

LEISTUNGSERKLÄRUNG

DoP 0314

für fischer Bolzenanker FAZ II Plus dynamic (Nachträgliche Befestigung in gerissenem oder ungerissenem Beton)

DoP 0314

DF

1. Eindeutiger Kenncode des Produkttyps:

2. Verwendungszweck(e): Verbunddübel zur Verankerung in Beton unter ermüdungsrelevanter zyklischer Beanspruchung,

siehe Anhang, insbesondere die Anhänge B1- B4.

3. Hersteller: fischerwerke GmbH & Co. KG, Klaus-Fischer-Str. 1, 72178 Waldachtal, Deutschland

4. Bevollmächtigter:

5. AVCP - System/e: 1

6. Europäisches Bewertungsdokument: EAD 330250-00-0601, Edition 06/2021

ETA-20/0897; 2022-12-20 Europäische Technische Bewertung:

DIBt- Deutsches Institut für Bautechnik Technische Bewertungsstelle:

Notifizierte Stelle(n): 2873 TU Darmstadt

7. Erklärte Leistung(en):

EAD 330250-00-0601; Table 2.1

Mechanische Festigkeit und Standsicherheit (BWR 1)

Charakteristischer Widerstand bei Zugbelastung (statische und quasi-statische Belastung) Methode A:

Widerstand für Stahlversagen: Anhang C1 Widerstand für Herausziehen: Anhang C1

Widerstand für kegelförmigen Betonausbruch: Anhang C1

Robustheit: Anhang C1

Minimaler Rand- und Achsabstand: Anhänge C5, C6

Randabstand zur Vermeidung von Spaltversagen bei Belastung: Anhang C1

Charakteristischer Widerstand bei Querbelastung (statische und quasi-statische Belastung), Methode A:

Widerstand für Stahlversagen (Querbelastung): Anhang C2

Widerstand für Pry-out Versagen: Anhang C2

Verschiebungen:

Verschiebungen bei statischer und quasi-statischer Belastung: Anhang C9

Charakteristische Widerstände und Verschiebungen für die seismischen Leistungskategorien C1 und C2:

Widerstand Zugbelastung, Kategorie C1: Anhang C7

Widerstand Zugbelastung, Verschiebungen, Kategorie C2: Anhänge C8, C9

Widerstand Querbelastung, Kategorie C1: Anhang C7

Widerstand Querbelastung, Verschiebungen, Kategorie C2: Anhänge C8, C9

Faktor Ringspalt: Anhänge C7, C8

Sicherheit im Brandfall (BWR 2)

Brandverhalten: Klasse (A1)

Feuerwiderstand:

Feuerwiderstand, Stahlversagen (Zugbelastung): Anhang C3 Feuerwiderstand, Herausziehen (Zugbelastung): Anhang C3 Feuerwiderstand, Stahlversagen (Querbelastung): Anhänge C3, C4

Dauerhaftigkeit:

Dauerhaftigkeit: Anhänge A3, B1

EAD 330250-00-0601; Table 2.5

Bewertungsmethode C: Linearisierte Funktion

Mechanische Festigkeit und Standsicherheit (BWR 1)

Charakteristischer Stahlermüdungswiderstand unter Zugbeanspruchung: Anhänge C10, C11

Charakteristischer Ermüdungswiderstand für Betonausbruch, Herausziehen, Spalten und lokaler Betonausbruch unter Zugbeanspruchung: Anhänge C10, C11

Charakteristischer Ermüdungswiderstand für Herausziehen oder kombiniertes Herausziehen / Betonausbruch unter Zugbeanspruchung: Anhänge C10, C11

Charakteristischer Stahlermüdungswiderstand unter Querzugbeanspruchung: Anhänge C10, C11

Charakteristischer Ermüdungswiderstand für Betonkantenbruch unter Querzugbeanspruchung: Anhänge C10, C11

Charakteristischer Ermüdungswiderstand für Betonausbruch auf der lastabgewandten Seite unter Querzugbeanspruchung: Anhänge C10,

Charakteristischer Stahlermüdungswiderstand unter Zug- und Querzugbeanspruchung: Anhänge C10, C11

Lastumlagerungsfaktor für Zug- und Querzugbeanspruchung: Anhänge C10, C11

1/2 Fischer DATA DOP_ECs_V82.xlsm

8. Angemessene Technische Dokumentation und/oder Spezifische Technische Dokumentation:

Die Leistung des vorstehenden Produkts entspricht der erklärten Leistung/den erklärten Leistungen. Für die Erstellung der Leistungserklärung im Einklang mit der Verordnung (EU) Nr. 305/2011 ist allein der obengenannte Hersteller verantwortlich.

Unterzeichnet für den Hersteller und im Namen des Herstellers von:

Dr. Oliver Geibig, Geschäftsführer Business Units & Engineering

Jürgen Grün, Geschäftsführer Chemie & Qualität

Tumlingen, 2023-02-01

Diese Leistungserklärung wurde in mehreren Sprachen erstellt. Für alle Streitigkeiten, die sich aus der Auslegung ergeben, ist die Fassung in englischer Sprache maßgeblich.

Der Anhang enthält freiwillige und ergänzende Informationen in englischer Sprache, die über die (sprachneutral festgelegten) gesetzlichen Anforderungen hinausgehen.

Fischer DATA DOP_ECs_V82.xlsm 2/2

Besonderer Teil

1 Technische Beschreibung des Produkts

Der fischer Bolzenanker FAZ II Plus dynamic ist ein Dübel aus galvanisch verzinktem Stahl (FAZ II Plus Dynamic) oder aus nichtrostendem Stahl (FAZ II Plus dynamic R), der in ein Bohrloch gesteckt und kraftkotrolliert verankert wird.

