

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-17/0979 vom 17. Juni 2020

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

fischer Injektionssystem FIS EM PLUS

Verbunddübel zur Verankerung in Beton

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

41 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330499-01-0601

ETA-17/0979 vom 22. Juli 2019

Europäische Technische Bewertung ETA-17/0979

Seite 2 von 41 | 17. Juni 2020

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-17/0979

Seite 3 von 41 | 17. Juni 2020

Besonderer Teil

1 Technische Beschreibung des Produkts

Das "fischer Injektionssystem FIS EM Plus" ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionssystem fischer FIS EM Plus und einem Stahlteil nach Anhang A5 besteht.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß anwendbarem Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 oder 100 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang B 3 bis B 8, C 1 bis C 12
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 1 bis C 4
Verschiebungen unter Kurzzeit- und Langzeitbelastung	Siehe Anhang C 13 und C 14
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C1 und C2	Siehe Anhang C 15 bis C 18

3.2 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

Europäische Technische Bewertung ETA-17/0979

Seite 4 von 41 | 17. Juni 2020

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330499-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

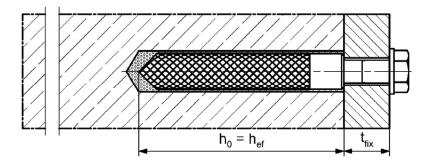
Ausgestellt in Berlin am 17. Juni 2020 vom Deutschen Institut für Bautechnik

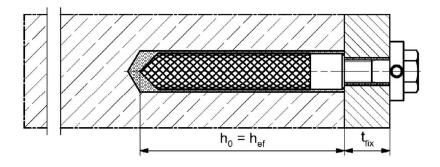
BD Dipl.-Ing. Andreas Kummerow Abteilungsleiter

Beglaubigt: Baderschneider

Produktbeschreibung Einbauzustände Teil 1

Einbauzustände Teil 1 fischer Ankerstange Vorsteckmontage $h_0 = h_{ef}$ Durchsteckmontage (Ringspalt mit Mörtel verfüllt) t_{fix} $h_0 = h_{ef}$ Vor- oder Durchsteckmontage mit nachträglich verpresster fischer Verfüllscheibe (Ringspalt mit Mörtel verfüllt) $h_0 = h_{ef}$ Abbildungen nicht maßstäblich h_0 = Bohrlochtiefe hef = Effektive Verankerungstiefe t_{fix} = Dicke des Anbauteils fischer Injektionssystem FIS EM Plus


Anhang A 1


Einbauzustände Teil 2

fischer Innengewindeanker RG MI

Vorsteckmontage

Vorsteckmontage mit nachträglich verpresster fischer Verfüllscheibe (Ringspalt mit Mörtel verfüllt)

Abbildungen nicht maßstäblich

h₀ = Bohrlochtiefe

h_{ef} = Effektive Verankerungstiefe

t_{fix} = Dicke des Anbauteils

fischer Injektionssystem FIS EM Plus

Produktbeschreibung

Einbauzustände Teil 2

Anhang A 2

Einbauzustände Teil 3 **Betonstahl** fischer Bewehrungsanker FRA Vorsteckmontage h_0 Durchsteckmontage (Ringspalt mit Mörtel verfüllt) h_0 Abbildungen nicht maßstäblich h_0 = Bohrlochtiefe h_{ef} = Effektive Verankerungstiefe t_{fix} = Dicke des Anbauteils fischer Injektionssystem FIS EM Plus Anhang A 3 Produktbeschreibung Einbauzustände Teil 3

Übersicht Systemkomponenten Teil 1	
Injektionskartusche (Shuttlekartusche) mit Verschlusskappe; Größen: 390 ml, 585 m	l, 1100 ml, 1500 ml
Aufdruck: fischer FIS EM Plus, Verarbeitungshinweise, Haltbarkeitsdatum, Kolbenwegskala (optional), Aushärte- und Verarbeitungszeiten (temperaturabhängig), Gefahrenhinweis, Gr	
Statikmischer FIS MR Plus oder UMR	
Injektionshilfe und Verlängerungsschlauch für Statikmischer	
	}
Reinigungsbürste BS / BSB	
Ausbläser ABP	
The state of the s	
Abbildu	ıngen nicht maßstäblich
fischer Injektionssystem FIS EM Plus	
Produktbeschreibung Übersicht Systemkomponenten Teil 1; Kartuschen / Statikmischer / Zubehör	Anhang A 4

Stahlteile

Übersicht Systemkomponenten Teil 2 fischer Ankerstange Größen: M8, M10, M12, M14, M16, M20, M22, M24, M27, M30 fischer Innengewindeanker RG MI Größen: M8, M10, M12, M16, M20 Schraube / Gewindestange / Scheibe / Mutter fischer Verfüllscheibe mit Injektionshilfe **Betonstahl** Nenndurchmesser: \$\phi 8\$, \$\phi 10\$, \$\phi 12\$, \$\phi 14\$, \$\phi 16\$, \$\phi 18\$, \$\phi 20\$, \$\phi 22\$, \$\phi 24\$, \$\phi 25\$, \$\phi 26\$, \$\phi 28\$, \$\phi 30\$, \$\phi 32\$, \$\phi 34\$, \$\phi 36\$, \$\phi 40\$ fischer Bewehrungsanker FRA Größen: M12, M16, M20, M24 Abbildungen nicht maßstäblich fischer Injektionssystem FIS EM Plus Anhang A 5 Produktbeschreibung Übersicht Systemkomponenten Teil 2;

Teil	Bezeichnung		Material					
1	Injektionskartusche		Mörtel, Härter, Füllstoffe					
		Stahl	Nichtrostender Stahl R	Hochkorrosions- beständiger Stahl HCR				
	Stahlart	verzinkt	gemäß EN 10088-1:2014 der Korrosionswiderstands- klasse CRC III nach EN 1993-1-4:2015	gemäß EN 10088-1:2014 der Korrosionswiderstand klasse CRC V nach EN 1993-1-4:2015				
2	Ankerstange	Festigkeitsklasse 4.8, 5.8 oder 8.8; EN ISO 898-1:2013 galv. verzinkt \geq 5 μ m, ISO 4042:2018/Zn5/An(A2K) oder feuerverzinkt \geq 40 μ m EN ISO 10684:2004 $f_{uk} \leq$ 1000 N/mm ² $A_5 >$ 12% Bruchdehnung	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462; EN 10088-1:2014 fuk ≤ 1000 N/mm² A ₅ > 12% Bruchdehnung	Festigkeitsklasse 50 oder 80 EN ISO 3506-1:2009 oder Festigkeitsklasse 7 mit f_{yk} = 560 N/mm ² 1.4565; 1.4529; EN 10088-1:2014 $f_{uk} \le$ 1000 N/mm ² $A_5 >$ 12% Bruchdehnung				
			ng A ₅ > 8%, wenn keine Anford istungskategorie C2 zu berück					
3	Unterlegscheibe ISO 7089:2000	galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) oder feuerverzinkt ≥ 40 μm EN ISO 10684:2004	1.4401; 1.4404; 1.4578;1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565; 1.4529; EN 10088-1:2014				
4	Sechskantmutter	Festigkeitsklasse 4, 5 oder 8; EN ISO 898-2:2012 galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) oder feuerverzinkt ≥ 40 μm EN ISO 10684:2004	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014				
5	fischer Innengewindeanker RG MI	Festigkeitsklasse 5.8 ISO 898-1:2013 galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K)	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014				
6	Handelsübliche Schraube oder Gewindestange für fischer Innengewinde- anker RG MI	Festigkeitsklasse 5.8 oder 8.8; EN ISO 898-1:2013 galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) A ₅ > 8 % Bruchdehnung	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014 A ₅ > 8 % Bruchdehnung	Festigkeitsklasse 70 EN ISO 3506-1:2009 1.4565; 1.4529; EN 10088-1:2014 A ₅ > 8 % Bruchdehnung				
7	fischer Verfüllscheibe ähnlich DIN 6319-G	galv. verzinkt ≥ 5 μm, ISO 4042:2018/Zn5/An(A2K) oder feuerverzinkt ≥ 40 μm EN ISO 10684:2004	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565;1.4529; EN 10088-1:2014				
8	Betonstahl EN 1992-1-1:2004 und AC:2010, Anhang C	Stäbe und Betonstahl vom Rir gemäß NDP oder NCL gemäß f _{uk} = f _{tk} = k·f _{yk}	ng, Klasse B oder C mit fyk und B EN 1992-1-1/NA	k				
9	fischer Bewehrungsanker FRA	Betonstahlteil:	Huk = ftk = k · fyk Betonstahlteil: Stäbe und Betonstahl vom Ring Klasse Boder C mit fyk und k gemäß NDP oder NCL der EN 1992-1-1:2004 + AC:2010 Gewindeteil: Festigk EN ISO 3506-1:2009 1.4401, 1.4404, 1.45 1.4362, 1.4062 gem Korrosionswiderstan EN 1993-1-4:2015					
fisc	her Injektionssystem	n FIS EM Plus						
Pro	duktbeschreibung			Anhang A 6				

Spezifizierung des Verwendungszwecks (Teil 1) Tabelle B1.1: Übersicht Nutzungs- und Leistungskategorien Beanspruchung der Verankerung FIS EM Plus mit ... fischer Betonstahl fischer Ankerstange Innengewinde-Bewehrungsanker anker RG MI **FRA** Hammerbohren mit alle Größen Standardbohrer Hammerbohren mit Hohlbohrer (fischer FHD, Heller "Duster Expert"; Bohrernenndurchmesser (d₀) Bosch "Speed 12 mm bis 35 mm Clean"; Hilti "TE-CD, TE-YD" DreBo "D-Plus", DreBo "D-Max") alle Größen Diamantbohren Tabellen: Tabellen: Tabellen: Tabellen: ungerissenen C1.1 C2.1 C3.1 C3.2 Beton Statische und C4.1 C4.1 C4.1 alle alle alle C4.1 alle quasi-statische C7.1 Größen C5.1 Größen Größen C9.1 Größen C11.1 gerissenen Belastung, im C6.1 C8.1 C10.1 C12.1 Beton C13.1 C13.2 C14.1 C14.2 Tabellen: Tabellen: M10 ф10 Seismische C15.1 C16.1 C₁ bis bis Leistungs-C16.2 C16.2 M30 ф32 kategorie C17.1 C17.2 _1) _1) (nur Hammer-M12 Tabellen: bohren mit M16 C15.1 Standardbohrer / _1) _1) C2 M20 C16.2 Hohlbohrer) M24 C18.1 Trockener oder nasser alle Größen 11 Beton Nutzungskategorie Wasser-12 aefülltes alle Größen (nicht zulässig für eine Nutzungsdauer von 100 Jahren) Bohrloch D3 (horizontale und vertikale Montage nach unten, sowie Überkopfmontage) Einbaurichtung $T_{i,min} = -5$ °C bis $T_{i,max} = +40$ °C Einbautemperatur Temperatur-(maximale Kurzzeittemperatur +60 °C; -40 °C bis +60 °C bereich I maximale Langzeittemperatur +35 °C) Gebrauchstemperaturbereiche Temperatur-(maximale Kurzzeittemperatur +72 °C; -40 °C bis +72 °C bereich II maximale Langzeittemperatur +50 °C) 1) keine Leistung bewertet fischer Injektionssystem FIS EM Plus Anhang B 1 Verwendungszweck Spezifikationen (Teil 1)

Spezifizierung des Verwendungszwecks (Teil 2)

Verankerungsgrund:

Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern der Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206:2013+A1:2016

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Für alle anderen Bedingungen gemäß EN 1993-1-4:2015 entsprechend der Korrosionswiderstandsklassen nach Anhang A 6 Tabelle A6.1.

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Stahlbetonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. Auf den Konstruktionszeichnungen ist die Lage der Dübel angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern).
- Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit: EN 1992-4:2018 und EOTA Technical Report TR 055, Fassung Februar 2018.

