			
Durchgangsloch im anzuschließenden Bauteil	d _f ≦ [mm			7				9			9				12						
Maximales Montagedrehmoment	max T _{inst} [Nm]			4			8			8				15							
Dübeltyp			E	A II M1	0				A II M1			EA II M16				EA II M20					
					1				A II M12	2 D	1										
				VZ		A4			VZ		A4			/Z		A4		gv			A4
Qualität der eingedrehten Schraube		4,6	5,6	5,8	8,8	A4-70	4,6	5,6	5,8	8,8	A4-70	4,6	5,6	5,8	8,8	A4-70	4,6	5,6		8,8	A4-70
Effektive Verankerungstiefe	h _{ef} [mm			40					50					65					80		
Zulässige zentrische Zuglast eines Einzeldübels					ıd c ≧ 1,		und Ac			3 x h _{e1}	_			-							
Ungerissener Beton C20/25 ²⁾	N _{zul} [kN]		6	-		6,1			1,5		8,5		12	2,6		12,6		17,	2		17,2
Zulässiges Querkraft eines Einzeldübels ohne F			ıdabsta		0 x h _{ef} ι			and s ≧													
Ungerissener Beton C20/25 ²⁾	V _{zul} [kN]			6,1		6,1	7,2		8,5		8,5	13,3	16,7	18,		- 1	21,0		29,		33,7
Zulässiges Biegemoment	M _{zul} [Nm]	12,8	15,8	21,1	34,3	23,8	22,2	28,2	37,7	60,0	42,1	56,9	71,0	94,9	152,0	106,2	110,8	138,6	185,1	295,4	207,9
Bauteilabmessungen und Montagekennwerte																					
Charakteristischer Achsabstand	s _{cr, N} [mm	1]									x h _{ef}										
Charakteristischer Randabstand	c _{cr, N} [mm									= 1,5	5 x h _{ef}										
Minimaler Achsabstand ³⁾	s _{min} [mm		95				145			180					190						

200

120

15 / 16*

54

12

22

14

35

240

160

20

70

16

28

18

60

280

200

25

85

20

34

22

120

Hinweis: Mit der fischer Design Software COMPUFIX können Sie die ganze Leistungsfähigkeit des fischer Einschlagankers EA II ausnutzen und Bemessungen mit individuellen

160

120

12

43

10

17

15

c_{min} [mm]

h_{min} [mm]

 $h_1 \ge [mm]$

min I_s [mm]

 $\max I_s \ [mm]$

 $d_f \leq [mm]$

max T_{inst} [Nm]

d₀ [mm]

Durchgangsloch im anzuschließenden Bauteil

Minimaler Randabstand³⁾

Minimale Einschraubtiefe

Maximale Einschraubtiefe

Maximales Montagedrehmoment

Mindestbauteildicke

Bohrnenndurchmesser

Bohrlochtiefe

¹⁾ Es sind die in der Zulassung geregelten Teilsicherheitsbeiwerte der Widerstände sowie ein Teilsicherheitsbeiwert von $\gamma_F = 1,4$ berücksichtigt. Bei der Kombination von Zug- und Querlasten, bei Randeinfluss und bei Dübelgruppen beachten Sie bitte das Bemessungsverfahren A (ETAG Anhang C).

Der Beton wird als normalbewehrt oder unbewehrt vorausgesetzt; bei höheren Betonfestigkeiten sind bis zu 55 % höhere Werte möglich.

Bei gleichzeitiger Reduzierung der Last.
 Die Verwendung ist auf statisch unbestimmte Bauteile beschränkt.
 Wert gültig für EA II M12 D.

Deutsches Institut für Bautechnik

Anstalt des öffentlichen Rechts

Kolonnenstr. 30 L 10829 Berlin Deutschland

Tel.: +49(0)30 787 30 0 Fax: +49(0)30 787 30 320 E-mail: dibt@dibt.de Internet: www.dibt.de

Mitglied der EOTA

Member of EOTA

Europäische Technische Zulassung ETA-07/0135

Handelsbezeichnung

Trade name

fischer Einschlaganker EA II fischer drop-in anchor EA II

Zulassungsinhaber Holder of approval fischerwerke Artur Fischer GmbH & Co. KG Weinhalde 14-18 72178 Waldachtal DEUTSCHLAND

Zulassungsgegenstand und Verwendungszweck

Generic type and use of construction product

Geltungsdauer:

Validity:

vom from

bis to Wegkontrolliert spreizender Dübel in den Größen M6, M8, M10, M12, M16 und M20 zur Verankerung im ungerissenen Beton

Deformation-controlled expansion anchor of sizes M6, M8, M10, M12, M16 and M20 for use in non-cracked concrete

5. November 2007

22. Juni 2012

Herstellwerk

Manufacturing plant

fischerwerke

Diese Zulassung umfasst

This Approval contains

14 Seiten einschließlich 7 Anhänge 14 pages including 7 annexes

Diese Zulassung ersetzt This Approval replaces ETA-07/0135 mit Geltungsdauer vom 22.06.2007 bis 22.06.2012 ETA-07/0135 with validity from 22.06.2007 to 22.06.2012