Der Dübel besteht aus einem fischer Bolzenanker FAZ II Plus mit Konusbolzen, Spreizclip, Unterlegscheibe und Sechskantmutter und einem Dynamic-Set mit verfüllbarer Kegelpfanne, Kugelscheibe und Sicherungsmutter.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angaben zur Nutzungsdauer können nicht als Garantie des Herstellers ausgelegt werden, sondern sind lediglich ein Hilfsmittel zur Auswahl der richtigen Produkte im Hinblick auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal (statische, quasi-statische Beanspruchung und Erdbebenbeanspruchung)	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Lasten)	Siehe Anhänge C 1, C 5, C 6
Charakteristischer Widerstand unter Querlast (statische und quasi-statische Lasten)	Siehe Anhang C 2
Verschiebungen für Kurzzeit- und Langzeitbelastung	Siehe Anhang C 9
Charakteristischer Widerstand und Verschiebungen für die seismischen Leitungskategorien C1 und C2	Siehe Anhänge C 7 bis C 9

Wesentliches Merkmal (Ermüdungsrelevante Beanspruchung, Linearisierte Funktion – Bewertungsmethode C)	Leistung
Charakteristischer Ermüdungswiderstand unter zyklischer Zugbeanspruch	ung
Charakteristischer Stahlermüdungswiderstand $\Delta N_{Rk,s,0,n}$ (n = 1 bis n = ∞)	
Charakteristischer Ermüdungswiderstand für Betonversagen, Herausziehen, Spalten und lokaler Betonausbruch $\Delta N_{Rk,c,0,n}$ $\Delta N_{Rk,c,0,n}$ $(n=1 \text{ bis } n=\infty)$	Siehe Anhänge C 10 und C 11
Charakteristischer Ermüdungswiderstand für Herausziehen	
$\Delta N_{Rk,p,0,n} \ (n=1 \ \text{bis} \ n=\infty)$	

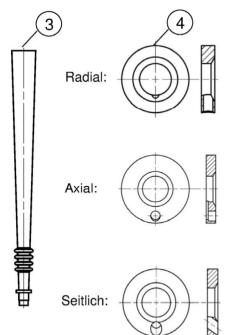
Wesentliches Merkmal (Ermüdungsrelevante Beanspruchung, Linearisierte Funktion – Bewertungsmethode C)	Leistung				
Charakteristischer Ermüdungswiderstand unter zyklischer Querbeansprud	hung				
Charakteristischer Stahlermüdungswiderstand $\Delta V_{Rk,s,0,n}$ $(n$ = 1 bis n = ∞)					
Charakteristischer Ermüdungswiderstand für Betonkantenbruch $V_{Rk,c,0,n}$ $(n$ = 1 bis n = ∞)	Siehe Anhänge C 10 und C 11				
Charakteristischer Ermüdungswiderstand für Betonausbruch $\Delta V_{Rk,cp,0,n}$ $(n$ = 1 bis n = ∞)					
Charakteristischer Ermüdungswiderstand unter kombinierter zyklischer Zug- und Querbeanspruchung					
Charakteristischer Stahlermüdungswiderstand $a_s \ (n$ = 1 bis n = ∞)	Siehe Anhänge C 10 und C 11				
Lastumlagerungsfaktor für zyklische Zug- und Querbeanspruchung					
Lastumlagerungsfaktor ψ_{FN}, ψ_{FV}	Siehe Anhänge C 10 und C 11				

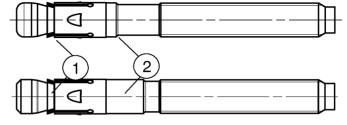
3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand	Siehe Anhänge C 3 und C 4

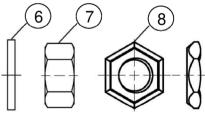
3.3 Aspekte der Dauerhaftigkeit

Wesentliches Merkmal	Leistung
Dauerhaftigkeit	Siehe Anhang B 1

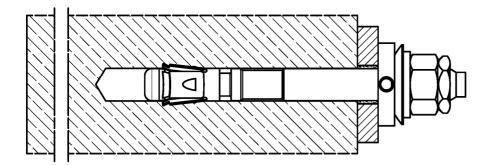

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage


Gemäß dem Europäischen Bewertungsdokument EAD Nr. 330250-00-0601 gilt folgende Rechtsgrundlage: [96/582/EG].


Folgendes System ist anzuwenden: 1


Konusbolzen,kaltumgeformte Ausführung:

Konusbolzen, spanend hergestellt:

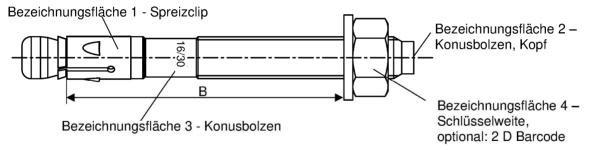


- ① Spreizclip
- ② Konusbolzen (kaltmassivumgeformt oder gedreht)
- 3 Injektionsadapter
- 4 Verfüllbare Kegelpfanne (verschiedene Varianten)
- S Kugelscheibe

6

- Unterlegscheibe
- Sechskantmutter
- Sicherungsmutter

(Abbildungen nicht maßstäblich)


fischer Bolzenanker FAZ II Plus dynamic

Produktbeschreibung Einbauzustand

Anhang A 1

Anhang 3 / 20

Produktkennzeichnungen und Buchstabenkürzel:

Produktkennzeichnung, Beispiel FAZ II + 16/30 R

Firmenkennung | Dübeltyp auf Bezeichnungsfläche 1 oder 3

Gewindegröße/ max. Dicke des Anbauteils(t_{fix})
Kennzeichnung R auf Bezeichnungsfläche 1 oder 3

FAZ II Plus dynamic: Kohlenstoffstahl, galvanisch verzinkt

FAZ II Plus dynamic R: nichtrostender Stahl

Tabelle A2.1: Buchstabenkürzel auf Bezeichnungsfläche 2:

Markieru	ng	(a)	(b)	(c)	(d)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(K)
Max. t _{fix,g}	_{es} [mm]	5	10	15	20	5	10	15	20	25	30	35	40	45	50
	M16	70	75	80	85	90	95	100	105	110	115	120	125	130	135
B ≥ [mm] M20				105	110	115	120	125	130	135	140	145	150		
	M24			-		130	135	140	145	150	155	160	165	170	175
Markieru	ng	(L)	(M)	(N)	(O)	(P)	(R)	(S)	(T)	(U)	(V)	(W)	(X)	(Y)	(Z)
Max. t _{fix,g}	es [mm]	60	70	80	90	100	120	140	160	180	200	250	300	350	400
	M16	145	155	165	175	185	205	225	245	265	285	335	385	435	485

Berechnung vorhandener hef von eingebauten Ankern:

220

245

240

265

260

285

280

305

300

325

350

375

400

425

450

475

500

525

vorhandene hef = B_(gemäß Tabelle A2.1) - vorhandenes t_{fix,ges}

t_{fix,ges} siehe Anhang B2

(Abbildungen nicht maßstäblich)

fischer Bolzenanker FAZ II Plus dynamic

Produktbeschreibung

 $B \ge [mm]$

M20

M24

160

185

170

195

180

205

190

215

200

225

Produktkennzeichnung und Buchstabenkürzel

Anhang A 2

Anhang 4 / 20

Tab	Tabelle A3.1: Werkstoffe FAZ II Plus dynamic							
Tail	Dozeiekowa	Material						
Teil	Bezeichnung	FAZ II Plus dynamic	FAZ II Plus dynamic R					
		Stahl	Nichtrostender Stahl R					
Stahlgüte		Verzinkt ≥ 5 μm, ISO 4042:2018	nach EN 10088:2014 Korrosionswiderstandsklasse CRC III nach EN 1993-1-4:2006+A1:2015					
1 Spreizclip		Kaltband, EN 10139:2016 oder nichtrostender Stahl EN 10088:2014	nichtrostender Stahl EN 10088:2014					
2	Konusbolzen	Kaltstauchstahl oder Automatenstahl						
3	Injektionsadapter	Kui	nststoff					
4	Verfüllbare Kegelpfanne	Kaltstauchstahl oder Automatenstahl	o'alahara da o Orala					
5	Kugelscheibe	Ranstauchstam oder Automatenstam	nichtrostender Stahl EN 10088:2014					
6	Unterlegscheibe	Kaltband, EN 10139:2016						
7	Sechskantmutter	Stahl, Festigkeitsklasse min. 8, EN ISO 898-2:2012	nichtrostender Stahl EN 10088: 2014; ISO 3506-2:2020; Festigkeitsklasse – min. 70					
8	Sicherungsmutter	Kaltband, EN 10139:2016 nichtrostender Stahl EN 10088:2014						
	Injektionskartusche Mörtel, Härter, Füllstoffe (Druckfestigkeit ≥ 50 N/mm²)							

fischer Bolzenanker FAZ II Plus dynamic

Produktbeschreibung Werkstoffe Anhang A 3

Beanspruchung der Verankerung: FAZ II Plus dynamic, FAZ II Plus dynamic R Größe M20 M24 Hammerbohren mit Standard Lenson and a second Hammerbohrer Hammerbohren mit Hohlbohrer mit automatischer Absaugung Statische und quasi-statische Belastungen in gerissenem und ungerissenem Beton Erdbebenbeanspruchung für Leistungskategorie C1 und C2 - nicht in Kombination mit Ermüdungsbeanspruchung Brandbeanspruchung - nicht in Kombination mit Ermüdungsbeanspruchung Ermüdungsbeanspruchung in gerissenem und ungerissenem Beton – nicht in Kombination mit

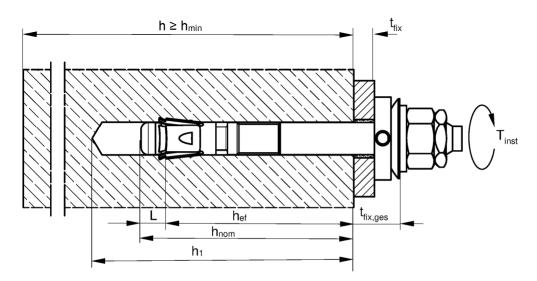
Spezifizierung des Verwendungszwecks

Verankerungsgrund:

Erdbeben- oder Brandbeanspruchung

- Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern (gerissen und ungerissen) gemäß EN 206:2013+A2:2021
- Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206:2013+A2:2021

Anwendungsbedingungen (Umweltbedingungen):


- Bauteile unter den Bedingungen trockener Innenräume (FAZ II Plus dynamic, FAZ II Plus dynamic R)
- Für alle anderen Bedingungen gemäß EN 1993-1-4:2006 + A1:2015 entsprechend der Korrosionsbeständigkeitsklasse CRC III: für FAZ II Plus dynamic R

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs
- Unter Berücksichtigung der zu verankernden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. In den Konstruktionszeichnungen ist die Position der Dübel anzugeben (z.B Lage des Dübels zur Bewehrung oder zu den Auflagern usw.)
- Bemessung der Verankerung erfolgt nach EN 1992-4:2018 und EOTA Technical Report TR 061: 2020-08 "Bemessungsmethoden für Verankerungen in Beton unter zyklischer Ermüdungsbeanspruchung"
- Eine Abstandsmontage nach EN 1992-4:2018, 6.2.2.3 ist durch diese Europäische Technische Bewertung nicht abgedeckt
- Bemessung unter zyklischer Ermüdungsbeanspruchung darf nicht in Kombination unter Brand oder Erdbebenbeanspruchung erfolgen

fischer Bolzenanker FAZ II Plus dynamic	
Verwendungszweck Spezifizierung	Anhang B 1 Anhang 6 / 20
	•

Tabelle B2.1: Montagekennwerte							
0.450			FAZ II Plus dynamic, FAZ II Plus dynamic R				
Größe			M16	M20	M24		
Nomineller Bohrdurchmesser	d ₀ =		16	20	24		
Maximaler Schneidendurchmesser mit Hammerbohrer oder Hohlbohrer	d _{cut,max}	[mm]	16,50	20,55	24,55		
Effektive Verankerungstiefe	h _{ef} ≥		65 - 160	100 - 180	125		
Länge von hef bis Ende des Bolzens	L	[17,5	20,0	23,5		
Gesamtlänge des Ankers im Beton	h _{nom} ≥	[mm]		h _{ef} + L			
Bohrlochtiefe am tiefsten Punkt	h ₁ ≥		h _{nom} + 5 h _{nom} + 10				
Durchmesser der Durchgangsbohrung im Anbauteil	$d_{f} \leq$	[mm]	18	22	26		
Montagedrehmoment	T _{inst} =	[Nm]	110	200	270		
Minimale Dicke des Anbauteils	t _{fix,min} ≥	[mm]	15	20	24		
Dicke von Anbauteil und Spezialscheiben	t _{fix,ges} =	[IIIIII]	t _{fix} + 11	t _{fix} + 13	t _{fix} + 17		

hef = Effektive Verankerungstiefe

t_{fix} = Dicke des Anbauteils

t_{fix.ges} = Dicke von Anbauteil und Spezialscheiben

h₁ = Bohrlochtiefe am tiefsten Punkt

h = Dicke des Betonbauteils

h_{min} = Minimale Dicke des Anbauteils

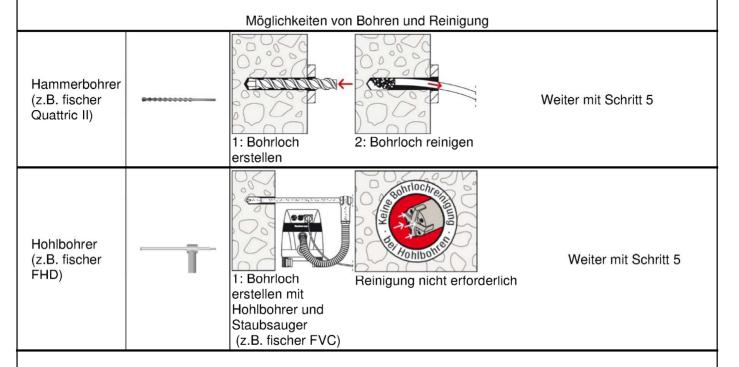
h_{nom} = Gesamtlänge des Ankers im Beton