Einbau:

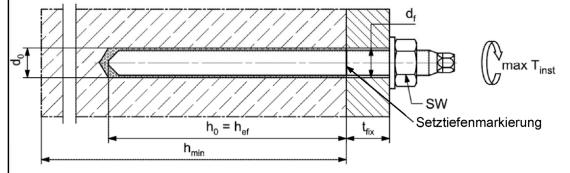
- Einbau des Dübels durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters
- Im Fall von Fehlbohrungen sind diese zu vermörteln
- Effektive Verankerungstiefe markieren und einhalten
- Überkopfmontage erlaubt

fischer Injektionssystem FIS EM Plus Anhang B 2 Verwendungszweck Spezifikationen (Teil 2) 8.06.01-100/20

Z51920.20

Ankerstangen		ewinde	M8	M10	M12	M14	M16	M20	M22	M24	M27	M30	
Schlüsselweite		sw	ewinde	13	17	19	22	24	30	32	36	41	46
Schlusseiweite		<u> </u>		13	17	19		24		32	36	41	46
Bohrernenndurchme	sser	do		10	12	14	16	18	22 24 ¹⁾	25	28	30	35
Bohrlochtiefe		h ₀						h ₀ =	h _{ef}				
Effektive		$h_{\text{ef, min}}$		60	60	70	75	80	90	93	96	108	120
Verankerungstiefe		h _{ef, max}	[mm]	160	200	240	280	320	400	440	480	540	600
Durchmesser des	Vorsteck- montage	d _f	[]	9	12	14	16	18	22	24	26	30	33
Durchgangsloch im Anbauteil	Durchsteck- montage	df		12	14	16	18	20	26	28	30	33	40
Minimale Dicke des Betonbauteils h _{min}		h _{min}			n _{ef} + 30 (≥ 100	-	h _{ef} + 2d ₀						
Maximales Montage	drehmoment	max T _{inst}	[Nm]	10	20	40	50	60	120	135	150	200	300

¹⁾ Beide Bohrernenndurchmesser sind möglich


Prägung (an beliebiger Stelle) fischer Ankerstange:

Stahl galvanisch verzinkt FK ¹⁾ 8.8	• oder +	Stahl feuerverzinkt FK¹¹ 8.8	•
Hochkorrosionsbeständiger Stahl HCR FK1) 5	0 •	Hochkorrosionsbeständiger Stahl HCR FK1) 70	-
Hochkorrosionsbeständiger Stahl HCR FK 80	(Nichtrostender Stahl R FK 50	~
Nichtrostender Stahl R FK 80	*		

Alternativ: Farbmarkierung nach DIN 976-1:2016

1) FK = Festigkeitsklasse

Einbauzustände:

Handelsübliche Gewindestangen, Unterlegscheiben und Sechskantmuttern dürfen ebenfalls verwendet werden, wenn die folgenden Anforderungen erfüllt werden:

- · Materialien, Abmessungen und mechanische Eigenschaften gemäß Anhang A 6, Tabelle A6.1
- Prüfzeugnis 3.1 gemäß EN 10204:2004, die Dokumente müssen aufbewahrt werden
- · Markierung der Verankerungstiefe

Abbildungen nicht maßstäblich

fischer Injektionssystem FIS EM Plus

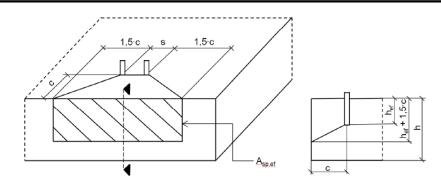
Verwendungszweck
Montagekennwerte Ankerstangen

Anhang B 3

Ankerstangen			М8	M10	M12	M14	M16	-	M20	M22	M24
Betonstahl (Stabnenndurchmess	ser)	ф	8	10	12	14	16	18	20	22	24
Minimaler Randabstand											
Ungerissener / Gerissener Beton	Cmin	[mm]	40	45	45	45	50	55	55	55	60
Minimaler Achsabstand	Smin	[iiiiii]				gemä	ß Anha	ng B5			
Minimaler Achsabstand											
Ungerissener / Gerissener Beton	Smin	[mm]	40	45	55	60	65	85	85	95	105
Minimaler Randabstand	Cmin	[mm]				gemä	ß Anha	ng B5			
Erforderliche projizierte Fläche											
Ungerissener Beton	^	[1000	8	13	22	23	24	38,5	38,5	39,5	40
	A _{sp,req}	mm²]									
Gerissener Beton	Asp,req	mm²]	6,5	10	16,5	17,5	18,5	29,5	29,5	30	30,5
	Asp.req	mm²]	6,5	10	16,5 M27	17,5	18,5 M30	29,5	29,5	30	30,5
Ankerstangen			·			·	·	·			· ·
		ф	-	-	M27	-	M30	-	-	-	-
Ankerstangen Betonstahl (Stabnenndurchmess		ф	-	-	M27	-	M30	-	-	-	-
Ankerstangen Betonstahl (Stabnenndurchmess Minimaler Randabstand	ser)		- 25	- 26	M27 -	- 28	M30 30	- 32	34	- 36	- 40
Ankerstangen Betonstahl (Stabnenndurchmess Minimaler Randabstand Ungerissener / Gerissener Beton	ser)	ф	- 25	- 26	M27 -	- 28	M30 30 80	- 32	34	- 36	- 40
Ankerstangen Betonstahl (Stabnenndurchmess Minimaler Randabstand Ungerissener / Gerissener Beton Minimaler Achsabstand	ser)	ф [mm]	- 25	- 26	M27 -	- 28	M30 30 80	- 32	34	- 36	- 40
Ankerstangen Betonstahl (Stabnenndurchmess Minimaler Randabstand Ungerissener / Gerissener Beton Minimaler Achsabstand Minimaler Achsabstand	Ser) Cmin Smin	ф	- 25 75	- 26 75	M27 - 75	- 28 80 gemä	М30 30 80 ß Anha	- 32 120 ng B5	- 34	- 36	- 40
Ankerstangen Betonstahl (Stabnenndurchmess Minimaler Randabstand Ungerissener / Gerissener Beton Minimaler Achsabstand Minimaler Achsabstand Ungerissener / Gerissener Beton	Cmin Smin	ф [mm]	- 25 75	- 26 75	M27 - 75	- 28 80 gemä	М30 30 80 В Anha	- 32 120 ng B5	- 34	- 36	- 40
Ankerstangen Betonstahl (Stabnenndurchmess Minimaler Randabstand Ungerissener / Gerissener Beton Minimaler Achsabstand Minimaler Achsabstand Ungerissener / Gerissener Beton Minimaler Randabstand	Cmin Smin	ф [mm]	- 25 75	- 26 75	M27 - 75	- 28 80 gemä	М30 30 80 В Anha	- 32 120 ng B5	- 34	- 36	- 40

Spaltversagen für minimale Achs- und Randabstände in Abhängigkeit der effektiven Verankerungstiefe hef

Für die Berechnung des minimalen Achsabstands und des minimalen Randabstands der Anker in Kombination mit verschiedenen Einbindetiefen und -dicken des Betonbauteils ist die folgende Gleichung zu erfüllen:


 $A_{sp,req} < A_{sp,t}$

 $A_{sp,req} = erforderliche projizierte Fläche$ $<math>A_{sp,t} = A_{sp,ef} = effektive projizierte Fläche (gemäß Anhang B5)$

fischer Injektionssystem FIS EM Plus	
Verwendungszweck Minimale Achs- und Randabstände für Ankerstangen und Betonstahl	Anhang B 4

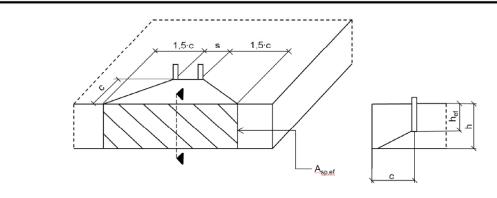


Tabelle B5.1: Effektive projizierte Fläche A_{sp,t} bei einer Betonbauteildicke h > h_{ef} + 1,5 ⋅ c und h ≥ h_{min}

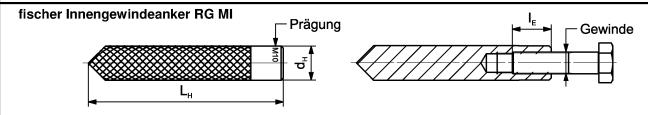
Einzelanker		$A_{sp,t} = (3 \cdot c) \cdot (h_{ef} + 1, 5 \cdot c)$	[mm²]	mit c ≥ c _{min}
Ankergruppen mit	s > 3 · c	$A_{sp,t} = (6 \cdot c) \cdot (h_{ef} + 1, 5 \cdot c)$	[mm²]	THIL C Z Cmin
Ankergruppen mit	s ≤ 3 · c	$A_{sp,t} = (3 \cdot c + s) \cdot (h_{ef} + 1, 5 \cdot c)$	[mm²]	mit $c \ge c_{min}$ und $s \ge s_{min}$

Tabelle B5.2: Effektive projizierte Fläche $A_{sp,t}$ bei einer Betonbauteildicke $h \le h_{ef} + 1,5 \cdot c$ und $h \ge h_{min}$

Einzelanker		A _{sp,t} = 3 · c · vorhandenes h	[mm²]	mit o > o
Ankergruppen mit	s > 3 · c	$A_{sp,t} = 6 \cdot c \cdot vorhandenes h$	[mm²]	mit c ≥ c _{min}
Ankergruppen mit	s ≤ 3 · c	$A_{sp,t} = (3 \cdot c + s) \cdot vorhandenes h$	[mm²]	$mit \ c \ge c_{min} \ und \ s \ge s_{min}$

Randabstände und Achsabstände sind auf 5 mm aufzurunden

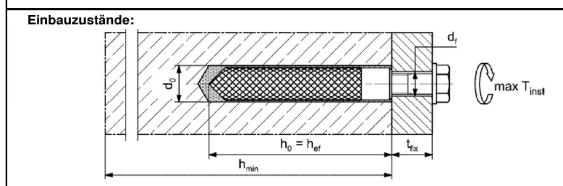
Abbildungen nicht maßstäblich


fischer Injektionssystem FIS EM Plus

Verwendungszweck
Mindestdicke der Betonbauteile für Ankerstangen;
minimale Achs- und Randabstände

Anhang B 5

Innengewindeanker RG MI Ge		ewinde	М8	M10	M12	M16	M20
Hülsendurchmesser	$d_{nom} = d_{H}$		12	16	18	22	28
Bohrernenn- durchmesser	d ₀		14	18	20	24	32
Bohrlochtiefe	h_0				$h_0 = h_{\text{ef}} = L_{\text{H}}$		
Effektive Verankerungstiefe ($h_{ef} = L_H$)	h _{ef}		90	90	125	160	200
Minimaler Achs- und Randabstand	Smin = Cmin	[mm]	55	65	75	95	125
Durchmesser des Durch- gangsloch im Anbauteil	df		9	12	14	18	22
Mindestdicke des Betonbauteils	h _{min}		120	125	165	205	260
Maximale Einschraubtiefe	I _{E,max}		18	23	26	35	45
Minimale Einschraubtiefe	I _{E,min}		8	10	12	16	20
Maximales Montagedrehmoment	max T _{inst}	[Nm]	10	20	40	80	120



Prägung: Ankergröße z.B.: M10

Nichtrostender Stahl → zusätzlich R; z.B.: M10 R

Hochkorrosionsbeständiger Stahl → zusätzlich HCR; z.B.: M10 HCR

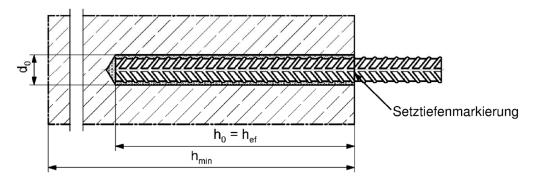
Befestigungsschraube oder Ankerstangen / Gewindestangen (einschließlich Mutter und Unterlegscheibe) müssen den zugehörigen Materialien und Festigkeitsklassen gemäß Anhang A 6, Tabelle A6.1 entsprechen

Abbildungen nicht maßstäblich

fischer Injektionssystem FIS EM Plus

Verwendungszweck
Montagekennwerte fischer Innengewindeanker RG MI

Anhang B 6


Tabelle B7.1: Montagekennwerte für Betonstahl 1)												
Stabnenndurchmesser		ф	8 ²⁾	10 ²⁾	12 ²⁾	14	16	18	20	22	24	
Bohrernenndurchmesser	d₀		10 12	12 14	14 16	18	20	25	25	30	30	
Bohrlochtiefe	h ₀						$h_0 = h_{ef}$					
Effektive	h _{ef,min}	[mm]	60	60	70	75	80	85	90	94	98	
Verankerungstiefe	h _{ef,max}] ['''''']	160	200	240	280	320	360	400	440	480	
Mindestdicke des Betonbauteils	h _{min}			ef + 30 2 100)				h _{ef} + 2	d ₀			
Stabnenndurchmesser		ф	25	26	28	30	32	34	36	40		
Bohrernenndurchmesser	dο		30	35	35	40	40	40	45	55		
Bohrlochtiefe	h ₀	-					$h_0 = h_{ef}$					
Effektive	h _{ef,min}	[mm]	100	104	112	120	128	136	144	160	-	
Verankerungstiefe	h _{ef,max}	[mm]	500	520	560	600	640	680	720	800	-	
Mindestdicke des Betonbauteils	h _{min}						h _{ef} + 2d)				

¹⁾ Minimale Achs- und Randabstände siehe Anhang B 4

Betonstahl

- Mindestwert der bezogenen Rippenfläche f_{R,min} gemäß Anforderung aus EN 1992-1-1:2004 + AC:2010
- Die Rippenhöhe muss im folgenden Bereich liegen: 0,05 · φ ≤ h_{rib} ≤ 0,07 · φ
 (φ = Stabnenndurchmesser, h_{rib} = Rippenhöhe)

Einbauzustände:

Abbildungen nicht maßstäblich

fischer Injektionssystem FIS EM Plus

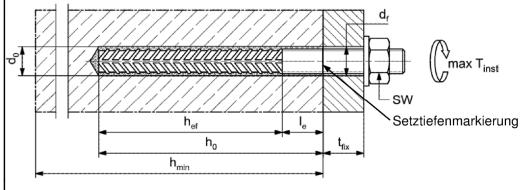
Verwendungszweck
Montagekennwerte Betonstahl