RECHTSGRUNDLAGEN UND ALLGEMEINE BESTIMMUNGEN

- Diese europäische technische Zulassung wird vom Deutschen Institut für Bautechnik erteilt in Übereinstimmung mit:
 - der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte¹, geändert durch die Richtlinie 93/68/EWG des Rates² und durch die Verordnung (EG) Nr. 1882/2003 des Europäischen Parlaments und des Rates³;
 - dem Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, zuletzt geändert durch Gesetz vom 06.01.2004⁵;
 - den Gemeinsamen Verfahrensregeln für die Beantragung, Vorbereitung und Erteilung von europäischen technischen Zulassungen gemäß dem Anhang zur Entscheidung 94/23/EG der Kommission⁶:
 - der Leitlinie für die europäische technische Zulassung für "Metalldübel zur Verankerung im Beton Teil 4: Wegkontrolliert spreizende Dübel", ETAG 001-04.
- Das Deutsche Institut für Bautechnik ist berechtigt zu prüfen, ob die Bestimmungen dieser europäischen technischen Zulassung erfüllt werden. Diese Prüfung kann im Herstellwerk erfolgen. Der Inhaber der europäischen technischen Zulassung bleibt jedoch für die Konformität der Produkte mit der europäischen technischen Zulassung und deren Brauchbarkeit für den vorgesehenen Verwendungszweck verantwortlich.
- Diese europäische technische Zulassung darf nicht auf andere als die auf Seite 1 aufgeführten Hersteller oder Vertreter von Herstellern oder auf andere als die auf Seite 1 dieser europäischen technischen Zulassung genannten Herstellwerke übertragen werden.
- Das Deutsche Institut für Bautechnik kann diese europäische technische Zulassung widerrufen, insbesondere nach einer Mitteilung der Kommission aufgrund von Art. 5 Abs. 1 der Richtlinie 89/106/EWG.
- Diese europäische technische Zulassung darf auch bei elektronischer Übermittlung nur ungekürzt wiedergegeben werden. Mit schriftlicher Zustimmung des Deutschen Instituts für Bautechnik kann jedoch eine teilweise Wiedergabe erfolgen. Eine teilweise Wiedergabe ist als solche zu kennzeichnen. Texte und Zeichnungen von Werbebroschüren dürfen weder im Widerspruch zu der europäischen technischen Zulassung stehen noch diese missbräuchlich verwenden.
- Die europäische technische Zulassung wird von der Zulassungsstelle in ihrer Amtssprache erteilt. Diese Fassung entspricht der in der EOTA verteilten Fassung. Übersetzungen in andere Sprachen sind als solche zu kennzeichnen.

-

ı

Amtsblatt der Europäischen Gemeinschaften L 40 vom 11.02.1989, S. 12

² Amtsblatt der Europäischen Gemeinschaften L 220 vom 30.08.1993, S. 1

³ Amtsblatt der Europäischen Union L 284 vom 31.10.2003, S. 25

⁴ Bundesgesetzblatt I, S. 812

⁵ Bundesgesetzblatt I, S. 2, 15

⁶ Amtsblatt der Europäischen Gemeinschaften L 17 vom 20.01.1994, S. 34

II BESONDERE BESTIMMUNGEN DER EUROPÄISCHEN TECHNISCHEN ZULASSUNG

1 Beschreibung des Bauprodukts und des Verwendungszwecks

1.1 Beschreibung des Produkts

Der fischer Einschlaganker EA II in den Größen M6, M8, M8x40, M10x30, M10, M12, M12 D, M16 und M20 ist ein Dübel aus galvanisch verzinktem oder nichtrostendem Stahl, der in ein Bohrloch gesetzt und durch wegkontrollierte Verspreizung verankert wird.

Im Anhang 1 ist der Dübel im eingebauten Zustand dargestellt.

Das Anbauteil ist mit einer Befestigungsschraube oder einer Gewindestange entsprechend Anhang 4 zu befestigen.

1.2 Verwendungszweck

Der Dübel ist für Verwendungen vorgesehen, bei denen Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 der Richtlinie 89/106/EWG zu erfüllen sind und bei denen ein Versagen der Verankerungen zu einer Gefahr für Leben oder Gesundheit von Menschen und/oder erheblichen wirtschaftlichen Folgen führt. Der Dübel darf nur für Verankerungen unter vorwiegend ruhender oder quasi-ruhender Belastung in bewehrtem oder unbewehrtem Normalbeton der Festigkeitsklasse von mindestens C 20/25 und höchstens C 50/60 nach EN 206-1:2000-12 verwendet werden. Er darf nur im ungerissenen Beton verankert werden.

fischer Einschlaganker EA II (galvanisch verzinkter Stahl):

Der Dübel darf nur in Bauteilen unter den Bedingungen trockener Innenräume verwendet werden.

fischer Einschlaganker EA II A4 (nichtrostender Stahl):

Der Dübel darf in Bauteilen unter den Bedingungen trockener Innenräume sowie auch im Freien (einschließlich Industrieatmosphäre und Meeresnähe) oder in Feuchträumen verwendet werden, wenn keine besonders aggressiven Bedingungen vorliegen. Zu diesen besonders aggressiven Bedingungen gehören, z. B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Die Bestimmungen dieser europäischen technischen Zulassung beruhen auf einer angenommenen Nutzungsdauer des Dübels von 50 Jahren. Die Angaben über die Nutzungsdauer können nicht als Garantie des Herstellers ausgelegt werden, sondern sind lediglich als Hilfsmittel zur Auswahl der richtigen Produkte im Hinblick auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks zu betrachten.

2 Merkmale des Produkts und Nachweisverfahren

2.1 Merkmale des Produkts

Der Dübel entspricht den Zeichnungen und Angaben in Anhang 2. Die in Anhang 2 nicht angegebenen Werkstoffkennwerte, Abmessungen und Toleranzen des Dübels müssen den in der technischen Dokumentation⁷ dieser europäischen technischen Zulassung festgelegten Angaben entsprechen.

Die charakteristischen Werte für die Bemessung der Verankerungen sind in den Anhängen 5 bis 7 angegeben.

747690.07 Deutsches Institut für Bautechnik 8.06.01-202/07

Die technische Dokumentation dieser europäischen technischen Zulassung ist beim Deutschen Institut für Bautechnik hinterlegt und, soweit diese für die Aufgaben der in das Verfahren der Konformitätsbescheinigung eingeschalteten zugelassenen Stellen bedeutsam ist, den zugelassenen Stellen auszuhändigen.