 T_{inst} = Montagedrehmoment

L = Länge von hef bis Ende des Bolzens

(Abbildungen nicht maßstäblich)

fischer Bolzenanker FAZ II Plus dynamic


Verwendungszweck Montageparameter Anhang B 2

Anhang 7 / 20

Montageanleitung:

- Einbau nur durch entsprechend geschultes Personal gemäß den technischen Zeichnungen und unter Aufsicht des Bauleiters
- Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile
- · Hammer- oder Hohlbohrer gemäß Anhang B2
- Bohrloch senkrecht +/- 5° zur Oberfläche des Verankerungsgrundes erstellen, ohne die Bewehrung zu beschädigen
- Bei Fehlbohrungen: Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt

Montageanleitung: Bohren und Bohrlochreinigung

fischer Bolzena	anker FAZ	II Plus	dynamic
-----------------	-----------	---------	---------

Montageanleitun	ng: Anker setzen
	5: Position der Verfüllscheibe überprüfen
	6: Anker setzen. z.B. mit fischer FA-ST II:
Tinst	7: T _{inst} aufbringen
	8: Sicherungsmutter manuell anziehen, dann mit Schlüssel eine Viertel- Umdrehung weiter anziehen
	9: Der Spalt zwischen Anker und Anbauteil (Ringspalt) muss mittels einer Verfüllscheibe mit Mörtel (Druckfestigkeit ≥ 50 N/mm²; z.B. fischer Injektionsmörtel FIS HB, FIS V Plus, FIS EM Plus oder FIS SB) verfüllt werden.
t _{fix,ges}	10: Abgeschlossene Montage

fischer Bolzenanker FAZ II Plus dynamic

Verwendungszweck Montageanleitung Anhang B 4

Anhang 9 / 20

Tabelle C1.1: Charakteristische Werte der **Zugtragfähigkeit** unter statischer und quasistatischer Belastung

	0.450.5		FAZ II Plus dynamic, FAZ II Plus dynamic R				
	Größe			M16	M20	M24	
Stahlversagen							
Charakteristischer	FAZ II Plus dyı			78,7	108,4	180,0	
Widerstand	FAZ II Plus dynamic R	N _{RI}	k,s [kN]	83,0	127,6	187,0	
Teilsicherheits-	FAZ II Plus dyı				1,40		
beiwert	FAZ II Plus dynamic R	γMs	s ¹⁾ [-]	1,40	1,45	1,50	
Herausziehen							
Effektive Verankeru Berechnung		h _{ef}	[mm]	65 - 160	100 - 180	125	
Charakteristischer \ n gerissenem Beto	$N_{Rk,p}$	[kN]	27,0	34,4	48,1		
Charakteristischer Widerstand in ungerissenem Beton C20/25		(C20/25)		38,6	49,2	68,8	
			C25/30		1,12		
Erhöhungsfaktor fü	r ψc für		C30/37	1,22			
gerissenen oder un	gerissenen	[-]	C35/45		1,32 1,41 1,50		
Beton			C40/50				
$N_{Rk,p} = \psi_c \cdot N_{Rk,p} (C2)$	20/25)		C45/55				
			C50/60	1,58			
Montagesicherheits	beiwert	γinst	[-]		1,0		
Betonausbruch ur	nd Spaltversage	en					
Faktor für ungerisse	enem Beton	$k_{\text{ucr},N}$			11,0 ²⁾		
Faktor für gerissene	em Beton	k _{cr,N}	[-]		7,72)		
Charakteristischer /	Achsabstand	S _{cr} ,N	[mm]		3 ⋅ h _{ef}		
Charakteristischer I	Randabstand	Ccr,N	[IIIIIII]	1,5 · h _{ef}			
Charakteristischer <i>i</i> Spalten	Abstand gegen	S _{cr,sp}	[mm]		2 · c _{cr,sp}		
Charakteristischer ≥ 140 Randabstand gegen ≥ 160 Spalten h ≥ 200					- 4)		
		Ccr,sp	[mm] 2·I	2·h _{ef}	2,4·h _{ef}	2,2·h _{ef}	
Charakteristischer Widerstand gegen Spalten N ⁰ _{Rk,sp} [kN]					min {N ⁰ _{Rk,c} ; N _{Rk,p} } ³⁾		

¹⁾ Sofern andere nationale Regelungen fehlen

fischer Bolzenanker FAZ II Plus dynamic

Leistung

Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi-statischer Belastung

Anhang C 1

Anhang 10 / 20

²⁾ Bezogen auf Betonzylinderdruckfestigkeit

³⁾ N⁰_{Rk,c} nach EN 1992-4:2018

⁴⁾ Leistung nicht bewertet

Tabelle C2.1: Charakteristische Werte der	Quertragfähigkeit unter statischer und quasi-
statischer Belastung	

Größe			FAZ II Plus dynamic, FAZ II Plus dynamic R			
Grobe				M16	M20	M24
Stahlversagen ohr	ne Hebelarm					
Charakteristischer	FAZ II Plus dynamic verfüll	t		69,8	85,6	128,3
Widerstand	FAZ II Plus dynamic verfüllt R	V ⁰ Rk,s	[kN]	73,6	117,9	158,1
Teilsicherheitsbeiwe	ert	γMs ¹⁾	r 1		1,25	
Faktor für Duktilität		k ₇	[-]		1,0	
Stahlversagen mit	Hebelarm und Pryoutvers	agen				
Effektive Verankeru Berechnung	ıngstiefe für	h _{ef}	[mm]	85 - 160	100 - 180	125
Charakteristisches	FAZ II Plus dynamic	− M ⁰ _{Rk,s}	[Nm]	266	422	864
Biegemoment	FAZ II Plus dynamic R			256	519	898
Faktor für Pryoutve	rsagen	k ₈	[-]		3,2	
Effektive Verankeru Berechnung	ıngstiefe für	h _{ef}	[mm]	65 - < 85		
Charakteristisches	FAZ II Plus dynamic	N 40	[Nm]	251	:	2)
Biegemoment	FAZ II Plus dynamic R	− M ⁰ Rk,s		256		
Faktor für Pryoutversagen		k ₈	[-]	3,2		
Teilsicherheitsbeiwe	ert	γMs ¹⁾			1,25	
Faktor für Duktilität		k ₇	[-]		1,0	
Betonkantenbruch						
Effektive Verankeru	ingstiefe für Berechnung	l _f =	[mama]		h _{ef}	
Dübeldurchmesses	r	d _{nom}	[mm]	16	20	24