Anhang B 7

²⁾ Beide Bohrernenndurchmesser sind möglich

Bewehrungsanke	r FRA	Ge	winde	M1	2 ¹⁾	M16	M20	M24
Stabnenndurchme	sser	ф		1	2	16	20	25
Schlüsselweite		SW		1	9	24	30	36
Bohrernenndurchn	nesser	d_0		14	16	20	25	30
Bohrlochtiefe		h_0				h _{ef}	+ le	
Effektive		h _{ef,min}		7	0	80	90	96
Verankerungstiefe	-	h _{ef,max}		140		220	300	380
Abstand Betonobe Schweißstelle	rfläche zur	l _e				10	00	
Minimaler Achs- und Randabstand		Smin = Cmin	[mm]	55		65	85	105
Durchmesser des	Vorsteck- montage	≤ d _f		1	4	18	22	26
Durchgangsloch im Anbauteil	Durchsteck- montage	≤ d _f		1	8	22	26	32
Mindestdicke des Betonbauteils		h _{min}		h ₀ + 30			h ₀ + 2d ₀	
Maximales Montagedrehmom	ent	max T _{inst}	[Nm]	4	0	60	120	150

¹⁾ Beide Bohrernenndurchmesser sind möglich


fischer Bewehrungsanker FRA

➤ FRA (für nichtrostenden Stahl); Prägung stirnseitig z. B.:

➤ FRA HCR (für hochkorrosionsbeständigen Stahl)

Einbauzustände:

Abbildungen nicht maßstäblich

fischer Injektionssystem FIS EM Plus

Verwendungszweck

Montagekennwerte fischer Bewehrungsanker FRA

Anhang B 8

Tabelle B9.1: Kennwerte der Reinigungsbürsten BS / BSB (Stahlbürste mit Stahlborsten)

Die Größe der Reinigungsbürste bezieht sich auf den Bohrernenndurchmesser

Bohrernenn- durchmesser	d₀		10	12	14	16	16 18		24	25	28	30 32 35		35	40	45	55
Stahlbürsten- durchmesser BS	dь	[mm]	11	14	16	20		25	26	27	30	40		ı	ı	-	
Stahlbürsten- durchmesser BSB	dь		-	-	-	-		-	-	-	-	-		42	47	58	



Tabelle B9.2 Maximale Verarbeitungszeit des Mörtels und minimale Aushärtezeit (Die Temperatur im Beton darf während der Aushärtung des Mörtels den angegebenen Mindestwert nicht unterschreiten)

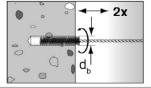
Temperatur im Verankerungsgrund [°C]	Maximale Verarbeitungszeit t _{work}	Minimale Aushärtezeit ¹⁾ t _{cure}
-5 bis 0 ²⁾	240 min	200 h
> 0 bis 5 ²⁾	150 min	90 h
> 5 bis 10	120 min	40 h
> 10 bis 20	30 min	18 h
> 20 bis 30	14 min	10 h
> 30 bis 40	7 min	5 h

¹⁾ Im nassen Beton oder wassergefüllten Bohrlöchern sind die Aushärtezeiten zu verdoppeln

fischer Injektionssystem FIS EM Plus	
Verwendungszweck	Anhang B 9
Kennwerte der Reinigungsbürsten	
Verarbeitungs- und Aushärtezeiten	

²⁾ Minimale Kartuschentemperatur +5°C

Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Standardbohrer)


Bohrloch erstellen.
Bohrlochdurchmesser do und Bohrlochtiefe ho siehe Tabellen B3.1, B6.1, B7.1, B8.1

2 2x

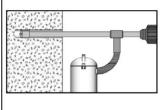
Bohrloch reinigen: Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)

3

Bohrloch zweimal ausbürsten. Für Bohrlochdurchmesser ≥ 30 mm eine Bohrmaschine benutzen. Bei tiefen Bohrlöchern Verlängerung verwenden. Entsprechende Bürsten siehe **Tabelle B9.1**

Bohrloch reinigen: Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)

Mit Schritt 6 fortfahren


Bohrlocherstellung und Bohrlochreinigung (Hammerbohren mit Hohlbohrer)

1

Einen geeigneten Hohlbohrer (siehe **Tabelle B1.1**) auf Funktion der Staubabsaugung prüfen

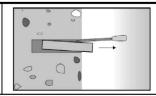
2

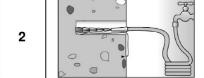
Verwendung eines geeigneten Staubabsaugsystems wie z.B. fischer FVC 35 M oder eines Staubabsaugsystems mit vergleichbaren Leistungsdaten

Bohrloch mit Hohlbohrer erstellen. Das Staubabsaugsystem muss den Bohrstaub konstant während des gesamten Bohrvorgangs absaugen und auf maximale Leistung eingestellt sein. Bohrlochdurchmesser **d**₀ und Bohrlochtiefe **h**₀ siehe **Tabellen B3.1, B6.1, B7.1, B8.1**

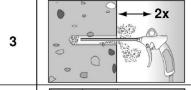
Mit Schritt 6 fortfahren

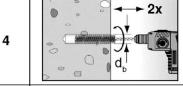
fischer Injektionssystem FIS EM Plus

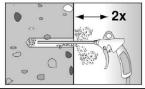

Verwendungszweck Montageanleitung Teil 1 Anhang B 10


Bohrlocherstellung und Bohrlochreinigung (Nassbohren mit Diamantbohrkrone)

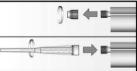
1 h_o


Bohrloch erstellen. Bohrlochdurchmesser d_0 und Bohrlochtiefe h_0 siehe Tabellen B3.1, B6.1, B7.1, B8.1


Bohrkern brechen und herausziehen.


Bohrloch spülen, bis das Wasser klar wird.

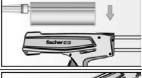
Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)


Bohrloch zweimal unter Verwendung einer Bohrmaschine ausbürsten. Entsprechende Bürsten siehe **Tabelle B9.1**

Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)

Kartuschenvorbereitung

6



Verschlusskappe abschrauben

Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein)

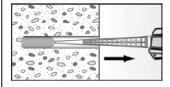
7

5

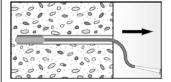
Kartusche in die Auspresspistole legen.

8

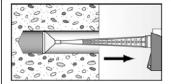
Einen etwa 10 cm langen Strang auspressen, bis der Mörtel gleichmäßig grau gefärbt ist. Nicht gleichmäßig grauer Mörtel ist zu verwerfen.


fischer Injektionssystem FIS EM Plus

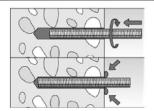
Verwendungszweck Montageanleitung Teil 2 Anhang B 11

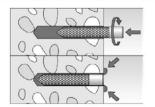


Mörtelinjektion

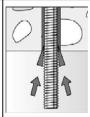


Ca. 2/3 des Bohrlochs mit Mörtel füllen. Immer am Bohrlochgrund beginnen und Blasen vermeiden

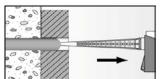

Bei Bohrlochtiefen ≥ 150 mm Verlängerungsschlauch verwenden



Bei Überkopfmontage, tiefen Bohrlöchern (h₀ > 250 mm) oder großen Bohrlochdurchmessern (d₀ ≥ 40 mm) Injektionshilfe verwenden

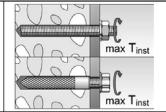

Montage Ankerstange und fischer Innengewindeanker RG MI

10

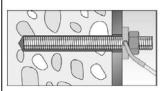


Nur saubere und ölfreie Stahlteile verwenden. Setztiefe des Stahlteiles markieren. Die Ankerstange oder den fischer Innengewindeanker RG MI mit leichten Drehbewegungen in das Bohrloch schieben. Nach dem Setzen des Stahlteiles muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein.

Bei Überkopfmontage das Stahlteil mit Keilen (z.B. fischer Zentrierkeile) oder fischer Überkopf-Clips fixieren bis der Mörtel auszuhärten beginnt


Bei Durchsteckmontage den Ringspalt mit Mörtel verfüllen

11


Aushärtezeit abwarten, t_{cure} siehe **Tabelle B9.2**

12

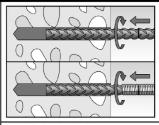
Montage des Anbauteils, max T_{inst} siehe **Tabellen B3.1 und B6.1**

Option

Nachdem die Aushärtezeit erreicht ist, kann der Bereich zwischen Stahlteil und Anbauteil (Ringspalt) über die fischer Verfüllscheibe mit Mörtel befüllt werden.

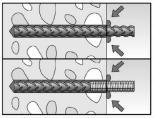
Druckfestigkeit ≥ 50 N/mm² (z.B. fischer Injektionsmörtel FIS HB, FIS SB, FIS V, FIS EM Plus).

ACHTUNG: Bei Verwendung der fischer Verfüllscheibe reduziert sich t_{fix} (Nutzlänge des Anker)


fischer Injektionssystem FIS EM Plus

Verwendungszweck Montageanleitung Teil 3 Anhang B 12

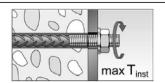
Z51920.20



Montage Betonstahl und fischer Bewehrungsanker FRA

Nur sauberen und ölfreien Betonstahl oder fischer Bewehrungsanker FRA verwenden. Die Setztiefe markieren. Mit leichten Drehbewegungen den Bewehrungsstab oder den fischer Bewehrungsanker FRA kräftig bis zur Setztiefenmarkierung in das gefüllte Bohrloch schieben

10


Nach dem Erreichen der Setztiefenmarkierung muss Überschussmörtel aus dem Bohrlochmund ausgetreten sein.

11

Aushärtezeit abwarten, t_{cure} siehe **Tabelle B9.2**

12

Montage des Anbauteils, max T_{inst} siehe **Tabelle B8.1**

fischer Injektionssystem FIS EM Plus

Verwendungszweck Montageanleitung Teil 4 Anhang B 13

Tabelle C1.1: Charakteristische Werte für die **Stahltragfähigkeit** unter Zug- / Querzug- beanspruchung von **fischer Ankerstangen** und **Standard-Gewindestangen**

	beanspluchding von fischer Ankerstangen und Standard-Gewindestangen													
Anke	r- / Gewindestange				М8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Zugtr	agfähigkeit, Stahlversa	gen³)												
k,s	Otal Landau da da		4.8		15(13)	23(21)	33	46	63	98	121	141	184	224
N N Rk,s	Stahl galvanisch verzinkt	κ̈́	5.8		19(17)	29(27)	43	58	79	123	152	177	230	281
Charakt erstand	VEIZITIKL	Festigkeits- klasse	8.8	II.A II	29(27)	47(43)	68	92	126	196	243	282	368	449
hai rsta	Nichtrostender Stahl R	stig Klas	50	[kN]	19	29	43	58	79	123	152	177	230	281
Wide	und Hochkorrosions-	Ъ	70		26	41	59	81	110	172	212	247	322	393
≥	beständiger Stahl HCR		80		30	47	68	92	126	196	243	282	368	449
Teilsi	icherheitsbeiwerte 1)													
, ,	Ctable ask anisob		4.8						1,5	0				
eits	Stahl galvanisch verzinkt	<u>\</u> 5	5.8						1,5	0				
er ₹	Verzilikt	tigkeit lasse	8.8	r 1					1,5	0				
eilsicherheits beiwert /ms.n	Nichtrostender Stahl R	Festigkeits- klasse	50	[-]					2,8	6				
	und Hochkorrosions-	ъ	70						1,50 ²⁾ /	1,87				
	beständiger Stahl HCR		80 1,60											
Quer	Quertragfähigkeit, Stahlversagen ³⁾													
Ohne	Hebelarm													
Ж,s	s,		4.8		9(8)	14(13)	20	28	38	59	73	85	110	135
ৣ৳ Stahl galvanisch	ts-	5.8		11(10)	17(16)	25	34	47	74	91	106	138	168	
출	Verzinkt Vichtrostender Stahl R und Hochkorrosions- beständiger Stahl HCR	Festigkeits- klasse	8.8 50	[kN]	15(13)	23(21)	34	46	63	98	122	141	184	225
Tha rsta	Nichtrostender Stahl R	stig	50	נאואן	9	15	21	29	39	61	76	89	115	141
Ğe	und Hochkorrosions-	చ	70		13	20	30	40	55	86	107	124	161	197
	beständiger Stahl HCR		80		15	23	34	46	63	98	122	141	184	225
Duktil	itätsfaktor		k ₇	[-]					1,0)				
Mit H	ebelarm				1									
RK,s	Stahl galvanisch		4.8			30(27)	52	83	133	259	357	448	665	899
≥ با	verzinkt	its-	5.8			37(33)	65	104	166	324	447	560	833	1123
Charakt.		Festigkeits- klasse	8.8	[Nm]		60(53)	105	167	266	519	716	896	1333	1797
Cha	Nichtrostender Stahl R	esti Kla	50	[]	19	37	65	104	166	324	447	560	833	1123
/ide	Stahl galvanisch verzinkt Nichtrostender Stahl R und Hochkorrosions- beständiger Stahl HCR	ıĽ	_70		26	52	92	146	232	454	626	784	1167	
			80		30	60	105	167	266	519	716	896	1333	1797
leilsi	icherheitsbeiwerte 1)		10						1 0	5				
ż	Stahl galvanisch Verzinkt Verzinkt Nichtrostender Stahl R und Hochkorrosions- hoctingiger Stahl HCB		4.8						1,2					
hei YMs,			5.8						1,2					
ther ert			8.8	[-]					1,2					
ilsic eiw	Nichtrostender Stahl R		50						2,3					
هَ ط	und Hochkorrosions-	т.	70		1,252) / 1,56									
beständiger Stahl HCR			80						1,3	კ				

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

fischer Injektionssystem FIS EM Plus

Leistungen

Charakteristische Werte für die Stahltragfähigheit unter Zug- / Querzugbeanspruchung von fischer Ankerstangen und Standard-Gewindestangen

Anhang C 1

²⁾ Nur zulässig für hochkorrosionsbest. Stahl HCR, mit f_{yk} / $f_{uk} \ge 0.8$ und $A_5 > 12$ % (z.B. fischer Ankerstangen)

³⁾ Die Werte in Klammern gelten für unterdimensionierte Standard-Gewindestangen mit geringerem Spannungsquerschnitt As für feuerverzinkte Gewindestangen gemäß EN ISO 10684:2004+AC:2009.