Jeder Dübel ist mit dem Herstellerkennzeichen, dem Handelsnamen und der Gewindegröße entsprechend Anhang 1 zu kennzeichnen. Jeder Dübel aus nichtrostendem Stahl ist zusätzlich mit der Bezeichnung "A4" gekennzeichnet.

Die Größen M8x40 und M10x30 sind zusätzlich auf der Stirnfläche der Spreizhülse gekennzeichnet.

Der Dübel darf nur als Befestigungseinheit verpackt und geliefert werden.

2.2 Nachweisverfahren

Die Beurteilung der Brauchbarkeit des Dübels für den vorgesehenen Verwendungszweck hinsichtlich der Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 erfolgte in Übereinstimmung mit der "Leitlinie für die europäische technische Zulassung für Metalldübel zur Verankerung im Beton", Teil 1 "Dübel - Allgemeines" und Teil 4 "Wegkontrolliert spreizende Dübel", auf der Grundlage der Option 7.

In Ergänzung zu den spezifischen Bestimmungen dieser europäischen technischen Zulassung, die sich auf gefährliche Stoffe beziehen, können die Produkte im Geltungsbereich dieser Zulassung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Bauproduktenrichtlinie zu erfüllen, müssen ggf. diese Anforderungen ebenfalls eingehalten werden.

3 Bewertung und Bescheinigung der Konformität und CE-Kennzeichnung

3.1 System der Konformitätsbescheinigung

Gemäß Entscheidung 96/582/EG der Europäischen Kommission⁸ ist das System 2 (i) (System 1 zugeordnet) der Konformitätsbescheinigung anzuwenden.

Dieses System der Konformitätsbescheinigung ist im Folgenden beschrieben:

System 1: Zertifizierung der Konformität des Produkts durch eine zugelassene Zertifizierungsstelle aufgrund von:

- (a) Aufgaben des Herstellers:
 - (1) werkseigener Produktionskontrolle;
 - zusätzlicher Prüfung von im Werk entnommenen Proben durch den Hersteller nach festgelegtem Prüfplan;
- (b) Aufgaben der zugelassenen Stelle:
 - (3) Erstprüfung des Produkts;
 - (4) Erstinspektion des Werkes und der werkseigenen Produktionskontrolle;
 - (5) laufender Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle.

Anmerkung: Zugelassene Stellen werden auch "notifizierte Stellen" genannt.

3.2 Zuständigkeiten

3.2.1 Aufgaben des Herstellers

3.2.1.1 Werkseigene Produktionskontrolle

Der Hersteller muss eine ständige Eigenüberwachung der Produktion durchführen. Alle vom Hersteller vorgegebenen Daten, Anforderungen und Vorschriften sind systematisch in Form schriftlicher Betriebs- und Verfahrensanweisungen festzuhalten, einschließlich der Aufzeichnungen der erzielten Ergebnisse. Die werkseigene Produktionskontrolle hat sicherzustellen, dass das Produkt mit dieser europäischen technischen Zulassung übereinstimmt.

-

⁸ Amtsblatt der Europäischen Gemeinschaften L .254 vom 08.10.1996.

Der Hersteller darf nur Ausgangsstoffe/Rohstoffe/Bestandteile verwenden, die in der technischen Dokumentation dieser europäischen technischen Zulassung aufgeführt sind.

Die werkseigene Produktionskontrolle muss mit dem Prüf- und Überwachungsplan vom Juni 2007, der Teil der technischen Dokumentation dieser europäischen technischen Zulassung ist, übereinstimmen. Der Prüf- und Überwachungsplan ist im Zusammenhang mit dem vom Hersteller betriebenen werkseigenen Produktionskontrollsystem festgelegt und beim Deutschen Institut für Bautechnik hinterlegt.⁹

Die Ergebnisse der werkseigenen Produktionskontrolle sind festzuhalten und in Übereinstimmung mit den Bestimmungen des Prüf- und Überwachungsplans auszuwerten.

3.2.1.2 Sonstige Aufgaben des Herstellers

Der Hersteller hat auf der Grundlage eines Vertrags eine Stelle, die für die Aufgaben nach Abschnitt 3.1 für den Bereich der Dübel zugelassen ist, zur Durchführung der Maßnahmen nach Abschnitt 3.2.2 einzuschalten. Hierfür ist der Prüf- und Überwachungsplan nach den Abschnitten 3.2.1.1 und 3.2.2 vom Hersteller der zugelassenen Stelle vorzulegen.

Der Hersteller hat eine Konformitätserklärung abzugeben mit der Aussage, dass das Bauprodukt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

3.2.2 Aufgaben der zugelassenen Stellen

Die zugelassene Stelle hat die folgenden Aufgaben in Übereinstimmung mit den Bestimmungen des Prüf- und Überwachungsplans durchzuführen:

- Erstprüfung des Produkts,
- Erstinspektion des Werks und der werkseigenen Produktionskontrolle,
- laufende Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle.

Die zugelassene Stelle hat die wesentlichen Punkte ihrer oben angeführten Maßnahmen festzuhalten und die erzielten Ergebnisse und die Schlussfolgerungen in einem schriftlichen Bericht zu dokumentieren.

Die vom Hersteller eingeschaltete zugelassene Zertifizierungsstelle hat ein EG-Konformitätszertifikat mit der Aussage zu erteilen, dass das Produkt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

Wenn die Bestimmungen der europäischen technischen Zulassung und des zugehörigen Prüf- und Überwachungsplans nicht mehr erfüllt sind, hat die Zertifizierungsstelle das Konformitätszertifikat zurückzuziehen und unverzüglich das Deutsche Institut für Bautechnik zu informieren.