¹⁾ Sofern andere nationale Regelungen fehlen

tischer Bolzenanker	FAZ II	Plus	dynamic
---------------------	--------	------	---------

Charakteristische Werte der Quertragfähigkeit unter statischer und quasi-statischer Belastung

²⁾ Leistung nicht bewertet

Tabelle C3.1: Charakteristische Werte der **Zugtragfähigkeit** unter Brandbeanspruchung – nicht in Kombination mit Ermüdungsbeanspruchung

Größe			FAZ II Plus dynamic, FAZ II Plus dynamic R						
Grobe					M1	16	M20	M24	
			h _{ef} ≥	[m	65 - < 85	85 - 160	100 - 180	125	
			R30		9,	4	14,7	21,1	
	FAZ II Plus	NI=. «	<u>R60</u>		7,	7	12,0	17,3	
	dynamic	$N_{Rk,s,fi}$	R90		6,	0	9,4	13,5	
Charakteristischer Widerstand Stahl-			R120		5,	2	8,1	11,6	
versagen			R30		21	,8	34,3	49,4	
versagen	FAZ II Plus dynamic R	N _{Rk,s,fi}	<u>R60</u>		13	,2	20,7	29,3	
			R90_		10	,5	18,3	26,4	
			R120	[kN]	8,	6	17,3	25,0	
Charakteristischer Widerstand		R30 N _{Rk,c,fi} - R90			$7.7\cdoth_{ef}{}^{1.5}\cdot(20)^{0.5}\cdoth_{ef}/200/1000$				
Betonausbruch			R120			$7.7 \cdot h_{ef}^{1.5} \cdot (20)^{0.5} \cdot h_{ef} / 200 / 1000 \cdot 0.8$			
Charakteristischer Widerstand Herausziehen		$N_{Rk,p,fi}$	R30 R60 R90		4,5	6,8	8,6	12,0	
			R120		3,6	5,4	6,9	9,6	

Tabelle C3.2: Charakteristische Werte der **Quertragfähigkeit** unter **Brandbeanspruchung** – nicht in Kombination mit Ermüdungsbeanspruchung

R30

R60

FAZ II Plus o	dynamic			V _{Rk,s,fi,30} [kN]	M ⁰ _{Rk,s,fi,30} [Nm]	V _{Rk,s,fi,60} [kN]	M ⁰ _{Rk,s,fi,60} [Nm]
M16		65		11,7	19,9	9,1	16,3
M20	h _{ef} ≥	100	[mm]	18,2	39,0	14,2	31,8
M24		125		26,3	67,3	20,5	55,0
				RS	20	D-1	120
1				n:	7 0	n i	120
FAZ II Plus o	dynamic			V _{Rk,s,fi,90} [kN]	M ⁰ _{Rk,s,fi,90} [Nm]	V _{Rk,s,fi,120} [kN]	M ⁰ Rk,s,fi,120 [Nm]
FAZ II Plus o	dynamic	65		V _{Rk,s,fi,90}	M ⁰ Rk,s,fi,90	V _{Rk,s,fi,120}	M ⁰ Rk,s,fi,120
	dynamic h _{ef} ≥		- [mm]	V _{Rk,s,fi,90} [kN]	M ⁰ _{Rk,s,fi,90} [Nm]	V _{Rk,s,fi,120} [kN]	M ⁰ Rk,s,fi,120 [Nm]

Pryoutversagen gemäß EN 1992-4:2018

fischer Bolzenanker FAZ II Plus dynamic	
Leistung	Anhang C 3
Charakteristische Werte unter Brandbeanspruchung	Anhang 12 / 20

Tabelle C4.1: Charakteristische Werte der **Quertragfähigkeit** unter **Brandbeanspruchung** – nicht in Kombination mit Ermüdungsbeanspruchung

EAZ II Diug	dunamia	Ь		R	30	R	60
FAZ II Plus	uynannic	n		$V_{Rk,s,fi,30}\left[kN\right]$	M ⁰ _{Rk,s,fi,30} [Nm]	$V_{Rk,s,fi,60}\left[kN\right]$	M ⁰ _{Rk,s,fi,60} [Nm]
M16		65		21,8	46,2	13,2	27,9
M20	h _{ef} ≥	100	[mm]	34,3	90,9	20,7	54,9
M24		125		49,4	157,2	29,3	93,1
EAZ II Divis	dren a mail a	В		R	90	R1	20
FAZ II Plus	dynamic	R		R 9 V _{Rk,s,fi,90} [kN]	M ⁰ _{Rk,s,fi,90} [Nm]	R1 V _{Rk,s,fi,120} [kN]	20 M ⁰ Rk,s,fi,120 [Nm]
FAZ II Plus	dynamic	R 65					
	dynamic h _{ef} ≥		- [mm]	V _{Rk,s,fi,90} [kN]	M ⁰ _{Rk,s,fi,90} [Nm]	V _{Rk,s,fi,120} [kN]	M ⁰ Rk,s,fi,120 [Nm]

Pryoutversagen nach EN 1992-4:2018

Tabelle C4.2: Minimale Achsabstände und minimale Randabstände für Anker unter **Brandbeanspruchung** für **Zug-** und **Quertragfähigkeit**

Cräßo		FAZ II Plus dynamic, FAZ II Plus dynamic R				
Größe			M16	M20	M24	
Achsabstand	Smin			Anhang C5		
Randabstand	Cmin	[mm]	bei mehrsei	c_{min} = 2 · h_{ef} , tiger Brandbeanspruchung c_{min}	n ≥ 300 mm	

fischer Bolzenanker FAZ II Plus dynamic

Leistung

Charakteristische Werte unter Brandbeanspruchung

Anhang C 4

Anhang 13 / 20

CräCo			FAZ II Plus dynamic, FAZ II Plus dynamic R			
Große	Größe			M20	M24	
Minimaler Randabstand		-				
Ungerissener Beton			CF.	95	135	
Gerissener Beton	- Cmin		65	85	100	
Zugehöriger Achsabstand	s	[mm]		gemäß Anhang C 6		
Minimale Dicke des Betonbauteils	h _{min}		140	160	200	
Dicke des Betonbauteils	h ≥			max. {h _{min} ; 1,5 · h _{ef} }		
Minimaler Achsabstand						
Ungerissener Beton	_		CE	05	100	
Gerissener Beton	- Smin		65	95	100	
Zugehöriger Randabstand	С	[mm]		gemäß Anhang C 6		
Minimale Dicke des Betonbauteils	h _{min}		140	160	200	
Dicke des Betonbauteils	h≥			max. {h _{min} ; 1,5 · h _{ef} }	_	