1,56

1,56

Tabelle C2.1:						hltragfähig er Innengev								
fischer Innenge	windea	ınker RG MI			М8	M10	M12	M16	M20					
Zugtragfähigkei	t, Stahl	lversagen												
		Festigkeits-	5.8		19	29	43	79	123					
Charakt. Widerstand mit	$N_{Rk,s}$	klasse	8.8	[kN]	29	47	68	108	179					
Schraube	I V Rk,s	Festigkeits-	R	[KIN]	26	41	59	110	172					
		Klasse 70	HCR		26	41	59	110	172					
Teilsicherheitsb	eiwerte	e ¹⁾												
		Festigkeits-	5.8				1,50							
Teilsicherheits-	0/0.4 - NI	klasse	8.8	[-]	1,50									
beiwerte	γ _{Ms,N} Festigkeits		R	[[-]			1,87							
<u> </u>		Klasse 70	HCR				1,87							
Quertragfähigke	-	nlversagen												
Ohne Hebelarm						-	-	<u> </u>						
lau		Festigkeits-	5.8		9,2	14,5	21,1	39,2	62,0					
Charakt. Widerstand mit	$V^0_{Rk,s}$	klasse	8.8	[kN]	14,6	23,2	33,7	54,0	90,0					
Schraube	V ⊓n,5	Festigkeits-	R	[,,,,]	12,8	20,3	29,5	54,8	86,0					
ı		Klasse 70	HCR		12,8	20,3	29,5	54,8	86,0					
Duktilitätsfaktor			k ₇	[-]			1,0							
Mit Hebelarm						T	Г	T						
		Festigkeits-	5.8		20	39	68	173	337					
Charakt. Widerstand mit	M ⁰ Rk,s	klasse	8.8	[Nm]	30	60	105	266	519					
Schraube	TVI Tinge	Festigkeits-	R		26	52	92	232	454					
 		Klasse 70	HCR		26	52	92	232	454					
Teilsicherheitsb	eiwerte	e ¹⁾												
ı		Festigkeits-	5.8				1,25							
Teilsicherheits-	0/:-	klasse	8.8	[-]	1,25									

1) Falls keine abweichenden na	ationalen Regel	ungen vorliegen
--------------------------------	-----------------	-----------------

Festigkeits-Klasse 70

 $\gamma_{Ms,V}$

beiwerte

[-]

R

HCR

fischer Injektionssystem FIS EM Plus	
Leistungen	Anhang C 2
Charakteristische Werte für die Stahltragfähigkeiten unter Zug- /	
Querzugbeanspruchung von fischer Innengewindeankern RG MI	

Mit Hebelarm

Charakteristischer Widerstand

 $1,2\cdot W_{el}\cdot f_{uk^1)}$

Tabelle C3.1:		harakteristische Werte für die Stahltragfähigkeit unter Zug- / uerzugbeanspruchung von Betonstahl																		
Stabnenndurchm	iesser		ф	8	10 1	2	14 ·	16	18	20	22	24	25	26	28	30	32	34	36	40
Zugtragfähigkeit,	Stahlversagen																			
Charakteristischer	Widerstand	$N_{Rk,s}$	[kN]		$A_s \cdot f_{uk}$ 1)															
Quertragfähigkeit	t, Stahlversager	1																		
Ohne Hebelarm																				
Charakteristischer	Widerstand	$V^0_{Rk,s}$	[kN]	$0.5 \cdot A_s \cdot f_{uk^{1}}$																
Duktilitätsfaktor		k ₇	[-]									1,0								

¹⁾ fuk bzw. fyk ist den Spezifikationen des Betonstahls zu entnehmen

M⁰Rk,s [Nm]

Tabelle C3.2: Charakteristische Werte für die **Stahltragfähigkeit** unter Zug-/ Querzugbeanspruchung von **fischer Bewehrungsankern FRA**

fischer Bewehrungsanker FRA			M12	M16	M20	M24
Zugtragfähigkeit, Stahlversage	n	·				
Charakteristischer Widerstand	N _{Rk,s}	[kN]	63	111	173	270
Teilsicherheitsbeiwert 1)						
Teilsicherheitsbeiwert	γMs,N	[-]		1	,4	
Quertragfähigkeit, Stahlversag	en					
Ohne Hebelarm						
Charakteristischer Widerstand	V^0 Rk,s	[kN]	30	55	86	124
Duktilitätsfaktor	k ₇	[-]		1	,0	
Mit Hebelarm						
Charakteristischer Widerstand	M^0 Rk,s	[Nm]	92	233	454	785
Teilsicherheitsbeiwert 1)					•	
Teilsicherheitsbeiwert	γMs,V	[-]		1,	,56	

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

fischer Injektionssystem FIS EM Plus

Leistungen
Charakteristische Werte für die Stahltragfähigkeiten unter Zug- /
Querzugbeanspruchung von Betonstahl und fischer Bewehrungsanker FRA

Größe										_	Alle (Grö	ßer	1					
Zugbelastung																			
Montagebeiwer	t	γinst	[-]			Si	ieh	e Anh	nänge	. C	5 bis	s C	12 (und C 1	7 bis	C 18			
<u>~</u>	etondruckfestigkei																		
	C25/30										1	,02							
-	C30/37											,04							
Erhöhungs-	C35/45											,06							
faktor für τ _{Rk}	C40/50	Ψ_{c}	[-]									,07							
-	C45/55			1,08															
-	C50/60			1,09															
Versagen durc												,,,,							
· · · · · · · · · · · · · · · · · · ·	h / h _{ef} ≥ 2,0										1.0	0 he	f						
Randabstand	$2,0 > h / h_{ef} > 1,3$	Corsn		1,0 h _{ef} 4,6 h _{ef} - 1,8 h															
-	$\frac{2,6 + 17 \cdot 16 + 1,3}{h / h_{ef} \le 1,3}$	Oci,sp	[mm]	2,26 h _{ef} - 1,8 h															
Achsabstand	117 1161 = 1,0	Scren	†																
Achsabstand s _{cr,sp} 2 c _{cr,sp} Versagen durch kegelförmigen Betonausbruch																			
Ungerissener B		k _{ucr,N}		_							1	1,0							
Gerissener Bet		k _{cr,N}	[-]									7,7							
Randabstand											, , 5 h _e	f							
[mm]									Ccr, N										
	ie Dauerzugbelastu	,										C Cr, IV							
Faktor	e Dadeizugbeiasta	Ψ ⁰ sus	[-]									_1)							
		1 SUS	[-]																
Querzugbelast			F 1									1.0							
Montagebeiwer		γinst	[-]	1,0															
	h auf der lastabgev																		
Faktor für Betor		k ₈	[-]								2	2,0							
Betonkantenau																			
Effektive Länge Querzugbelastu	des Stahlteils bei ing	lf	[mm]	für d _{nom} ≤ 24 mm: min (h _{ef} ; 12 d _{nom}) für d _{nom} > 24 mm: min (h _{ef} ; 8 d _{nom} ; 300 mm)															
Rechnerische	Durchmesser																		
Größe				М	8	M1	0	M12	M14	4	M16	M	20	M22	M24	⊦ M2	7	M30	
fischer Ankersta Standard-Gewir		d_{nom}		8	3	10		12	14		16	2	20	22	24	27	,	30	
fischer Innenge	windeanker RG MI	d_{nom}	[mm]	1:	2	16		18	_2)		22	2	28	_2)	_2)	_2		_2)	
fischer Bewehru	ıngsanker FRA	d_{nom}		_2	2)	_2)		12	_2)		16	2	20	_2)	25	_2)		_2)	
Stabnenndurch	messer		ф	8	10	12	14	16	18 2	20	22	24	25	26 28	30	32 34	1 3	36 40	
Betonstahl		d_{nom}	[mm]	8	10	12	14	16	18 2	20	22	24	25	26 28	30	32 34	١ <u>3</u>	6 40	
¹⁾ Leistung ni ²⁾ Dübelvaria	cht bewertet nte nicht Bestandtei	l der E	TA																
fischer Injek	tionssystem FIS	EM P	lus																
Leistungen	che Werte für die Zu	- /O:		(, .										Anh	ang	C ·	4	

Tabelle C5.1:	Charakteristische Werte für die Zugtragfähigkeit von fischer Ankerstangen
	und Standard-Gewindestangen im hammergebohrten oder diamantgebohrten
	Bohrloch; ungerissener oder gerissener Beton; Nutzungsdauer 50 Jahre

B	Sohrloch;	unger	issener	oder	geris	ssene	r Bet	on; N	utzur	ngsda	uer 5	i0 Jah	ıre
Anker- / Gewindesta	ange			M8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Kombiniertes Versa	gen durc	h Herau	ısziehen ı	und Be	etonau	sbruc	h						
Rechnerischer Durch	ımesser	d	[mm]	8	10	12	14	16	20	22	24	27	30
Ungerissener Betor	1												
Charakteristische V	erbundtra	agfähigl	keit im un	geriss	enen	Beton	C20/2	5					
Hammerbohren mit S	tandard- d	oder Hol	<u>ılbohrer (t</u>	rocker	er ode	r nasse	er Beto	<u>n)</u>					
Tempe- I: 35 °C ratur-	/ 60 °C	T -:	[N/mm ²]	18	18	18	17	17	16	15	15	15	14
bereich II: 50 °C	/ 72 °C	τ _{Rk,ucr}	[[4/11111]	18	17	17	16	16	15	14	14	14	13
Hammerbohren mit S	Standard- o	oder Hol	hlbohrer (v	vasser	gefüllt	es Boh	<u>rloch)</u>						
Tempe- I: 35 °C	/ 60 °C		[N]/wa wa 2]	16	16	15	13	13	11	11	10	10	9
ratur- ————————————————————————————————————	/ 72 °C	$ au_{Rk,ucr}$	[N/mm ²]	15	14	14	13	12	11	10	10	9	9
Diamantbohren (trocl	kener ode	r nasser	Beton so	wie wa	sserge	fülltes	Bohrlo	<u>ch)</u>		•	•	'	
Tempe- I: 35 °C	/ 60 °C		FN 1/ 27	16	15	13	12	12	10	10	10	9	9
ratur- II: 50 °C	/ 72 °C	$ au_{Rk,ucr}$	[N/mm ²]	15	14	12	11	11	10	9	9	8	8
Montagebeiwerte									I			1	
Trockener oder nass	er Beton		[]					1	,0				
Wassergefülltes Boh	rloch	γinst	[-]					1	,4				
Gerissener Beton													
Charakteristische V													
Hammerbohren mit S	Standard-	oder Hol	<u>hlbohrer (t</u>	rocker	er ode	r nass	er Beto	<u>on)</u>	ı				
Tempe- I: 35 °C ratur-	/ 60 °C	7 Di	[N/mm²]	7,5	7,5	9	8,5	8,5	8,5	8,5	8,5	8,5	8,5
bereich II: 50 °C	/ 72 °C	τ _{Rk,cr}	[[4/11111]	7,5	7,5	9	8,5	8,5	8,5	8,5	8,5	8,5	8,5
<u>Diamantbohren (trocl</u>	<u>kener ode</u>	<u>r nasser</u>	Beton)			Г				1			
Tempe- I: 35 °C	/ 60 °C	T	[N/mm²]	7	7	7	7	6	6	7	7	7	7
bereich II: 50 °C	/ 72 °C	$ au_{Rk,cr}$	[[14/11111]	7	7	7	7	6	6	7	7	7	7
Hammerbohren mit S	Standard-	oder Hol	hlbohrer u	nd Dia	mantb	ohren (wasse	rgefüll	es Bor	<u>rrloch)</u>			
Tempe- I: 35 °C	/ 60 °C		[N]/ 21	6	7,5	7,5	7	6	6	6	6	6	6
ratur- II: 50 °C	/ 72 °C	$ au_{Rk,cr}$	[N/mm ²]	6	7	7	7	6	6	6	6	6	6
Montagebeiwerte			ı									•	
Trockener oder nass	er Beton		[]					1	,0				
Wassergefülltes Boh	rloch	γinst	[-]			1,2					1,4		

fischer Injektionssystem FIS EM Plus

Leistungen

Charakteristische Werte für die Zugtragfähigkeit von fischer Ankerstangen und Standard-Gewindestangen, Nutzungsdauer 50 Jahre