3.3 CE-Kennzeichnung

Die CE-Kennzeichnung ist auf jeder Verpackung der Dübel anzubringen. Hinter den Buchstaben "CE" sind ggf. die Kennnummer der zugelassenen Zertifizierungsstelle anzugeben sowie die folgenden zusätzlichen Angaben zu machen:

- Name und Anschrift des Herstellers (für die Herstellung verantwortliche juristische Person),
- die letzten beiden Ziffern des Jahres, in dem die CE-Kennzeichnung angebracht wurde,
- Nummer des EG-Konformitätszertifikats für das Produkt,
- Nummer der europäischen technischen Zulassung,
- Nummer der Leitlinie für die europäische technische Zulassung,
- Nutzungskategorie (ETAG 001-1 Option 7);
- Dübelgröße.

9

Der Prüf- und Überwachungsplan ist ein vertraulicher Bestandteil der Dokumentation dieser europäischen technischen Zulassung und wird nur der in das Konformitätsbescheinigungsverfahren eingeschalteten zugelassenen Stelle ausgehändigt. Siehe Abschnitt 3.2.2.

4 Annahmen, unter denen die Brauchbarkeit des Produkts für den vorgesehenen Verwendungszweck positiv beurteilt wurde

4.1 Herstellung

Die europäische technische Zulassung wurde für das Produkt auf der Grundlage abgestimmter Daten und Informationen erteilt, die beim Deutschen Institut für Bautechnik hinterlegt sind und der Identifizierung des beurteilten und bewerteten Produkts dienen. Änderungen am Produkt oder am Herstellungsverfahren, die dazu führen könnten, dass die hinterlegten Daten und Informationen nicht mehr korrekt sind, sind vor ihrer Einführung dem Deutschen Institut für Bautechnik mitzuteilen. Das Deutsche Institut für Bautechnik wird darüber entscheiden, ob sich solche Änderungen auf die Zulassung und folglich auf die Gültigkeit der CE-Kennzeichnung auf Grund der Zulassung auswirken oder nicht, und ggf. feststellen, ob eine zusätzliche Beurteilung oder eine Änderung der Zulassung erforderlich ist.

4.2 Einbau

4.2.1 Bemessung der Verankerungen

Die Brauchbarkeit des Dübels ist unter folgenden Voraussetzungen gegeben:

Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit der "Leitlinie für die europäische technische Zulassung für Metalldübel zur Verankerung im Beton", Anhang C, Verfahren A unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.

Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen angefertigt.

Auf den Konstruktionszeichnungen ist die Lage des Dübels (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern) angegeben.

Die erforderliche Festigkeitsklasse und die minimale Einschraubtiefe der Befestigungsschraube oder der Gewindestange zur Befestigung des Anbauteils müssen den Angaben nach Anhang 4 entsprechen. Die Länge der Befestigungsschraube muss unter Berücksichtigung der vorhandenen Gewindelänge, der minimalen Einschraubtiefe, der Anbauteildicke und den Bauteiltoleranzen festgelegt werden.

4.2.2 Einbau der Dübel

Von der Brauchbarkeit des Dübels kann nur dann ausgegangen werden, wenn folgende Einbaubedingungen eingehalten sind:

- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile.
- Einbau nach den Angaben des Herstellers und den Konstruktionszeichnungen mit den in der technischen Dokumentation dieser europäischen technischen Zulassung angegebenen Setzwerkzeugen.
- Überprüfung vor dem Setzen des Dübels, ob die Festigkeitsklasse des Betons, in den der Dübel gesetzt werden soll, nicht niedriger ist als die Festigkeitsklasse des Betons, für den die charakteristischen Tragfähigkeiten gelten.
- Einwandfreie Verdichtung des Betons, z. B. keine signifikanten Hohlräume.
- Reinigung des Bohrlochs vom Bohrmehl.
- Einhaltung der effektiven Verankerungstiefe. Diese Bedingung ist erfüllt, wenn der Dübel vollständig im Bohrloch sitzt.
- Verspreizung durch Schläge auf den Spreizkonus mit Hilfe der in Anhang 3 dargestellten Handsetzwerkzeuge. Der Dübel ist ordnungsgemäß verspreizt, wenn der Anschlag des Handsetzwerkzeugs auf der Dübelhülse aufliegt. Bei der Verwendung des Handsetzwerkzeugs EAW H Plus die in Anhang 3 dargestellte Markierung auf der Dübelhülse sichtbar ist.
- Einhaltung der festgelegten Werte, bei Rand- und Achsabständen ohne Minustoleranzen.

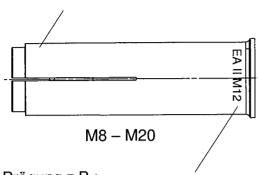
- Anordnung der Bohrlöcher ohne Beschädigung der Bewehrung.
- Bei Fehlbohrungen: Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt.
- Die Befestigungsschraube oder Gewindestange muss den Anforderungen nach Anhang 4 entsprechen.
- Montagedrehmomente sind für die Tragfähigkeit des Dübels nicht erforderlich. Die in Anhang 4 angegebenen Drehmomente dürfen jedoch bei der Montage der Anbauteile nicht überschritten werden.

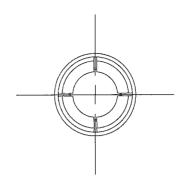
4.2.3 Verpflichtungen des Herstellers

Es ist Aufgabe des Herstellers, dafür zu sorgen, dass alle Beteiligten über die Besonderen Bestimmungen nach den Abschnitten 1 und 2 einschließlich der Anhänge, auf die verwiesen wird, sowie den Abschnitten 4.2.1 und 4.2.2 unterrichtet werden. Diese Information kann durch Wiedergabe der entsprechenden Teile der europäischen technischen Zulassung erfolgen. Darüber hinaus sind alle Einbaudaten auf der Verpackung und/oder einem Beipackzettel, vorzugsweise bildlich, anzugeben.