Tabelle C5.2: Minimale Achs- und Randabstände - berechnete Werte **für gerissenen Beton bei einem Rand** (c_2 und $c_3 \ge 1,5$ c_1)

67

50

- A_{sp,req} [·1000 mm²] 117,5

87,5

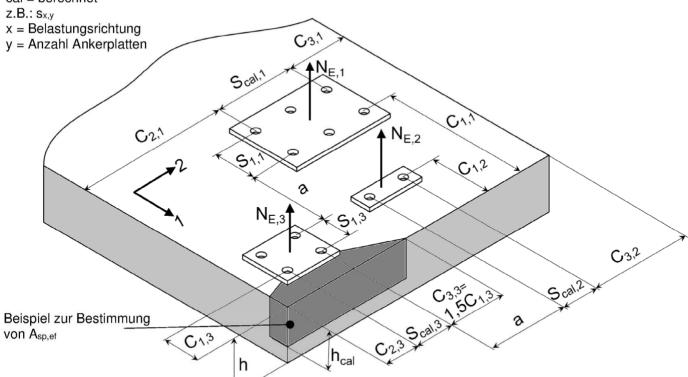
100

77

Ungerissener Beton

Gerissener Beton

Ankor / Größe			FAZ II Plus	dynamic, FAZ II Plus d	lynamic R
Aliker / Grobe	Anker / Größe		16	M20	M24
Effektive Verankerungstiefe	$h_{ef} \geq [mm]$	65	85	100	125
Minimale Dicke des Anbauteils	h≥ [mm]	140	180	160	200
Minimaler Achsabstand	s _{min} [mm]	6	5	95	100
Minimaler Achsabstand	für c ≥ [mm]	100	75	130	115
Minimaler Randabstand	c _{min} [mm]	6	5	85	100
Willimaler Haridabstarid	für s ≥ [mm]	165	85	230	140


fischer Bolzenanker FAZ II Plus dynamic	
Leistungen	Anhang C 5
Mindestdicke des Betonbauteils, minimale Achs- und Randabstände	Anhang 14 / 20

Bestimmung von Asp,ef für jeden Rand

Spaltversagen bei minimalen Achs- und Randabständen in Abhängigkeit von hef

Definition der Indizes:

cal = berechnet

Beispiel für unterschiedliche Ankerplatten:

Zur Berücksichtigung aller Ränder müssen Richtung 1 und 2 getauscht werden.

Allgemeine Formel für jeden Rand: $A_{\text{sp,ef}} = (c_2 + s_{\text{cal}} + c_3) \cdot h_{\text{cal}} \ge (n/2) \cdot A_{\text{sp,reg}}$

mit:

Randabstand c1: cmin ≤ c1

Randabstand c_2 : $c_{min} \le c_2 \le 1.5 \cdot c_1$ Randabstand c_3 : $c_{min} \le c_3 \le 1.5 \cdot c_1$

Berechnungswert des Achsabstands, Abstand zwischen den äußersten Ankern scal: smin ≤ scal ≤ 3,0·c1

Abstand zwischen Ankergruppen für a: Für a ≥ 3,0 c₁ ist kein Einfluss zwischen den Ankergruppen messbar. Anzahl von Ankern n auf einer Ankerplatte wenn diese randnah und parallel zum Rand liegen.

Effektive Betonbauteildicke h_{cal} : $h_{min} \le h$; $h_{cal} \le h$; $h_{cal} \le (h_{ef} + 1.5 \cdot c_1)$

c₁, c₂, c₃, h und s_{cal} müssen so ausgewählt werden, dass die Anforderung erfüllt ist.

Für die Berechnung des minimalen Achsabstands und des minimalen Randabstands der Anker in Kombination mit verschiedenen Einbindetiefen und Dicken des Betonbauteils ist die folgende Gleichung zu erfüllen:

$A_{sp,req} < A_{sp,ef}$

A_{sp,req} = erforderliche Spaltfläche (gemäß Anhang C 5)

A_{sp,ef} = effektive Spaltfläche

(Abbildungen nicht maßstäblich)

fischer Bolzenanker FAZ II Plus dynamic

Leistungen

Mindestdicke der Betonbauteile, minimale Achs- und Randabstände

Anhang C 6

Anhang 15 / 20

Tabelle C7.1: Charakteristische	Werte der Zug- und Quertragfähigkeit unter Erdbeben-
beanspruchung	C1 – nicht in Kombination mit Ermüdungsbeanspruchung

0.30			FAZ II Plus dynamic, FAZ II Plus dynamic R			
Größe		M16	M20	M24		
Effektive Verankerungstiefe	h _{ef}	[mm]	85 - 160	100 - 180	125	
Mit Ringspaltverfüllung	αgan	[-]		1.0		

Stahlversagen $N_{Rk,s,C1} = N_{Rk,s}$; $\gamma_{Ms,C1} = \gamma_{Ms}$ (siehe Anhang C1)

Herausziehen						
Charakteristischer Widerstand in gerissenem Beton C1	$N_{\text{Rk,p,C1}}$	[kN]	27,0	34,4	48,1	
Montagesicherheitsbeiwert	γinst	[-]		1,0		

Betonausbruch und Spaltversagen $N_{Rk,c,C1} = N^0_{Rk,c}$; $N_{Rk,sp,C1} = N^0_{Rk,sp}$ (siehe Anhang C1)

A		
Stahlversagen	Ohne	Hehelarm
Jiailivei Saueii	OHILE	Hebelailli

	FAZ II Plus dynamic						
Charakteristischer Widerstand C1		h _{ef}	[mm]	85 - 160	100 - 180	125	
	Mit Verfüllung	$V_{Rk,s,C1}$	[kN]	59,3	85,6	102,6	
	FAZ II Plus dynamic R						
		h _{ef}	[mm]	85 - 160	100 - 180	125	
	Mit Verfüllung	$V_{Rk,s,C1}$	[kN]	62,6	94,3	126,5	
Teilsicherheitsbei	wert	γMs,C1 ¹⁾	[-]		1,25	_	

¹⁾ Sofern andere nationale Regelungen fehlen

fischer Bolzenanker	FAZ II	Plus	aynamıc
---------------------	--------	------	---------

Leistung

Charakteristische Werte der Zug- und Quertragfähigkeit unter Erdbebenbeanspruchung C1