Anhang C 5

Tabelle C6.1:	Charakteristische Werte für die Zugtragfähigkeit von fischer Ankerstangen
	und Standard-Gewindestangen im hammergebohrten oder
	diamantgebohrten Bohrloch; ungerissener oder gerissener Beton;
	Nutzungsdauer 100 Jahre

Anker- / G	ωw	indestange			M8	M10	M12	M14	M16	M20	M22	M24	M27	M30
		S Versagen dur	ch Herau	ısziehen ı					10110	IVIZO	IVIZZ	IVIZ	14127	WOO
		r Durchmesser	d	[mm]	8	10	12	14	16	20	22	24	27	30
Ungerisse	ne	r Beton	-											
		sche Verbundt	ragfähigl	keit im un	geriss	senen	Beton	C20/2	 5					
Hammerb	ohre	en mit Standard-	oder Hol	nlbohrer (t	rocker	er ode	r nasse	er Beto	<u>n)</u>					
Tempe-	l:	35 °C / 60 °C		FA.17 27	18	18	18	17	17	16	15	15	15	14
ratur bereich	II:	50 °C / 72 °C	τ _{Rk,ucr}	[N/mm²]	18	17	17	16	16	15	14	14	14	13
Diamantbo	hre	en (trockener od	er nasser	Beton)										
Tempe-	l:	35 °C / 60 °C			16	15	13	12	12	10	10	10	9	9
ratur- – bereich	II:	50 °C / 72 °C	τ _{Rk,ucr}	[N/mm ²]	15	14	12	11	11	10	9	9	8	8
Montageb	eiw	verte												
Trockener	ode	er nasser Beton	γinst	[-]					1	,0				
	l:	35 °C / 60 °C			0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75
dauer 100 Jahre	II:	50 °C / 72 °C	α ₁₀₀ Jahre	[-]	0,55	0,60	0,60	0,65	0,65	0,65	0,65	0,65	0,65	0,65
Gerissen	er B	eton												
Charaktei	isti	sche Verbundt	ragfähigl	keit im ge	rissen	en Be	ton C2	0/25						
Hammerb	ohre	en mit Standard-	oder Hol	hlbohrer (t	rocker	ner ode	r nass	er Betc	<u>n)</u>					
Tempe-	l:	35 °C / 60 °C		[N]/wa wa 2]	7,5	7,5	9	8,5	8,5	8,5	8,5	8,5	8,5	8,5
ratur bereich	II:	50 °C / 72 °C	$ au_{ ext{Rk,cr}}$	[N/mm ²]	7,5	7,5	9	8,5	8,5	8,5	8,5	8,5	8,5	8,5
Diamantbo	hre	en (trockener ode	er nasser	Beton)										
Tempe-	l:	35 °C / 60 °C		FA.17 27	7	7	7	7	6	6	7	7	7	7
ratur- – bereich	II:	50 °C / 72 °C	τ _{Rk,cr}	[N/mm ²]	7	7	7	7	6	6	7	7	7	7
Montageb	eiw	verte								•				
Trockener	ode	er nasser Beton	γinst	[-]					1	,0				
Nutzungs-	l:	35 °C / 60 °C	- 01	F 3	0,60	0,85	0,80	0,65	0,65	0,65	0,65	0,65	0,65	0,65
dauer 100 Jahre	II:	50 °C / 72 °C	- α 100 Jahre	[-]	0,60	0,85	0,80	0,65	0,65	0,65	0,65	0,65	0,65	0,65

 $^{1)}$ Berechnung der charakteristischen Verbundtragfähigkeit im ungerissenen Beton $\,\tau_{\text{Rk,100, ucr}}$:

 $\tau_{\text{Rk},\text{100,ucr}} = \alpha_{\text{100 Jahre}} \cdot \tau_{\text{Rk,ucr}}$

 $^{2)}$ Berechnung der charakteristischen Verbundtragfähigkeit im gerissenen Beton $\tau_{Rk,100,\,cr}$:

 $\tau_{\text{Rk},\text{100,cr}} = \alpha_{\text{100 Jahre}} \cdot \tau_{\text{Rk,cr}}$

fischer Injektionssystem FIS EM Plus

Leistungen
Charakteristische Werte für die Zugtragfähigkeit von fischer Ankerstangen und
Standard-Gewindestangen, Nutzungsdauer 100 Jahre

Anhang C 6

Tabelle C7.1: Charakteristische Werte für die Zugtragfähigkeit von fischer Innengewindeankern RG MI im hammergebohrten oder diamantgebohrten Bohrloch; ungerissener oder gerissener Beton; Nutzungsdauer 50 Jahre

Innengewindeanker RG MI			M8	M10	M12	M16	M20
Kombiniertes Versagen du	ch Herai	ısziehen u			14112	10110	10120
Rechnerischer Durchmesser	d	[mm]	12	16	18	22	28
Jngerissener Beton							
Charakteristische Verbund	ragfähig	keit im un	gerissenen	Beton C20/2	5		
Hammerbohren mit Standard	oder Ho	hlbohrer (tr	rockener ode	er nasser Bet	<u>on)</u>		
Tempe- I: 35 °C / 60 °C		FN 1 / 21	15	14	14	13	12
atur- pereich II: 50 °C / 72 °C	$^ au_{ m Rk,ucr}$	[N/mm²]	14	13	13	12	11
Hammerbohren mit Standard	- oder Ho	hlbohrer (v	vassergefüllt	es Bohrloch)	•		
Tempe- I: 35 °C / 60 °C		55.17	14	12	12	11	10
ratur- ————————————————————————————————————	- τ _{Rk,ucr}	[N/mm ²]	13	12	11	10	9
Diamantbohren (trockener od	er nasser	Beton sov	vie wasserge	efülltes Bohrlo	och)	l	
Tempe- I: 35 °C / 60 °C		FN1/ 27	13	12	11	10	9
ratur-	- τ _{Rk,ucr}	[N/mm ²] -	12	11	10	9	8
Montagebeiwerte							
Trockener oder nasser Beton		[]			1,0		
Wassergefülltes Bohrloch	— γinst	[-]			1,4		
Gerissener Beton							
Charakteristische Verbund							
Hammerbohren mit Standard	oder Ho	<u>hlbohrer u</u>	nd Diamantb	ohren (trocke	ner oder nass	ser Beton)	Г
Tempe- I: 35 °C / 60 °C	- σ -	 [N/mm²]	7	6	6	7	7
pereich II: 50 °C / 72 °C	- τ _{Rk,cr}	[[[]]]	7	6	6	7	7
Hammerbohren mit Standard	- oder Ho	<u>hlbohrer ui</u>	nd Diamantb	ohren (wasse	ergefülltes Bol	<u>rrloch)</u>	
Tempe- I: 35 °C / 60 °C		[N1/22.22.27]	7	6,5	6	6	6
ratur-	- τ _{Rk,cr}	[N/mm²] -	7	6	6	6	6
Montagebeiwerte				1	•		
Trockener oder nasser Beton		[]			1,0		
Wassergefülltes Bohrloch	— γinst	[-]		1,2		1.	,4

fischer Injektionssystem FIS EM Plus	
Leistungen Charakteristische Werte für die Zugtragfähigkeit von fischer Innengewindeankern RG MI; Nutzungsdauer 50 Jahre	Anhang C 7

Tabelle C8.1:	Charakteristische Werte für die Zugtragfähigkeit von fischer
	Innengewindeankern RG MI im hammergebohrten oder diamantgebohrten
	Bohrloch; ungerissener oder gerissener Beton; Nutzungsdauer 100
	Jahre

	Jaille							
Innengev	vindeanker RG MI			M8	M10	M12	M16	M20
Kombinie	ertes Versagen dur	ch Herau	ısziehen ı	und Betonau	sbruch			
Rechneris	scher Durchmesser	d	[mm]	12	16	18	22	28
Ungeriss	ener Beton							
Charakte	ristische Verbundt	ragfähigl	keit im ur	ngerissenen	Beton C20/2	5		
Hammerb	ohren mit Standard-	oder Hol	nlbohrer (t	rockener ode	r nasser Betc	<u>n)</u>		
Tempe-	I: 35 °C / 60 °C		[N/mm²]	15	14	14	13	12
ratur bereich	II: 50 °C / 72 °C	τ _{Rk,ucr}	[[N/11111-]	14	13	13	12	11
Diamantb	ohren (trockener od	er nasser	Beton)					
Tempe-	I: 35 °C / 60 °C		[N]/21	13	12	11	10	9
ratur bereich	II: 50 °C / 72 °C	TRk,ucr	[N/mm²]	12	11	10	9	8
Montagel	beiwerte							•
Trockene	r oder nasser Beton	γinst	[-]			1,0		
	I: 35 °C / 60 °C			0,75	0,75	0,75	0,75	0,75
dauer 100 Jahre	II: 50 °C / 72 °C	- α100 Jahre	[-]	0,55	0,60	0,60	0,65	0,65
Gerissen	er Beton							
Charakte	ristische Verbundt	ragfähigl	keit im ge	rissenen Be	ton C20/25			
<u>Hammerb</u>	ohren mit Standard-	oder Ho	<u>hlbohrer u</u>	ınd Diamantb	<u>ohren (trocke</u>	ner oder nass	ser Beton)	
Tempe-	I: 35 °C / 60 °C		FN 1 / 21	7	6	6	7	7
ratur bereich	II: 50 °C / 72 °C	TRk,ucr	[N/mm²]	7	6	6	7	7
Montagel	beiwerte						•	
Trockene	r oder nasser Beton	γinst	[-]			1,0		
Nutzungs-	I: 35 °C / 60 °C	<u> </u>	r 1	0,60	0,85	0,80	0,65	0,65
dauer 100 Jahre	II: 50 °C / 72 °C	- α 100 Jahre	[-]	0,60	0,85	0,80	0,65	0,65

 $^{1)}$ Berechnung der charakteristischen Verbundtragfähigkeit im ungerissenen Beton $\tau_{Rk,100,\,ucr}$:

 $\tau_{\text{Rk,100, ucr}} = \alpha_{\text{100 Jahre}} \cdot \tau_{\text{Rk,ucr}}$

 $^{2)}$ Berechnung der charakteristischen Verbundtragfähigkeit im gerissenen Beton $au_{Rk,100,\,cr}$:

 $\tau_{\text{Rk,100, cr}} = \alpha_{\text{100 Jahre}} \cdot \tau_{\text{Rk,cr}}$

fischer Injektionssystem FIS EM Plus	
Leistungen Charakteristische Werte für die Zugtragfähigkeit von fischer Innengewindeankern RG MI; Nutzungsdauer 100 Jahre	Anhang C 8

Tabelle	e C9	ł	Charakte hammer- Beton; N	oder d	liamantg	ebo	ohrt	en	Bol	_		_								ser	er	
Stabnen	ndur	chme	sser		Ф	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Kombini	ertes	s Vers	agen durc	h Herau		und		_														
Rechneri				d	[mm]	8	10	12				20	22	24	25	26	28	30	32	34	36	40
Ungeriss	sene	r Beto	n																			
Charakte	eristi	sche \	Verbundtr	agfähig	keit im ur	nge	riss	ener	n Be	ton	C2	0/25										
Hammerk	ohre	n mit S	Standard- oc	der Hohlk	ohrer (tro	cker	ner c	der	nas	ser E	3eto	<u>n)</u>										
Tempe-	l:	35 °C	C / 60 °C			16	15	15	14	14	13	13	13	12	12	12	12	12	12	11	11	11
ratur- bereich		50 °C	 C / 72 °C	$ au_{Rk,ucr}$	[N/mm ²]	15	14	14	13	13	12	12	12	12	11	11	11	11	11	11	10	10
	ohre	n mit S	Standard- o	der Hohll	bohrer (wa	isse	raefi															
Tempe-			C / 60 °C			16			13	12	12	11	11	10	10	10	10	9	9	9	8	8
ratur-			C / 72 °C	$\tau_{Rk,ucr}$	[N/mm ²]	15	14	13	12	12	11	11	10	10	9	9	9	9	8	8	8	
bereich					. D. I									10	9	9	9	9	0	0	0	8
		•	ckener ode	<u>r nasser</u>	<u>' Beton so</u> 									40								_
Tempe- ratur-			C / 60 °C	$ au_{Rk,ucr}$	[N/mm²]	16	15	13	12	12	11	10	10	10	9	9	9	9	8	8	8	7
bereich	II:	50 °C	C / 72 °C	CHK,uci		15	14	12	11	11	10	10	9	9	9	8	8	8	8	7	7	7
Montage	beiw	verte																				
Trockene	er ode	er nass	ser Beton	Vinet	[-]									1,0								
Wasserg	efüllt	es Boł	hrloch	γinst										1,4								
Gerisser	ner B	eton																				
Charakte	eristi	sche \	Verbundtr	agfähig	keit im ge	eris	sene	en B	eto	n C	20/2	5										
<u>Hammerl</u>	bohre	en mit	Standard-	<u>oder Ho</u>	<u>hlbohrer (</u>	troc	ken	er od	der i	nass	er E	<u> Beto</u>	<u>n)</u>					1				
Tempe-	l:	35 °C	C / 60 °C		[N]/ma ma 21	7	7	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
ratur- bereich	II:	50 °C	C / 72 °C	$ au_{Rk,cr}$	[N/mm ²]	7	7	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
	oohre	en (troc	ckener ode	r nasser	· Beton)															l		
Tempe-		•	C / 60 °C			7	7	7	7	6	6	6	7	7	7	7	7	7	5	5	5	5
ratur-	———	50 °C	C / 72 °C	$\tau_{Rk,cr}$	[N/mm ²]	7	7	7	7	6	6	6	7	7	7	7	7	7	5	5	5	5
bereich			Standard-	odor Ho	hlbobror i	ļ .																
Tempe-				oder no	liboniert						(wa							6	-	-	_	E
ratur-			C / 60 °C	$ au_{Rk,cr}$	[N/mm ²]	6		6,5				6	6	6	6	6	6	6	5	5	5	5
bereich			C / 72 °C			6	6,5	6,5	6	6	6	6	6	6	6	6	6	6	5	5	5	5
Montage					1																	
			ser Beton	γinst	[-]									1,0								
Wasserg	efüllt	es Boł	hrloch	711101				1	,2								1,4					
Leistur	ngen		ussystem Werte für d			it vo	on B	eton	stał	nl; N	utzu	ıngs	dau	er 5	0			An	han	ıg (9	