Es sind mindestens folgende Angaben zu machen:

- Bohrerdurchmesser,
- Gewindedurchmesser,
- Mindestverankerungstiefe,
- vorhandene Gewindelänge und minimale Einschraubtiefe der Befestigungsschraube bzw.
 Gewindestange,
- Erforderliche Werkstoffe und Festigkeitsklassen der Befestigungsschraube oder Gewindestange entsprechend Anhang 2,
- Minimale Bohrlochtiefe,
- Drehmoment.
- Angaben über den Einbauvorgang einschließlich Reinigung des Bohrlochs, vorzugsweise durch bildliche Darstellung,
- Hinweis auf erforderliche Setzwerkzeuge,
- Herstelllos.

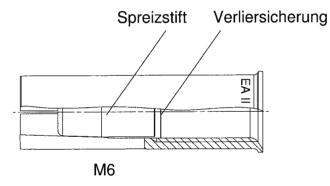

Alle Angaben müssen in deutlicher und verständlicher Form erfolgen.

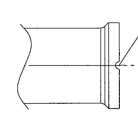

i. V. Dipl.-Ing. Seyfert
 Vizepräsident des Deutschen Instituts für Bautechnik
 Berlin, 5. November 2007

Beglaubigt

fischer Einschlaganker EA II

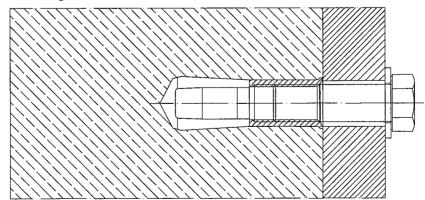
Dübelhülse




Prägung z.B.:

EA II M12 (galvanisch verzinkt)

EA II M12 A4 (Nichtrostender Stahl)


Prägung bei M8x40, M10x30 und M12 D z.B.: ← EA II M8x40; ← EA II M8x40 A4

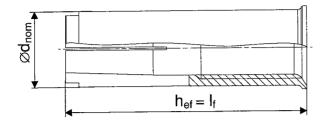
Zusatzmarkierung stirnseitig für M8x40 M10x30

Einbauzustand: ungerissener Beton C20/25 bis C50/60

fischer Einschlaganker EA II

Anhang 1

der europäischen technischen Zulassung

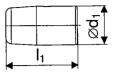

ETA - 07/0135

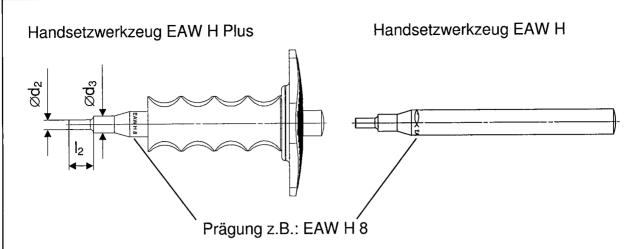
Produkt und Einbauzustand

Doc: ETA-EA II-E

① EA II Dübelhülse

② EA II Spreizstift




Tabelle 1: Abmessungen

Dübel- größe EA II	M6	M8	M8x40	M10x30	M10	M12	M12 D	M16	M20
$h_{ef} = I_f$ [mm]	30	30	40	30	40	50	50	65	80
d _{nom} [mm]	8	10	10	12	12	15	16	20	25
d ₁ [mm]	5	6,5	6,5	8,2	8,2	10	10	13,7	17,5
I ₁ [mm]	14	13,5	13,5	13	18	20	20	25	30

Tabelle 2: Werkstoffe

		Werks	stoffe		
Dübelteil	Beschreibung	galvanisch verzinkt (≥ 5 μm)	Nichtrostender Stahl		
1	Dübelhülse	ASTM A29/A29M, EN 10263	1.4401, 1.4404, 1.4439,		
2	Spreizstift	ASTM A29/A29M, EN 10263	1.4571, EN 10088		
	Befestigungsschraube oder Gewindestange	Stahl, Festigkeitsklasse 4.6, 5.6, 5.8 oder 8.8 gemäß DIN EN ISO 898-1	1.4401, 1.4404, 1.4439, 1.4571, Festigkeitsklasse 70 oder 80 gemäß EN ISO 3506		

fischer Einschlaganker EA II	Anhang 2
	der europäischen technischen Zulassung
Werkstoffe und Abmessungen	ETA - 07/0135

Montagekontrolle mit Handsetzwerkzeug EAW H oder EAW H Plus

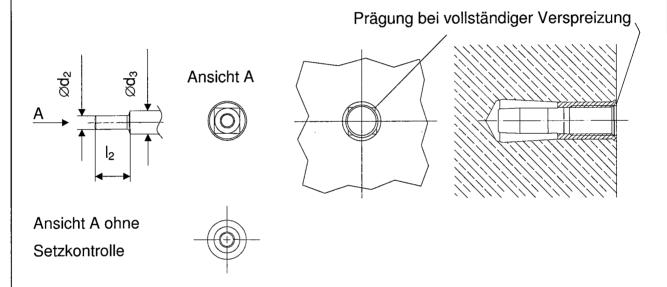


Tabelle 3: Abmessungen der Setzwerkzeuge

Handsetzwerkzeug	Dübelgröße EA II	d₂[mm]	d₃[mm]	l ₂ [mm]
EAW H 6	M6	4,8	9	17
EAW H 8	M8	6	11	18
EAW H 8x40	M8x40	6	11	28
EAW H 10x30	M10x30	7	13	18
EAW H 10	M10	7	13	24
EAW H 12	M12 / M12 D	10	16,5	30
EAW H 16	M16	13	22	36
EAW H 20	M20	16	27	50

fischer Einschlaganker EA II	Anhang 3			
Handsetzwerkzeug	der europäischen technischen Zulassung			
Halluseizweinzeug	ETA - 07/0135			