Anhang C 7

Anhang 16 / 20

Tabelle C8.1: Charakteristische Werte der Zug- und Quertragfähigkeit unter Erdbe	ben-
beanspruchung C2 – nicht in Kombination mit Ermüdungsbeanspruch	ıung

Größe		FAZ II F	FAZ II Plus dynamic, FAZ II Plus dynamic R		
		M16	M20	M24	
Mit Ringspaltverfüllung	α _{σαρ} [-]		1,0		

Stahlversagen $N_{Rk,s,C2} = N_{Rk,s}$; $\gamma_{Ms,C2} = \gamma_{Ms}$ (siehe Anhang C1)

Herausziehen					
	h _{ef} [[mm]	85 - 160	100 - 180	125
Charakteristischer	$N_{Rk,p,C2}$	[kN]	21,5	30,7	39,6
Widerstand C2	h _{ef} [[mm]	65 - < 85	_2)	
	$N_{Rk,p,C2}$	[kN]	16,4	/	
Montagesicherheitsbeiwert	Vinet	[-]		1.0	

Betonausbruch und Spaltversagen $N_{Rk,c,C2} = N^0_{Rk,c}$; $N_{Rk,sp,C2} = N^0_{Rk,sp}$ (siehe Anhang C1)

Stahlversagen ohne Hebelarm							
	FAZ II Plus dynamic						
	r	n _{ef} [mm]	85 - 160	100 - 180	125		
	Mit Verfüllung V _{Rk,s,}	02 [kN]	52,4	68,5	102,6		
Charakteris-	r	n _{ef} [mm]	65 - < 85	_2			
tischer Mit Verfüllung Vi		c2 [kN]	52,4)		
Widerstand		FAZ II Plus dynamic R					
C2	r	n _{ef} [mm]	85 - 160	100 - 180	125		
Mit Verfüll	Mit Verfüllung V _{Rk,s,}	02 [kN]	55,2	104,9	126,5		
	r	n _{ef} [mm]	65 - < 85	,			
	Mit Verfüllung V _{Rk,s,}	c2 [kN]	55,2	_2)			
Teilsicherheits	beiwe VMs C	o1) [-]		1.25			

¹⁾ Sofern andere nationale Regelungen fehlen

fischer Bolzenanker FAZ II Plus dynamic

Leistung

Charakteristische Werte der Zug- und Quertragfähigkeit unter Erdbebenbeanspruchung C2

Anhang C 8

Anhang 17 / 20

²⁾ Leistung nicht bewertet

Tabelle C9.1: Verschiebungen unter statischer und quasistatischer Zuglast						
Größe		FAZ II Plu	FAZ II Plus dynamic, FAZ II Plus dynamic R			
		M16	M20	M24		
Verschiebungen – Faktor für Zuglast 1)						
δ_{N0} – Faktor	— in gerissenem Beton		0,08	0,07	0,05	
δ _{N∞} - Faktor			(),09	0,07	
δ_{N0} – Faktor	in ungerissenem Beton	[mm/kN]	0,06	0,05	0,04	
δ _{N∞} - Faktor			0,10	0,06	0,05	

Tabelle C9.2: Verschiebungen unter statischer und quasistatischer Querlast

Größe			M16	M20	M24		
Verschiebungen – Faktor für Querlast ²⁾							
				FAZ II Plus dynamic			
δ _{v0} – Faktor			0,10	0,09	0,07		
δν∞ - Faktor	in gerissenem		0,14 0,15	0,11			
	oder ungerissenem	[mm/kN]					
δ_{V0} – Faktor	Beton		0,10	0,11	0,07		
δ _{V∞} - Faktor	_		0,15	0,17	0,11		

1) Berechnung der effektiven Verschiebung:

 $\delta_{N0} = \delta_{N0} - factor \cdot N$

 $\delta_{N\infty} = \delta_{N\infty} - factor \cdot N$

N = Einwirkende Zuglast

²⁾ Berechnung der effektiven Verschiebung:

 $\delta_{V0} = \delta_{V0} - factor \cdot V$

 $\delta_{V\infty} = \delta_{V\infty} - \text{factor} \cdot V$

V = Einwirkende Querlast

Tabelle C9.3: Verschiebungen unter Zuglast C2 für alle Verankerungstiefen

Größe		FAZ II Plus dynamic, FAZ II Plus dynamic R			
		M16	M20	M24	
DLS	δN,C2 (DLS)	4,4	5,6	4,8	
ULS	$\frac{\delta_{\text{N,C2 (ULS)}}}{\delta_{\text{N,C2 (ULS)}}}$ [mm]	12,3	14,4	15,2	

¹⁾ Leistung nicht bewertet

Tabelle C9.4: Verschiebungen unter Querlast C2 für alle Verankerungstiefen

C == C C		FAZ II Plus dynamic, FAZ II Plus dynamic R			
Größe		M16	M20	M24	
DLS mit Mörtel	δv,c2 (DLS)	1,2	2,0	4,2	
ULS mit Mörtel	$\frac{\delta_{V,C2 \text{ (ULS)}}}{\delta_{V,C2 \text{ (ULS)}}}$ [mm]	3,1	4,4	7,4	

¹⁾ Leistung nicht bewertet

fischer Bolzenanker FAZ II Plus dynamic

Leistung

Verschiebungen unter Zug- und Querlast

Anhang C 9

Anhang 18 / 20

Tabelle C10.1: Leistungsmerkmale unter ermüdungsrelevanter Zug – und Querlast für Bemessungsverfahren I gemäß TR 061 – nicht in Kombination mit Erdbebenoder Brandbeanspruchung