Tabelle C10.1: Ch							_	_		_										
			iamantg Jsdauer					ILIQ	cn;	un	yer	ISS:	ene	er O	aei	ge	ris	sen	ier	
Stabnenndurchmess	er		ф	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Kombiniertes Versag	en durc	h Herau	sziehen	und	Bei	tona	usk	oruc	h											
Rechnerischer Durchn	nesser	d	[mm]	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Ungerissener Beton																				
Charakteristische Ve	rbundtr	agfähigl	ceit im ur	ıger	isse	enei	n Be	eton	C20	0/25										
Hammerbohren mit Star	ndard- od	der Hohlb	ohrer (tro	cken	er o	der	nas	ser E	<u> Betoi</u>	<u>1)</u>										
Tempe- I: 35 °C /	60 °C		FN 1 / 21	16	15	15	14	14	13	13	13	12	12	12	12	12	12	11	11	11
ratur- bereich II: 50 °C /	72 °C	$ au_{Rk,ucr}$	[N/mm ²]	15	14	14	13	13	12	12	12	12	11	11	11	11	11	11	10	10
Diamantbohren (trocke	ener ode	r nasser	Beton)					1							ı					
Tempe- I: 35 °C /	60 °C			16	15	13	12	12	11	10	10	10	9	9	9	9	8	8	8	7
ratur- II: 50 °C /	72 °C	$ au_{Rk,ucr}$	[N/mm ²]	15	14	12	11	11	10	10	9	9	9	8	8	8	8	7	7	7
Montagebeiwerte																				
Trockener oder nasser	Beton	γinst	[-]									1,0								
Nutzungs- I: 35 °C /	60 °C			0,75	0,75	0,75	0,75	0,75	75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75
dauer — —		α 100 Jahre	[-]						5 0,7					_						
100 Jahre II: 50 °C /	72 °C			0,55	0,60	0,60	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65
Gerissener Beton																				
Charakteristische Ve	rbundtr	agfähigl	ceit im ge	eriss	sene	en B	Beto	n C	20/2	5										
Hammerbohren mit Sta	andard-	oder Hol	nlbohrer (trocl	kene	er o	der i	nass	er E	<u>Beto</u>	<u>n)</u>									
Tempe- I: 35 °C /	60 °C		[N I / 2]	7	7	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
ratur- ————————————————————————————————————	72 °C	$ au_{Rk,cr}$	[N/mm ²]	7	7	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
Diamantbohren (trocke	ener ode	r nasser	Beton)					<u> </u>												
Tempe- I: 35 °C /	60 °C			7	7	7	7	6	6	6	7	7	7	7	7	7	5	5	5	5
ratur- II: 50 °C /	72 °C	τ _{Rk,cr}	[N/mm ²]	7	7	7	7	6	6	6	7	7	7	7	7	7	5	5	5	5
Montagebeiwerte																				
Trockener oder nasser	Beton	γinst	[-]									1,0								
		,		8	35	30	35	35	35	35	35			35	35	35	35	35	35	35
Nutzungs- I: 35 °C / dauer		α ₁₀₀ Jahre	[-]	09'0	0,85	0,80	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65
100 Jahre II: 50 °C /				0,60	0,85	0,80	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65
1) Berechnung der $\tau_{Rk,100, ucr} = \alpha_{100 Jahr}$ 2) Berechnung der $\tau_{Rk,100, cr} = \alpha_{100 Jahr}$	_{re} · τ _{Rk,uc}	r															ucr:			
fischer Injektionss Leistungen Charakteristische We Jahre				it vo	n Be	eton	stah	nl; N	utzu	ngs	dau	er 1	00		,	Anh	nan	g C	10	

	ungerissener oder gerissener Beton; Nutzungsdauer 50 Jahre
	ankern FRA im hammergebohrten oder diamantgebohrten Bohrloch;
Tabelle C11.1:	Charakteristische Werte für die Zugtragfähigkeit von fischer Bewehrungs-

	ungeris	sener o	der gen	SSELLEL DELOI	n; Nutzungsd	auer 50 Jann	
fischer E	Bewehrungsanker F	RA		M12	M16	M20	M24
Kombini	ertes Versagen dur	ch Herau	ısziehen u	ınd Betonausbı	ruch		
Rechneri	scher Durchmesser	d	[mm]	12	16	20	25
	sener Beton						
	eristische Verbundt			<u> </u>			
	bohren mit Standard-	oder Ho	<u>hlbohrer (tr</u>	<u>rockener oder na</u>	asser Beton)		Γ
Tempe- ratur-	I: 35 °C / 60 °C		 [N/mm²]	15	14	13	12
bereich	II: 50 °C / 72 °C	- τ _{Rk,ucr}		14	13	12	12
<u>Hammer</u>	bohren mit Standard-	oder Ho	hlbohrer (v	vassergefülltes I	Bohrloch)		
Tempe-	I: 35 °C / 60 °C		FN 1/ 27	14	12	11	10
ratur- bereich	II: 50 °C / 72 °C	- τ _{Rk,ucr}	[N/mm²] -	13	12	11	9
Diamantl	oohren (trockener od	er nasser	Beton sov	vie wassergefüll	tes Bohrloch)		
Tempe-	I: 35 °C / 60 °C		53.17	13	12	10	9
ratur- bereich	II: 50 °C / 72 °C	- τ _{Rk,ucr}	[N/mm²] -	12	11	10	9
Montage	beiwerte						
Trockene	er oder nasser Beton		[]		1	,0	
Wasserg	efülltes Bohrloch	- γinst	[-]		1	,4	
Gerisser	ner Beton						
	eristische Verbundt						
<u>Hammer</u>	<u>bohren mit Standard</u>	oder Ho	<u>hlbohrer uı</u>	nd Diamantbohr	en (trockener ode	<u>er nasser Beton)</u>	ı
Tempe- ratur-	I: 35 °C / 60 °C	- -	 [N/mm²]	8	8	8	8
bereich	II: 50 °C / 72 °C	- τ _{Rk,cr}	[[14/11]]	8	8	8	8
<u>Hammer</u>	bohren mit Standard-	oder Ho	hlbohrer ui	nd Diamantbohr	en (wassergefüll	tes Bohrloch)	
Tempe-	I: 35 °C / 60 °C		[N.1/22 27	7	6	6	6
ratur- bereich	II: 50 °C / 72 °C	- τ _{Rk,cr}	[N/mm²] -	7	6	6	6
Montage	beiwerte				1		
Trockene	er oder nasser Beton				1	,0	
Wasserg	efülltes Bohrloch	– γinst	[-]	1	,2	1	,4

fischer Injektionssystem F	FIS	EM I	Plus
----------------------------	-----	------	------

Leistungen

Charakteristische Werte für die Zugtragfähigkeit von fischer Bewehrungsankern FRA; Nutzungsdauer 50 Jahre

Anhang C 11

Tabelle C12.1: Charakteristische Werte für die Zugtragfähigkeit von fischer Bewehrungsankern FRA im hammergebohrten oder diamantgebohrten Bohrloch; ungerissener oder gerissener Beton; Nutzungsdauer 100 Jahre

		<u> </u>		
	M12	M16	M20	M24
Herausziehen	und Betonausbi	ruch		
d [mm]	12	16	20	25
fähigkeit im ur	ngerissenen Bet	on C20/25		
<u>er Hohlbohrer (</u>	trockener oder na	asser Beton)		
[N] / ma ma 21	15	14	13	12
Rk,ucr [[N/mm ⁻]	14	13	12	12
nasser Beton)				
53.44	13	12	10	9
Rk,ucr [N/mm²]	12	11	10	9
•				
γinst [-]		1,	0	
FN 1 / 21	0,75	0,75	0,75	0,75
00 Jahre [N/mm²]	0,60	0,65	0,65	0,65
		-		
fähigkeit im ge	erissenen Beton	C20/25		
<u>er Hohlbohrer ι</u>	ınd Diamantbohr	en (trockener ode	er nasser Beton)	
- [N]/ma.ma21	8	8	8	8
TRk,cr [IN/IIIII-]	8	8	8	8
γinst [-]		1.	0	
F.1	0,80	0,65	0,65	0,65
00 Jahre [-]	0,80	0,65	0,65	0,65
	Herausziehen d [mm] fähigkeit im ur er Hohlbohrer (Rk,ucr [N/mm²] Asser Beton) (N/mm²] (N/mm²] (N/mm²] (N/mm²] fähigkeit im ge er Hohlbohrer u (N/mm²]	Herausziehen und Betonausbrid 12 12 fähigkeit im ungerissenen Beter Hohlbohrer (trockener oder nate: Hohlbohrer (trockener	Herausziehen und Betonausbruch d	Herausziehen und Betonausbruch d

 $^{1)}$ Berechnung der charakteristischen Verbundtragfähigkeit im ungerissenen Beton $\tau_{\text{Rk,100, ucr}}$:

 $\tau_{\text{Rk,100, ucr}} = \alpha_{\text{100 Jahre}} \cdot \tau_{\text{Rk,ucr}}$

 $^{2)}$ Berechnung der charakteristischen Verbundtragfähigkeit im gerissenen Beton $\tau_{Rk,100,\,cr}$:

 $\tau_{\text{Rk,100, cr}} = \alpha_{\text{100 Jahre}} \cdot \tau_{\text{Rk,cr}}$

fischer Injektionssystem FIS EM Plus	
Leistungen Charakteristische Werte für die Zugtragfähigkeit von fischer Bewehrungsankern FRA; Nutzungsdauer 100 Jahre	Anhang C 12

Ankersta	ange	M8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Verschie	bungs-Faktor	en für Zu	ıglast¹)								
Ungeris	sener oder ger	issener	Beton; To	emperati	ırbereich	ı I, II					
δ N0-Faktor	[mm//NI/mm2\]	0,07	0,08	0,09	0,09	0,10	0,11	0,11	0,12	0,12	0,13
δN∞-Faktor	[mm/(N/mm²)]	0,11	0,12	0,13	0,14	0,15	0,16	0,17	0,18	0,19	0,19
Verschie	bungs-Faktor	en für Qı	uerlast ²⁾								
Ungeris	sener oder ger	issener	Beton; To	emperati	urbereich	ı I, II					
δ V0-Faktor	[mayon // c N 1]	0,18	0,15	0,12	0,10	0,09	0,07	0,07	0,06	0,05	0,05
δv∞-Faktor	[mm/kN]	0,27	0,22	0,18	0,16	0,14	0,11	0,10	0,09	0,08	0,07

1) Berechnung der effektiven Verschiebung:

 $\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Faktor}} \cdot \tau_{\text{Ed}}$

 $\begin{array}{l} (\tau_{\text{Ed}} \hbox{: Bemessungswert der} \\ \hbox{einwirkenden Zugspannung}) \end{array}$

²⁾ Berechnung der effektiven Verschiebung:

 $\delta_{V0} = \delta_{V0\text{-Faktor}} \cdot V_{Ed}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Faktor}} \cdot V_{Ed}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

Tabelle C13.2: Verschiebungen für fischer Innengewindeanker RG MI

Innenge RG MI	windeanker	M8	M10	M12	M16	M20									
Verschie	/erschiebungs-Faktoren für Zuglast¹)														
Ungerise	Ingerissener oder gerissener Beton; Temperaturbereich I, II														
$\delta_{\text{N0-Faktor}}$	[mm/(N/mm²)]	0,09	0,10	0,10	0,11	0,13									
δ _{N∞-Faktor}	[[[[[[]]	0,13	0,15	0,16	0,17	0,19									
Verschie	bungs-Faktor	en für Querlast ²⁾													
Ungeris	sener oder ger	issener Beton; T	emperaturbereich	ı I, II											
$\delta_{ extsf{V0-Faktor}}$	0.12		0,09	0,08	0,07	0,05									
δν∞-Faktor [mm/kN] 0,18		0,14	0,12	0,10	0,08										

1) Berechnung der effektiven Verschiebung:

 $\delta_{\text{N0}} = \delta_{\text{N0-Faktor}} \cdot \tau_{\text{Ed}}$

 $\delta_{N^\infty} = \delta_{N^\infty\text{-Faktor}} \cdot \tau_{\text{Ed}}$

 $(\tau_{Ed}$: Bemessungswert der einwirkenden Zugspannung)

²⁾ Berechnung der effektiven Verschiebung:

 $\delta_{V0} = \delta_{V0\text{-Faktor}} \cdot V_{Ed}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Faktor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Bemessungswert der einwirkenden Querkraft)

fischer Injektionssystem F	IS	ΕM	l Plus
----------------------------	----	----	--------

Leistungen

Verschiebungen Ankerstangen und fischer Innengewindeanker RG MI

Anhang C 13

Stabnen: durchme	Φ.	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
	bungs-Faktor	en fü	r Zuc	ulast ¹⁾														
	sener oder ge		•			perat	turbei	reich	I, II									
δ _{N0-Faktor}		0.07		0,09						0,12	0,12	0,12	0,13	0,13	0,13	0,14	0,14	0,1
δN∞-Faktor	[mm/(N/mm²)]	0,11	0,12	0,13	0,14	0,15	0,16	0,16	0,17	0,18	0,18	0,18	0,19	0,19	0,20	0,20	0,21	0,2
Verschie	bungs-Faktor	en fü	r Qu	erlast	2)													
Ungeriss	sener oder ge					-										1		
δvo-Faktor	[mm/kN]		_	0,12		_	_										_	_
δv∞-Faktor	. ,	0,27	0,22	0,18	0,16	0,14	0,12	0,11	0,10	0,09	0,09	0,08	0,08	0,07	0,07	0,06	0,06	0,0
	chnung der effe	ektiver	n Ver	schie	oung:					_	der e		ven \	ersch/	niebu	ng:		
	$\delta_{\text{N0-Faktor}}$. TEd										or · VE							
	δ _{N∞-Faktor} · τ _{Ed}	ort de	r								_{stor} · V ssung		+ dor					
	Bemessungsw rkenden Zugsr										ssung en Qu							
Tahalle	e C14.2: Vei	echi	۵hu	naar	ı für	fiec	har F	SOWIE	hru	naes	nka	r FR	Δ					
		JCIII	CDU	ngei	ı ıuı	1130	iici L		- III GI	T T	IIIKC		<u> </u>					
iischer E anker FF	Bewehrungs-		N	/ 112				M16				M20)			M	24	
	bungs-Faktor	en fü	r Zuc	nlast1)														
	sener oder ge					perat	turbei	reich	I. II									
δN0-Faktor				0,09				0,10	-,			0,11		Τ		0,	12	
	[mm/(N/mm²)]							0,10							0,18			
ÒN∞-Faktor ∣			U),13				0,10				0,16	;			0,	18	
	bungs-Faktor	ren fü			2)							0,16				0,	18	
	bungs-Faktor sener oder ge		r Qu	erlast		perat		0,15	I, II			0,16				0,	18	
Verschie Ungeriss	sener oder ge		r Que ner B	erlast		perat	turbei	0,15	I, II			0,16				0,0		
Verschie Ungeriss Svo-Faktor			r Que ner B	erlast eton;		perat	turbei	0,15	I, II			•	,				06	
Verschie Ungeriss Svo-Faktor Sv∞-Faktor	sener oder ge	risser	r Que	erlast seton; 0,12 0,18	Tem		turbei	0,15 reich 0,09		rechn	ung d	0,07		en Ve	rschie	0,0	D6 D9	
Verschie Ungeriss δνο-Faktor 1) Berec	sener oder ge [mm/kN]	risser	r Que	erlast seton; 0,12 0,18	Tem		turbei	0,15 reich 0,09	²⁾ Ber		ung d	0,07 0,11 er eff		en Ve	rschie	0,0	D6 D9	
Verschie Ungeriss δνο-Faktor δνω-Faktor 1) Berec δνο =	[mm/kN]	risser	r Que	erlast seton; 0,12 0,18	Tem		turbei	0,15 reich 0,09	²⁾ Ber δνο	$=\delta v$	•	0,07 0,11 er eff		en Ve	rschie	0,0	D6 D9	
Verschie Ungeriss δνο-Faktor 1) Berec δνο = δνω = (τΕd: I	ener oder ger [mm/kN] chnung der effe δNo-Faktor · τEd δN∞-Faktor · τEd Bemessungsw	ektiver	r Que 0 0 0 n Ver	erlast seton; 0,12 0,18	Tem		turbei	0,15 reich 0,09	²⁾ Ber δνο δν∞ (Vε	$\delta = \delta v_0$ $\delta = \delta v_0$ Ed: Be	-Faktor -Faktor mess	0,07 0,11 er eff · V _{Ed} · V _{Ed} ungsv	ektive		rschie	0,0	D6 D9	
Verschie Ungeriss δ V0-Faktor δ V ∞ -Faktor 1) Berec δ N0 = δ N ∞ = $(\tau$ Ed: I	inm/kN] chnung der effet δNo-Faktor · τEd δNω-Faktor · τEd	ektiver	r Que 0 0 0 n Ver	erlast seton; 0,12 0,18	Tem		turbei	0,15 reich 0,09	²⁾ Ber δνο δν∞ (Vε	$\delta = \delta v_0$ $\delta = \delta v_0$ Ed: Be	-Faktor -Faktor	0,07 0,11 er eff · V _{Ed} · V _{Ed} ungsv	ektive		rschie	0,0	D6 D9	
Verschie Ungeriss δνο-Faktor 1) Berec δνο = δνω = (τεd: I	ener oder ger [mm/kN] chnung der effe δNo-Faktor · τEd δN∞-Faktor · τEd Bemessungsw	ektiver	r Que 0 0 0 n Ver	erlast seton; 0,12 0,18	Tem		turbei	0,15 reich 0,09	²⁾ Ber δνο δν∞ (Vε	$\delta = \delta v_0$ $\delta = \delta v_0$ Ed: Be	-Faktor -Faktor mess	0,07 0,11 er eff · V _{Ed} · V _{Ed} ungsv	ektive		rschie	0,0	D6 D9	
Verschie Ungeriss δ V0-Faktor δ V ∞ -Faktor 1) Berec δ N0 = δ N ∞ = $(\tau$ Ed: I	ener oder ger [mm/kN] chnung der effe δNo-Faktor · τEd δN∞-Faktor · τEd Bemessungsw	ektiver	r Que 0 0 0 n Ver	erlast seton; 0,12 0,18	Tem		turbei	0,15 reich 0,09	²⁾ Ber δνο δν∞ (Vε	$\delta = \delta v_0$ $\delta = \delta v_0$ Ed: Be	-Faktor -Faktor mess	0,07 0,11 er eff · V _{Ed} · V _{Ed} ungsv	ektive		rschie	0,0	D6 D9	
Verschie Ungeriss δνο-Faktor 1) Berec δνο = δνω = (τΕd: I	ener oder ger [mm/kN] chnung der effe δNo-Faktor · τEd δN∞-Faktor · τEd Bemessungsw	ektiver	r Que 0 0 0 n Ver	erlast seton; 0,12 0,18	Tem		turbei	0,15 reich 0,09	²⁾ Ber δνο δν∞ (Vε	$\delta = \delta v_0$ $\delta = \delta v_0$ Ed: Be	-Faktor -Faktor mess	0,07 0,11 er eff · V _{Ed} · V _{Ed} ungsv	ektive		rschie	0,0	D6 D9	
Verschie Ungeriss δνο-Faktor 1) Berec δνο = δνο = (τΕd: I	ener oder ger [mm/kN] chnung der effe δNo-Faktor · τEd δN∞-Faktor · τEd Bemessungsw	ektiver	r Que 0 0 0 n Ver	erlast seton; 0,12 0,18	Tem		turbei	0,15 reich 0,09	²⁾ Ber δνο δν∞ (Vε	$\delta = \delta v_0$ $\delta = \delta v_0$ Ed: Be	-Faktor -Faktor mess	0,07 0,11 er eff · V _{Ed} · V _{Ed} ungsv	ektive		rschie	0,0	D6 D9	
Verschie Ungeriss δνο-Faktor 1) Berec δνο = δνω = (τΕd: I	ener oder ger [mm/kN] chnung der effe δNo-Faktor · τEd δN∞-Faktor · τEd Bemessungsw	ektiver	r Que 0 0 0 n Ver	erlast seton; 0,12 0,18	Tem		turbei	0,15 reich 0,09	²⁾ Ber δνο δν∞ (Vε	$\delta = \delta v_0$ $\delta = \delta v_0$ Ed: Be	-Faktor -Faktor mess	0,07 0,11 er eff · V _{Ed} · V _{Ed} ungsv	ektive		rschie	0,0	D6 D9	
Verschie Ungeriss δνο-Faktor 1) Berec δνο = δνο = (τΕd: I	ener oder ger [mm/kN] chnung der effe δNo-Faktor · τEd δN∞-Faktor · τEd Bemessungsw	ektiver	r Que 0 0 0 n Ver	erlast seton; 0,12 0,18	Tem		turbei	0,15 reich 0,09	²⁾ Ber δνο δν∞ (Vε	$\delta = \delta v_0$ $\delta = \delta v_0$ Ed: Be	-Faktor -Faktor mess	0,07 0,11 er eff · V _{Ed} · V _{Ed} ungsv	ektive		rschie	0,0	D6 D9	
Verschie Ungeriss δνο-Faktor 1) Berec δνο = δνω = (τΕd: I	ener oder ger [mm/kN] chnung der effe δNo-Faktor · τEd δN∞-Faktor · τEd Bemessungsw	ektiver	r Que 0 0 0 n Ver	erlast seton; 0,12 0,18	Tem		turbei	0,15 reich 0,09	²⁾ Ber δνο δν∞ (Vε	$\delta = \delta v_0$ $\delta = \delta v_0$ Ed: Be	-Faktor -Faktor mess	0,07 0,11 er eff · V _{Ed} · V _{Ed} ungsv	ektive		rschie	0,0	D6 D9	
Verschie Ungeriss δνο-Faktor 1) Berec δνω = δνω = (τEd: I einwi	ener oder ger [mm/kN] chnung der effe δNo-Faktor · τEd δN∞-Faktor · τEd Bemessungsw	ektiver ert de pannu	r Quenter B	erlast eton; 0,12 0,18 eschiel	Tem Dung:		turbei	0,15 reich 0,09	²⁾ Ber δνο δν∞ (Vε	$\delta = \delta v_0$ $\delta = \delta v_0$ Ed: Be	-Faktor -Faktor mess	0,07 0,11 er eff · V _{Ed} · V _{Ed} ungsv	ektive		rschie	0,0	D6 D9	

Tabelle C15.1: Charakteristische Werte für die Stahltragfähigkeit unter Zug- und Querzugbelastung von fischer Ankerstangen und Standard-Gewindestangen für die seismische Leistungskategorie C1 oder C2

					3								
Anker- /	Gewindestange				M10	M12	M14	M16	M20	M22	M24	M27	M30
Zugtrag	fähigkeit, Stahlversage	n ¹⁾											
fischer A	Ankerstangen und Stan	dard-	Gew	/inde	stanger	ı, Leist	ungsk	ategori	e C1 ²⁾				
7 2	Stahl galvanisch		5.8		29(27)	43	58	79	123	152	177	230	281
Mid¢	verzinkt	eits-	8.8		47(43)	68	92	126	196	243	282	368	449
Charakt. Wider- stand N _{RK,s,C1}	Nichtrostender Stahl R	Festigkeits- klasse	50	[kN]	29	43	58	79	123	152	177	230	281
ara tanc	und Hochkorrosions-	est ≥	70		41	59	81	110	172	212	247	322	393
ည် ×်	beständiger Stahl HCR		80		47	68	92	126	196	243	282	368	449
fischer A	Ankerstangen und Stan	dard-	Gew	/inde	stanger	ı, Leist	ungsk	ategori	e C2 ²⁾				
	Stahl galvanisch	۲,	5.8		_4)	39	_4)	72	108	_4)	177	_4)	_4)
Charakt. Widerstand NRk,s,c2	verzinkt	Festigkeits- klasse	8.8		_4)	61	_4)	116	173	_4)	282	_4)	_4)
Charakt. Viderstan N _{Rk,s,C2}	Nichtrostender Stahl R	stigkeit klasse	50	[-]	_4)	39	_4)	72	108	_4)	177	_4)	_4)
ò§²		Fes Z			_4)	53	_4)	101	152	_4)	247	_4)	_4)
	beständiger Stahl HCR		80		_4)	61	_4)	116	173	_4)	282	_4)	_4)
	gfähigkeit, Stahlversag												
fischer A	Ankerstangen, Leistung	gskate	egor	ie C1				1					I
	Stahl galvanisch verzinkt	٠	5.8		17(16)	25	34	47	74	91	106	138	168
Wid Rk.s.		asse 50	8.8		23(21)	34	46	63	98	122	141	184	225
Charakt. Wider- stand V _{Rk,s, C1}	Nichtrostender Stahl R		50	[kN]	15	21	29	39	61	76	89	115	141
lare tan	und Hochkorrosions-	Fest F	70		20	30	40	55	86	107	124	161	197
	beständiger Stahl HCR		80		23	34	46	63	98	122	141	184	225
Standar	d-Gewindestangen, Lei	stung	ıska	tegor	ie C1 ²⁾		1		1			_	1
er-	Stahl galvanisch	,	5.8		12(11)	17	24	33	52	64	74	97	118
Charakt. Wider- stand V _{Rk,s. C1}	verzinkt	Festigkeits- klasse	8.8		16(14)	24	32	44	69	85	99	129	158
d kt. ∫	Nichtrostender Stahl R	stigkeit klasse	50	[kN]	11	15	20	27	43	53	62	81	99
Tara tan	und Hochkorrosions-	Fes K	70		14	21	28	39	60	75	87	113	138
<u>ئ</u> ق	beständiger Stahl HCR		80		16	24	32	44	69	85	99	129	158
fischer A	Ankerstangen und Stan	dard-	Gew	/inde	stanger	ı, Leist		ategori	e C2				
S2 C2	Stahl galvanisch	^ر ا ا	5.8		_4)	14	_4)	27	43	_4)	62	_4)	_4)
Charakt. Wider- stand V _{Rk.s.} cz	verzinkt	se se	8.8		_4)	22	_4)	44	69	_4)	99	_4)	_4)
akt 	Nichtrostender Stahl R	stigkeit klasse	50	[-]	_4)	14	_4)	27	43	_4)	62	_4)	_4)
hars stan	und Hochkorrosions-	e		70	_4)	20	_4)	39	60	_4)	87	_4)	_4)
	beständiger Stahl HCR		80		_4)	22	_4)	44	69	_4)	99	_4)	_4)
Faktor fü	ır den Ringspalt	αgap		[-]				0	,5 (1,0)	3)			