Doc: ETA-EA II-E

Tabelle 4: EA II Montagekennwerte

Dübel-	Bohrer-	Gewinde-	Bohr-	Effektive	Maximale	Minimale	Maximales	Durch-
größe	durch-	durch-	loch-	Veranker-	Einschraub-	Einschraub-	Dreh-	messer
9.1	messer	messer	tiefe	ungstiefe	tiefe	tiefe	moment	Durchgangs- loch
				!	'			
EAII	d _o	М	h₁	\mathbf{h}_{ef}	I _{s,max}	I _{s,min}	max. T _{inst}	d _f
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[Nm]	[mm]
M6	8	6	32	30	13	6	4	7
M8	10	8	33	30	13	8	8	9
M8x40	10	8	43	40	13	8	8	9
M10x30	12	10	33	30	13	10	15	12
M10	12	10	43	40	17	10	15	12
M12	15	12	54	50	22	12	35	14
M12 D	16	12	54	50	22	12	35	14
M16	20	16	70	65	28	16	60	18
M20	25	20	85	80	34	20	120	22

Befestigungsschraube oder Gewindestange:

- Festigkeitsklassen und Werkstoffe siehe Tabelle 2
- Mindesteinschraubtiefe Is,min
- Die Länge der Befestigungsschraube ist in Abhängigkeit der Dicke des Anbauteiles t_{fix}, zulässiger Toleranzen und nutzbarer Gewindelänge I_{s,max} sowie Mindesteinschraubtiefe I_{s,min} festzulegen

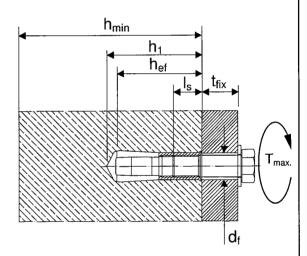


Tabelle 5: Mindestbauteildicke, minimale Achs- und Randabstände

Dübel- größe	Mindestbauteildicke	Mindestachsabstand	Mindestrandabstand	
	h _{min}	S _{min}	C _{min}	
EA II	[mm]	[mm]	[mm]	
M6	100	65	115	
M8	100	95	140	
M8x40	100	95	140	
M10x30	120	85	140	
M10	120	95	160	
M12/M12D	120	145	200	
M16	160	180	240	
M20	200	190	280	

fischer Einschlaganker EA II	Anhang 4
	der europäischen technischen Zulassung
Montagekennwerte und Bauteilabmessungen	ETA - 07/0135

Tabelle 6:	Bemessungsverfahren A – Charakteristische Zugtragfähigkeit
labelle v.	Deffiessungsverfamen 7. Onaramonomo Eugeragiang.

		-sst-	£	£	40	304)	0	2	Q	9	0
EA II		Mindest- festig- keit	M6 ⁴⁾	M8 ⁴⁾	M8x40	M10x30 ⁴⁾	M10	M12	M12	M16	M20
Stahlversagen											
charakteristischer Widerstand	$N_{Rk,s}$ [kN]	A4-70	14,1	19,6	19,6	24,9	24,9	45,1	59,0	73,8	117,2
Teilsicherheitsbeiwert	γ _{Ms} ¹⁾		1,87			1,5			1,87	1	,5
charakteristischer Widerstand	N _{Rk,s} [kN]	Stahl 4.6	8,0	14,6	14,6	23,2	23,2	33,7	33,7	62,7	97,9
Teilsicherheitsbeiwert	γ _{Ms} ¹⁾						2,0				
charakteristischer Widerstand	N _{Rk,s} [kN]	Stahl 5.6	10,1	18,3	18,3	29,0	29,0	42,1	42,1	78,3	122,4
Teilsicherheitsbeiwert	γ _{Ms} ¹⁾						2,0				
charakteristischer Widerstand	N _{Rk,s} [kN]	Stahl 5.8	10,1	17,2	17,2	21,8	21,8	39,6	42,1	64,7	102,8
Teilsicherheitsbeiwert	γ _{Ms} ¹⁾						1,5				
charakteristischer Widerstand	$N_{Rk,s}$ [kN]	Stahl 8.8	13,5	17,2	17,2	21,8	21,8	39,6	53,3	64,7	102,8
Teilsicherheitsbeiwert	$\gamma_{\sf Ms}^{(1)}$						1,5				
Herausziehen							_				
charakteristischer Widerstand	N _{Rk,p} [kN]	C20/25					3)				
		C25/30					1,10				
	_	C30/37	1,22								
Erhöhungsfaktor für N _{Rk,p}	N (-	C35/45	1,34								
Emonungsiaktor für NRk,p	Ψc	C40/50	1,41								
	_	C45/55 1,48									
		C50/60					1,55				
Betonausbruch								·	· · ·		
Effektive Verankerungstiefe	h _{ef}	[mm]	30	30	40	30	40	50	50	65	80
Teilsicherheitsbeiwert	γ _{Mc} ¹⁾			,		r	1,5 ²⁾				
charakteristischer Achsabstand	d s _{cr,N}	[mm]	90	90	120	90	120	150	150	195	240
charakteristischer Randabstand c _{cr,N}		[mm]	45	45	60	45	60	75	75	97	120
	Spalten										
Teilsicherheitsbeiwert $\gamma_{M,sp}^{-1}$					Υ	ı	1,5 ²⁾	т	1	, ,	· · · · · ·
charakteristischer Achsabstand	d S _{cr,sp}	[mm]	210	210	280	210	320	350	350	455	560
charakteristischer Randabstan	d c _{cr,sp}	[mm]	105	105	140	105	160	175	175	227	280

Sofern andere nationale Regelungen fehlen
 In diesem Wert ist der Teilsicherheitsbeiwert γ₂=1,0 enthalten
 Herausziehen nicht maßgebend
 Nur zur Verankerung statisch unbestimmt gelagerter Bauteile

fischer Einschlaganker EA II	Anhang 5
Bemessungsverfahren A	der europäischen technischen Zulassung
Charakteristische Zugtragfähigkeit	ETA - 07/0135