Erforderliche Nachw	I	Anzahl der La	stwechsel (n)		
	n ≤ 10 ⁴	$10^4 < n \le 5 \cdot 10^6$	5 · 10 ⁶ < n ≤ 1	0 ⁸ n > 10 ⁸	
Zugtragfähigkeit ¹⁾	112.10	10 (1120 10	0 10 4112 1		
ΔN _{Rk,s,0,n} FAZ II Plus dynamic	N ^{fat} Rk,s · 0,227	N ^{fat} Rk,s · 10 ^{(-0,299-0,085} ·log(n))	N ^{fat} Rk,s - 10 ^{(-0,544-0,04}	8· log(n)) N ^{fat} Rk,s · 0,1	
ΔΝ _{Rk,s,0,n} FAZ II Plus dynamic R	N ^{fat} Rk,s · 0,335	N ^{fat} _{Rk,s} · 10 ^{(0,427-0,226} · log(n))	N ^{fat} Rk,s · 10 ^{(-0,405-0,10}	Nfat _{Rk,s} · 0,0	
		$N^{fat}_{Rk,s} = N_{Rk,s} ge$	mäß Anhang C1		
Charakteristischer Err	nüdungswide	rstand für Betonausbruch, Spalten	und Herausziehen		
AN _{Rk,c,sp/p,0,n} FAZ II Plus dynamic; [kN] FAZ II Plus dynamic R	N ^{fat} _{Rk,c,sp/p} · 0,68	$N^{\text{fat}}_{Rk,c,sp/p} \cdot 10^{(0,055-0,055 \cdot \log(n))}$ $\geq N^{\text{fat}}_{Rk,c,sp/p} \cdot 0,5$	N ^{fat} Rk,c,sp/p · 0,5	5 N ^{fat} Rk,c,sp/p · 0,5	
	N ^{fat} _{Rk,s} = N _{Rk,s} gemäß Anhang C1				
			Ť		
Quertragfähigkeit					
ΔV _{Rk,s,0,n} FAZ II Plus	V ^{fat} Rk,s · 0,26	V ^{fat} Rk,s · 10 ^{(-0,15-0,108· log(n))}	V ^{fat} Rk,s · 10 ^(-0,48-0,059)	$V^{\text{fat}}_{\text{Rk,s}} \cdot 0,1$	
dynamic	V ^{fat} _{Rk,s} = 62,8 kN für M16; V ^{fat} _{Rk,s} = 82,9 kN für M20; V ^{fat} _{Rk,s} = 128,3 kN für N				
ΔV _{Rk,s,0,n} FAZ II Plus	V ^{fat} Rk,s · 0,26	$V^{\text{fat}}_{\text{Rk,s}} \cdot 10^{(-0,242-0,084 \cdot \log(n))}$	V ^{fat} Rk,s · 10 ^{(-0,536-0,04}	$0 \cdot \log(n)$ $V^{\text{fat}}_{\text{Rk,s}} \cdot 0,1$	
dynamic R	V ^{fat} R	$k,s = 62,8 \text{ kN für M16; } V^{\text{fat}}_{Rk,s} = 98,0$	0 kN für M20; V ^{fat} _{Rk,s} = 141,2 kN für M24		
Charakteristische Erm lastabgewanten Seite		stand für Betonkantenbruch und Be	tonausbruch auf der		
ΔV _{Rk,c,cp,0,n} FAZ II Plus dynamic; [kN] FAZ II Plus dynamic R	V ^{fat} Rk,c,cp - 0,58	$V^{\text{fat}_{\text{Rk,c,cp}}} \cdot 10^{(0,08-0,08 \cdot \log(n))}$ $\geq V^{\text{fat}_{\text{Rk,c,cp}}} \cdot 0,5$	V ^{fat} Rk,c,cp · 0,5 V ^{fat} Rk,c,c		
	<u> </u>	$V^{\text{fat}}_{\text{Rk,c,cp}} = V_{\text{Rk,c,cp}}$ gemäß EN 199	92-4 mit k ₈ gemäß Ang	hang C2	
Exponenten, Lastum					
Exponent für kombinie	erte Belastunç T		_		
$\alpha_s = \alpha_{sn}$ [-]	<u> </u>	0	,7		
Lastumlagerungsfakto	or T				
$\psi_{FN} = \psi_{Fv}$ [-]	<u> </u>		,5		
Exponent für kombii	nierte Belastı	ung in Bezug auf andere Versage		sagen	
αc [-]	1		,5		
1) Der Ringspalt muss	nicht verfüllt	werden, wenn reiner zentrische Be	lastung vorliegt		
fischer Bolzenanker F	AZ II Plus dyı	namic			
Leistungen Leistungsmerkmale unter ermüdungsrelevanter Zug – und Querlast für Bemessungsverfahren I gemäß TR 061			r	Anhang C 10 Anhang 19 / 20	

Tabelle C11.1: Leistungsmerkmale unter ermüdungsrelevanter Zug – und Querlast für Bemessungsverfahren II gemäß TR 061 – nicht in Kombination mit Erdbebenoder Brandbeanspruchung

Größe			FAZ II Plus dynamic, FAZ II Plus dynamic			
Große				M 16	M20	M24
Zugbelastung						
Effektive Verankerungstiefe		h _{ef}	[mm]	65 - 160	100 - 180	125
Stahlversagen						
Charakteristischer Ermüdungs	FAZ II Plus dynamic	<u> </u>		8,7	11,9	19,8
widerstand des Stahls	FAZ II Plus dynamic R	ΔN _{Rk,s,0,∞} [l		4,2	6,4	9,4
Betonausbruch						
		ΔN _{Rk,c,0,∞}	_	0,5 · N _{Rk,c}		
Charakteristischer Ermüdungs	widerstand des Betons	$\Delta N_{\text{Rk},p,0,\infty}$	_ [kN]	$0.5 \cdot N_{Rk,p}$		
		$\Delta N_{\text{Rk,sp,0,} \sim}$		0,5 · N _{Rk,sp}		
Querzugbelastung						
Quertragfähigkeit, Stahlvers	agen ohne Hebelarm					
Charakteristischer	FAZ II Plus dynamic	_ _ ∆V _{Rk,s,0,∞} [k		6,3	8,3	12,8
Stahlermüdungswiderstand	FAZ II Plus dynamic R		[kN]	8,2	12,7	18,4
Betonausbruch auf der lasta	bgewandten Seite					
Charakteristischer Ermüdungs	widerstand des Betons	ΔV _{Rk,cp,0,∞}	$V_{Rk,cp,0,\infty}$ [kN] 0,5 · $V_{Rk,cp}$			
Betonkantenbruch						
Charakteristischer Ermüdungswiderstand des Betons $\Delta V_{Rk,c,0,s}$			[kN]	0,5 · V _{Rk,c}		
Wert von hef (= lf) unter Querzugbelastung		h _{ef}	F 1	65 - 160	100 - 180	125
Effektiver Außendurchmesser des Ankers			-[mm]	16	20	24
Exponenten, Lastumlagerun	gsfaktoren					
Exponent für kombinierte Bela	stung					
$\alpha_s = \alpha_{sn}$ [-]			0,7	,		
Lastumlagerungsfaktor						
$\psi_{FN} = \psi_{Fv}$ [-]			0,5			
Exponent für kombinierte Be	elastung in Bezug auf	andere Ve	rsage	nsarten als St	ahlversagen	
αc [-]			1,5	5		

fischer	Bolzenanker	FAZ II	Plus	dynamic

Leistungen

Leistungsmerkmale unter ermüdungsrelevanter Zug – und Querlast für Bemessungsverfahren II gemäß TR 061

Anhang C 11