¹⁾ Teilsicherheitsbeiwerte für die Leistungskategorie C1 oder C2 siehe Tabelle C1.1;

fischer Injektionssystem FIS EM Plus

Leistungen

Charakteristische Werte für die Stahltragfähigkeiten von fischer Ankerstangen und Standard-Gewindestangen unter seismischer Einwirkung (Leistungskategorie C1 / C2)

Anhang C 15

für fischer Ankerstangen FIS A / RGM beträgt der Duktilitätsfaktor für Stahl 1,0

²⁾ Die Werte in Klammern gelten für unterdimensionierte Standard-Gewindestangen mit geringerem Spannungsquerschnitt A_s für feuerverzinkte Gewindestangen gemäß EN ISO 10684:2004+AC:2009.

³⁾ Der Wert in Klammer gilt für gefüllte Ringspalte zwischen der Änkerstange und dem Durchgangsloch im Anbauteil. Die fischer Verfüllscheibe ist zu verwenden nach Anhang A 1

⁴⁾ keine Leistung bewertet

Tabelle C16.1: Charakteristische Werte für die **Stahltragfähigkeit** unter Zug- und Querzugbelastung von **Betonstahl (B500B)** für die seismische Leistungskategorie **C1**

belastarig W	on Detons	otain	י עטי	JUUL	, iui	aic	3013	ادارار	CITE	LCIS	turig	Jona	lego	110 €	, ,
Stabnenndurchmesser		ф	10	12	14	16	18	20	22	24	25	26	28	30	32
Zugtragfähigkeit, Stahlversager	1 ¹⁾														
Betonstabstahl B500B nach DIN	Betonstabstahl B500B nach DIN 488-2:2009-08, Leistungskategorie C1														
Charakteristischer Widerstand	$N_{Rk,s,C1}$	[kN]	44	63	85	111	140	173	209	249	270	292	339	389	443
Quertragfähigkeit, Stahlversage	en ohne Hel	belar	m¹)												
Betonstabstahl B500B nach DIN 488-2:2009-08, Leistungskategorie C1															
Charakteristischer Widerstand	$V_{Rk,s,C1}$	[kN]	15	22	30	39	49	61	74	88	95	102	119	137	155

¹⁾ Teilsicherheitsbeiwerte für die Leistungskategorie C1 siehe Tabelle C16.2

Tabelle C16.2: Teilsicherheitsbeiwerte von fischer Ankerstangen, Standard-Gewindestangen und Betonstahl (B500B) für die seismische Leistungskategorie C1 oder C2

Anke	r- / Gewindestange				M10) 1	M12	M14	М	16	M20	M2	22	M24	M2	7	M30
Stabr	nenndurchmesser			ф	10	12	14	16	18	20	22	24	25	26	28	30	32
Zugtr	agfähigkeit, Stahlversa	gen¹)															
	Chalal seeminte		5.8								1,50						
sits-	Stahl verzinkt	eits-	8.8								1,50						
erhe t 7ms	Nichtrostender Stahl R	Festigkeits klasse	50			2,86											
Teilsich	und Hochkorrosions-	Fest Kl	70	[-]						1,5	0 ²⁾ / 1	,87					
	beständiger Stahl HCR		80		1,60												
	Betonstahl	B500									1,40						
Quer	tragfähigkeit, Stahlvers																
	Ctobl vorzinkt		5.8								1,25						
sits-	Stahl verzinkt	eits-	8.8								1,25						
erhe t ym	Nichtrostender Stahl R	Festigkeits klasse	50	. 1							2,38						
eilsicherheits beiwert 🚧 🗸	und Hochkorrosions-	Fes [.] Kl	70	[-]	1,25 ²⁾ / 1,56												
Teil be	beständiger Stahl HCR		80		1,33												
	Betonstahl	B5	1,50														

¹⁾ Falls keine abweichenden nationalen Regelungen vorliegen

fischer Injektionssystem FIS EM Plus

Leistungen
Charakteristische Werte der Stahltragfähigkeiten von Betonstahl unter seismischer Einwirkung (Leistungskat. C1) sowie Teilsicherheitsbeiwerte (Leistungskat. C1 / C2)

Anhang C 16

²⁾ Nur zulässig für hochkorrosionsbeständigen Stahl HCR, mit f_{yk} / f_{uk} ≥ 0,8 und A₅ > 12 % (z.B. fischer Ankerstangen)

Tabelle C17.1: Charakteristische Werte für die Tragfähigkeit von fischer Ankerstangen
und Standard-Gewindestangen für die seismische Leistungskategorie C1
im hammergebohrten Bohrloch; Nutzungsdauer 50 und 100 Jahre

Anker- /	Gewindestange			M10	M12	M14	M16	M20	M22	M24	M27	M30
Charakte	eristische Verbundtra	agfähig	keit, koml	binierte	s Vers	agen d	urch H	erauszi	ehen u	nd Bet	onausb	ruch
Hammer	bohren mit Standard	l- oder l	Hohlbohre	er (troc	kener d	oder na	sser B	eton)				
Tempe- ratur-	I: 35 °C / 60 °C	_	[N/mm ²]	7,0	7,0	6,7	6,0	5,7	6,7	6,7	6,7	6,7
bereich	II: 50 °C / 72 °C	τ _{Rk,C1}	[14/111111-]	7,0	7,0	6,7	5,7	5,7	6,7	6,7	6,7	6,7
Hammer	bohren mit Standard	l- oder l	Hohlbohre	er (was	sergefi	ülltes B	ohrloc	h)				
Tempe- ratur-	I: 35 °C / 60 °C	_	[N/mm ²]	7,5	7,5	6,5	5,7	5,7	5,7	5,7	5,7	5,7
bereich	II: 50 °C / 72 °C	τ _{Rk,C1}		6,8	6,8	6,5	5,7	5,7	5,7	5,7	5,7	5,7
Montage	ebeiwerte											
Trockene	er oder nasser Beton	γinst	r 1					1,0				
Wasserg	efülltes Bohrloch	[-]		1,2	2 ¹⁾	·		·	1,4 ¹⁾		·	

¹⁾ Nicht zulässig für eine Nutzungsdauer von 100 Jahren

Tabelle C17.2: Charakteristische Werte für die Tragfähigkeit von Betonstahl für die seismische Leistungskategorie C1 im hammergebohrten Bohrloch; Nutzungsdauer 50 und 100 Jahre

Stabnen	ndur	chmesser		ф	10	12	14	16	18	20	22	24	25	26	28	30	32
Charakte	eristi	sche Verbundtr	agfähigl	keit, kom	binie	rtes '	Versa	agen	durc	h He	rausz	iehe	n un	d Bet	onau	ısbru	ch
Hammer	bohr	en mit Standard	d- oder H	Hohlbohre	er (tr	ocke	ner o	der r	nasse	er Be	ton)						
Tempe- ratur- bereich	1:	35 °C / 60 °C	τ _{Rk,C1}	[N/mm²]	7,0	7,0	6,7	5,7	5,7	5,7	6,7	6,7	6,7	6,7	6,7	6,7	4,8
	II:	50 °C / 72 °C			7,0	7,0	6,7	5,7	5,7	5,7	6,7	6,7	6,7	6,7	6,7	6,7	4,8
Hammerbohren mit Standard- oder Hohlbohrer (wassergefülltes Bohrloch)																	
Tempe-	l:	35 °C / 60 °C	τ _{Rk,C1}	[N/mm²]	7,5	6,5	6,5	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	4,8
ratur- bereich	II:	50 °C / 72 °C			6,5	6,5	5,8	5,8	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	4,8
Montagebeiwerte																	
Trockene	er ode	er nasser Beton		r 1	1,0												
Wassergefülltes Bohrloch		γinst	[-]	1,2 1) 1,4 1)													

¹⁾ Nicht zulässig für eine Nutzungsdauer von 100 Jahren

fischer Injektionssystem FIS EM Plus

Leistungen

Charakteristische Werte unter seis. Einwirkung (Leistungskategorie C1) für fischer Ankerstangen, Standard-Gewindest. und Betonstahl; Nutzungsdauer 50 und 100 Jahre

Anhang C 17

Tabelle C18.1: Charakteristische Werte für die Tragfähigkeit von fischer Ankerstangen
und Standard-Gewindestangen für die seismische Leistungskategorie C2
im hammergebohrten Bohrloch; Nutzungsdauer 50 und 100 Jahre

Anker- /	Gewindestange			M12	M16	M20	M24			
Charakt	eristische Verbundtr	agfähigke	eit, koml	biniertes Versag	gen durch Herai	usziehen und Be	etonausbruch			
Hammer	rbohren mit Standard	d- oder Ho	hlbohre	er (trockener od	ler nasser Betoi	1)				
Tempe-	I: 35 °C / 60 °C		[N/mm²]	3,5	5,8	5,0	3,1			
ratur- bereich	II: 50 °C / 72 °C	τ _{Rk,C2} [[3,3	5,5	4,7	2,9			
Hammer	rbohren mit Standard	d- oder Ho	hlbohre	er (wassergefül	ltes Bohrloch)					
Tempe- ratur- bereich	I: 35 °C / 60 °C		[N/mm²]	3,5	5,8	5,0	3,1			
	II: 50 °C / 72 °C	τ _{Rk,C2} [3,3	5,5	4,7	2,9			
Montage	ebeiwerte									
Trockene	er oder nasser Beton			1,0						
Wasserg	gefülltes Bohrloch	γinst	[-]	1,3	2 ¹⁾	1,41)				
1) Nicht z	ulässia für oino Nutzu	nacdauer	von 100	Jahron						

¹⁾ Nicht zulässig für eine Nutzungsdauer von 100 Jahren

Verschiebungen unter Zuglast¹)										
δ _{N,C2} (DLS)-Faktor	[mm/(N/mm²)]	0,09	0,10	0,11	0,12					
δN,C2 (ULS)-Faktor	[[[]]]/([]/[]]]	0,15	0,17	0,17	0,18					
Verschiebungen unter Querlast ²⁾										
δv,C2 (DLS)-Faktor	[mm/kN]]	0,18	0,10	0,07	0,06					
δv,C2 (ULS)-Faktor	[mm/kN]	0,25	0,14	0,11	0,09					

1) Berechnung der effektiven Verschiebung:

$$\begin{split} &\delta_{\text{N,C2 (DLS)}} = \delta_{\text{N,C2 (DLS)-Faktor}} \cdot \tau_{\text{Ed}} \\ &\delta_{\text{N,C2 (ULS)}} = \delta_{\text{N,C2 (ULS)-Faktor}} \cdot \tau_{\text{Ed}} \\ &(\tau_{\text{Ed}} : Bemessungswert \ der \\ &einwirkenden \ Zugspannung) \end{split}$$

²⁾ Berechnung der effektiven Verschiebung:

$$\begin{split} \delta_{\text{V,C2 (DLS)}} &= \delta_{\text{V,C2 (DLS)-Faktor}} \cdot V_{\text{Ed}} \\ \delta_{\text{V,C2 (ULS)}} &= \delta_{\text{V,C2 (ULS)-Faktor}} \cdot V_{\text{Ed}} \\ \text{(V}_{\text{Ed}}\text{: Bemessungswert der} \\ \text{einwirkenden Querkraft)} \end{split}$$

fischer Injektionssystem FIS EM Plus

Leistungen

Charakteristische Werte unter seis. Einwirkung (Leistungskategorie C2) für fischer Ankerstangen und Standard-Gewindestangen; Nutzungsdauer 50 und 100 Jahre

Anhang C 18