Tabelle 7:	Bemessungsverfahren A – Charakteristische Quertragfähigkeit
labelle /:	Demessurgsveriamen A - Onaraktenstisone Gaortragiamigken

		<u>+</u>			0	<u>8</u>			D		
EA II		Mindest- festig- keit	M6	M 8	M8x40	M10x30	M10	M12	M12 [M16	M20
Stahlversagen ohne Hebelar	m					,	r	г	r—————————————————————————————————————	r—	
charakteristischer Widerstand	V _{Rk,s} [kN]	A4-70	7,0	9,8	9,8	12,4	12,4	22,6	29,5	37	59
Teilsicherheitsbeiwert	γ _{Ms} ¹⁾		1,56			1,25			1,56	1,2	
charakteristischer Widerstand	V _{Rk,s} [kN]	Stahl 4.6	4,0	7,3	7,3	11,6	11,6	16,9	16,9	31	49
Teilsicherheitsbeiwert	γ _{Ms} ¹⁾						1,67			т	
charakteristischer Widerstand	V _{Rk,s} [kN]	Stahl 5.6	5,0	9,2	9,2	14,5	14,5	21,1	21,1	39	61
Teilsicherheitsbeiwert	γ _{Ms} ¹⁾						1,67				!
charakteristischer Widerstand	V _{Rk,s} [kN]	Stahl 5.8	5,0	8,6	8,6	10,9	10,9	19,8	21,1	32	51
Teilsicherheitsbeiwert	γ _{Ms} ¹⁾						1,25				
charakteristischer Widerstand	V _{Rk,s} [kN]	Stahl 8.8	6,8	8,6	8,6	10,9	10,9	19,8	27	32	51
Teilsicherheitsbeiwert	γ _{Ms} ¹⁾						1,25				
Stahlversagen mit Hebelarm											
charakteristischer Widerstand	M ⁰ _{Rk,s} [Nm]	A4-70	11	26	26	52	52	92	92	232	454
Teilsicherheitsbeiwert	γ _{Ms} ¹⁾						1,56				
charakteristischer Widerstand		Stahl 4.6	6,1	15	15	30	30	52	52	133	259
Teilsicherheitsbeiwert	γ _{Ms} ¹⁾						1,67				
charakteristischer Widerstand	M ⁰ _{Rk,s} [Nm]	Stahl 5.6	7,6	19	19	37	37	66	66	166	324
Teilsicherheitsbeiwert	γ _{Ms} ¹⁾						1,67				
charakteristischer Widerstand		Stahl 5.8	7,6	19	19	37	37	66	66	166	324
Teilsicherheitsbeiwert	γ _{Ms} ¹⁾						1,25				
charakteristischer Widerstand	M ⁰ _{Rk,s} [Nm]	Stahl 8.8	12	30	30	60	60	105	105	266	517
Teilsicherheitsbeiwert	γ _{Ms} ¹⁾						1,25				
Betonausbruch auf der lasta	bgewandter	Seite									
Faktor in Gleichung (5.6) ETAG 001 Anhang C, 5.2.3.3	k					1,0				2.	,0
Teilsicherheitsbeiwert	γ _{Mcp} 1)						1,5 ²⁾				
Betonkantenbruch											
Effektive Dübellänge bei Querlast	I _f	[mm]	30	30	40	30	40	50	50	65	80
Effektiver Dübeldurchmesser	I _{nom}	[mm]	8	10	10	12	12	15	16	20	25
							1,5 ²⁾				

Sofern andere nationale Regelungen fehlen
 In diesem Wert ist der Teilsicherheitsbeiwert γ₂=1,0 enthalten

fischer Einschlaganker EA II	Anhang 6
Bemessungsverfahren A	der europäischen technischen Zulassung
Charakteristische Quertragfähigkeit	ETA - 07/0135

Tabelle 8: Dübelverschiebungen unter Zug- und Querbelastung für EA II galvanisch verzinkter Stahl

EA II			M6	M8	M8x40	M10x30	M10	M12	M12 D	M16	M20
					Σ	Σ					
Zuglast im Beton C20/25 bis C50/60	N	[kN]	4,0	4,0	6,1	4,0	6,1	8,5	8,5	12,6	17,2
Verschiebung	δ_{No}	[mm]					0,1				
	$\delta_{N^{\infty}}$	[mm]					0,2				
Querlast im Beton C20/25 bis C50/60	V	[kN]	3,9	4,9	6,2	6,2	6,2	11,3	15,2	18,5	29,4
Verschiebung	δ_{Vo}	[mm]	0,95	1,00	1,00	1,05	1,05	1,10	1,10	1,40	1,80
	$\delta_{V^{\infty}}$	[mm]	1,40	1,50	1,50	1,60	1,60	1,70	1,70	2,10	2,70

Tabelle 9: Dübelverschiebungen unter Zug- und Querbelastung für EA II nichtrostender Stahl

EA II A4			M6	M8	M8x40	M10x30	M10	M12	M12 D	M16	M20
Zuglast im Beton C20/25 bis C50/60	N	[kN]	4,0	4,0	6,1	4,0	6,1	8,5	8,5	12,6	17,2
Verschiebung	δ_{No}	[mm]					0,1				
	$\delta_{N\infty}$	[mm]					0,2				
Querlast im Beton C20/25 bis C50/60	V	[kN]	3,2	5,6	7,1	7,1	7,1	12,9	13,5	21,1	33,5
Verschiebung	δ_{Vo}	[mm]	0,95	1,00	1,00	1,05	1,05	1,10	1,10	1,40	1,80
	$\delta_{V^{\infty}}$	[mm]	1,40	1,50	1,50	1,60	1,60	1,70	1,70	2,10	2,70

fischer Einschlaganker EA II	Anhang 7
	der europäischen technischen Zulassung
Dübelverschiebungen	ETA - 07/0135

fischer mit allgemeiner bauaufsichtlicher Zulassung und Europäischer Technischer Zulassung 01/2008

Zulassungsbescheide können bei der Anwendungstechnik der fischer Deutschland Vertriebs GmbH angefordert werden: Telefon 0180 5 202900, Fax 07443 12-4568

Oldenburg

Münster

Wuppertal

Koblenz

Saarbrücken

45

41

Düsseldorf

43

Fssen

Köln

04

Wiesbader

Mainz

Mannheim

Heidelberg

62

Frankfurt

Paderborn

44

03

Flensburg

01

Bremerhave

Bremen

Bielefeld

Nienburg

Hannover

Göttingen

Lübeck

Hamburg

02

Lüneburg

Wolfsburg

28

Erfurt

Braunschweid

Gosla

Puttgarden

24

Helmstedt

Rostock

Wittenberge

Magdeburg

Brehna

27

Dessau

Delitzsch

Leipzia

22

Schwedt

26

Cottbus

Hoyerswerda

Rerli

Riesa

30

Service-Center

Waldachtal Weinhalde 14–18
72178 Waldachtal Fax 07443 12-4500 E-Mail: ordermanagement @fischer.de

Rudolf-Diesel-Straße 7 06796 Brehna Tel. 034954 640-1400 Fax 034954 640-1414 E-Mail: sc-brehna@fischer.de

Anwendungstechnik

fischer Deutschland Vertriebs GmbH Hotline 0180 5202900 - Fax 07443 12-4568 E-Mail: Anwendungstechnik@fischer.de · www.fischer.de

Technische Berater und Technische Verkäufer im Außendienst:

01 Arne Saggau Staatl. gepr. Bautechniker Mobil 0170 2271844 07443 128684 E-Mail Arne.Saggau @fischer.de

02 Frank-Jörn Maier Dipl.-Ingenieur Mobil 0170 3306403 07443 128667 E-Mail Frank-Joern Maier @fischer.de

03 Uwe Herding Staatl. gepr. Maschinenbautechniker Mobil 0170 2271731 07443 128647 E-Mail Uwe.Herding @fischer.de

04 Walter Schmidt Staatl. gepr. Maschinenhautechniker Mobil 0170 2271764 07443 128214 E-Mail Walter.Schmidt @fischer.de

22 Hans-Joachim Szumalla Technischer Verkäufer Mobil 0170 3306445 07443 128690 E-Mail Hans-Joachim.Szumalla @fischer.de

> **Olaf Schinkel** Dipl.-Ingenieur Technischer Berater Mobil 0170 2271763 07443 128687 E-Mail Olaf.Schinkel @fischer.de

24 Peter Schöpe Technischer Verkäufer Mobil 0170 2271723 07443 128636 E-Mail Peter.Schoepe @fischer.de

> **Olaf Schinkel** Dipl.-Ingenieur Technischer Berater Mobil 0170 2271763 07443 128687 E-Mail Olaf Schinkel @fischer.de

26 Michael Peyler Technischer Verkäufer Mobil 0170 3306431 07443 128675 E-Mail Michael.Peyler @fischer.de

> **Olaf Schinkel** Dipl.-Ingenieur Technischer Berater Mobil 0170 2271763 F-Mail Olaf Schinkel @fischer.de

27 Herbert Reimers

Dipl.-Ingenieur (FH) Technischer Verkäufer Mobil 0170 2271758 07443 128680 E-Mail Herbert Reimers @fischer.de

Kerstin Großmann Dipl.-Ingenieur (FH) Technische Beraterin Mobil 0170 3306412 07443 128640 E-Mail Kerstin Grossmann @fischer.de

28 Ralf Quelimalz Technischer Verkäufer Mobil 0170 3306432 Fax 07443 128677 E-Mail Ralf.Quellmalz @fischer.de

> Kerstin Großmann Dipl.-Ingenieur (FH) Technische Beraterin Mobil 0170 3306412 07443 128640 E-Mail Kerstin.Grossmann @fischer.de

Andre Höfer Technischer Verkäufer Mobil 0170 2271734 07443128650 E-Mail Andre.Hoefer @fischer.de

Kerstin Großmann Dipl.-Ingenieur (FH) Technische Beraterir Mobil 0170 3306412 07443 128640 E-Mail Kerstin Grossmann @fischer.de

30 Steffen Unterdörfer Dipl.-Ingenieur Technischer Verkäufer 0170 2271771 07443 128691 E-Mail Steffen Unterdoerfer @fischer.de

> Kerstin Großmann Dipl.-Ingenieur (FH) Technische Beraterin Mobil 0170 3306412 Fax 07443 128640 E-Mail Kerstin.Grossmann @fischer.de

41 Christoph Herfs Staatl. gepr. Bautechniker Mobil 0170 2271732 07443 128648 E-Mail Christoph Herfs @fischer de

42 Roberto Weyda Dipl.-Ingenieur (FH) Mobil 0170 2271900 07443 128188 Roberto.Weyda @fischer.de

43 Leonhard Gaumann Staatl. gepr. Techniker

0170 3306410 Mobil 07443 128638 E-Mail Leonhard.Gaumann @fischer de

44 Gerhard Reimers Staatl. gepr. Bautechniker Mobil 0170 2271757 07443 128186 Gerhard.Reimers @fischer.de

45 Reiner Kleer Staatl. gepr. Maschinen-Mobil 0170 2271740

61 Herbert Wiechmann Staatl. gepr. Bautechniker Mobil 0170 2271772 07443 128694 Herbert.Wiechmann @fischer.de

Thomas Held Mobil 0170 3306416 07443 128646 Thomas.Held @fischer.de

BEFESTIGUNGSSYSTEME

Dipl.-Ingenieur (FH) Mobil 0170 3306423 07443 128252 Christian Felch @fischer.de

