Deutsches Institut für Bautechnik

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Kolonnenstraße 30 B D-10829 Berlin Tel.: +49 30 78730-0 Fax: +49 30 78730-320 E-Mail: dibt@dibt.de

www.dibt.de

Mitglied der EOTA

Member of EOTA

Europäische Technische Zulassung ETA-07/0121

Handelsbezeichnung Trade name

Zulassungsinhaber Holder of approval

Zulassungsgegenstand und Verwendungszweck

Generic type and use of construction product

Geltungsdauer:

Validity:

vom

bis to

Herstellwerk Manufacturing plant fischer Rahmendübel SXR fischer long shaft fixing SXR

fischerwerke GmbH & Co. KG

Weinhalde 14-18 72178 Waldachtal DEUTSCHLAND

Kunststoffdübel als Mehrfachbefestigung von nichttragenden Systemen

zur Verankerung im Beton und Mauerwerk

Plastic anchor for multiple use in concrete and masonry for nonstructural applications

20. Dezember 2012

20. Dezember 2017

fischerwerke

Diese Zulassung umfasst This Approval contains 28 Seiten einschließlich 17 Anhänge 28 pages including 17 annexes

Diese Zulassung ersetzt This Approval replaces ETA-07/0121 mit Geltungsdauer vom 13.10.2009 bis 19.12.2012 ETA-07/0121 with validity from 13.10.2009 to 19.12.2012

Europäische Organisation für Technische Zulassungen European Organisation for Technical Approvals

Z5467.13

Seite 2 von 28 | 20. Dezember 2012

I RECHTSGRUNDLAGEN UND ALLGEMEINE BESTIMMUNGEN

- Diese europäische technische Zulassung wird vom Deutschen Institut für Bautechnik erteilt in Übereinstimmung mit:
 - der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechtsund Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte¹, geändert durch die
 Richtlinie 93/68/EWG des Rates² und durch die Verordnung (EG) Nr. 1882/2003 des
 Europäischen Parlaments und des Rates³;
 - dem Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, zuletzt geändert durch Art. 2 des Gesetzes vom 8. November 2011⁵;
 - den Gemeinsamen Verfahrensregeln für die Beantragung, Vorbereitung und Erteilung von europäischen technischen Zulassungen gemäß dem Anhang zur Entscheidung 94/23/EG der Kommission⁶;
 - der Leitlinie für die europäische technische Zulassung für "Kunststoffdübel als Mehrfachbefestigung von nichttragenden Systemen zur Verankerung im Beton und Mauerwerk - Teil 1: Allgemeines", ETAG 020-01.
- Das Deutsche Institut für Bautechnik ist berechtigt zu prüfen, ob die Bestimmungen dieser europäischen technischen Zulassung erfüllt werden. Diese Prüfung kann im Herstellwerk erfolgen. Der Inhaber der europäischen technischen Zulassung bleibt jedoch für die Konformität der Produkte mit der europäischen technischen Zulassung und deren Brauchbarkeit für den vorgesehenen Verwendungszweck verantwortlich.
- Diese europäische technische Zulassung darf nicht auf andere als die auf Seite 1 aufgeführten Hersteller oder Vertreter von Herstellern oder auf andere als die auf Seite 1 dieser europäischen technischen Zulassung hinterlegten Herstellwerke übertragen werden.
- 4 Das Deutsche Institut für Bautechnik kann diese europäische technische Zulassung widerrufen, insbesondere nach einer Mitteilung der Kommission aufgrund von Art. 5 Abs. 1 der Richtlinie 89/106/EWG.
- Diese europäische technische Zulassung darf auch bei elektronischer Übermittlung nur ungekürzt wiedergegeben werden. Mit schriftlicher Zustimmung des Deutschen Instituts für Bautechnik kann jedoch eine teilweise Wiedergabe erfolgen. Eine teilweise Wiedergabe ist als solche zu kennzeichnen. Texte und Zeichnungen von Werbebroschüren dürfen weder im Widerspruch zu der europäischen technischen Zulassung stehen noch diese missbräuchlich verwenden.
- Die europäische technische Zulassung wird von der Zulassungsstelle in ihrer Amtssprache erteilt. Diese Fassung entspricht vollständig der in der EOTA verteilten Fassung. Übersetzungen in andere Sprachen sind als solche zu kennzeichnen.
- ¹ Amtsblatt der Europäischen Gemeinschaften L 40 vom 11. Februar 1989, S. 12
- Amtsblatt der Europäischen Gemeinschaften L 220 vom 30. August 1993, S. 1
- Amtsblatt der Europäischen Union L 284 vom 31. Oktober 2003, S. 25
- Bundesgesetzblatt Teil | 1998, S. 812
- bundesgesetzblatt Teil I 2011, S. 2178
- Amtsblatt der Europäischen Gemeinschaften L 17 vom 20. Januar 1994, S. 34

Z5467.13 8.06.04<u>-415/12</u>

Seite 3 von 28 | 20. Dezember 2012

II BESONDERE BESTIMMUNGEN DER EUROPÄISCHEN TECHNISCHEN ZULASSUNG

1 Beschreibung des Produkts und des Verwendungszwecks

1.1 Beschreibung des Bauprodukts

Der fischer Langschaftdübel in den Größen SXR 8 und SXR 10 ist ein Kunststoffdübel bestehend aus einer Dübelhülse aus Polyamid und einer zugehörigen Spezialschraube aus galvanisch verzinktem Stahl, aus galvanisch verzinktem Stahl mit zusätzlicher Duplex-Beschichtung oder nichtrostendem Stahl.

Die Dübelhülse wird durch das Eindrehen der Spezialschraube, die die Hülse gegen die Bohrlochwandung presst, verspreizt.

Im Anhang 1 ist der Dübel im eingebauten Zustand dargestellt.

1.2 Verwendungszweck

Der Dübel ist für Verwendungen vorgesehen, bei denen Anforderungen an die Nutzungssicherheit im Sinne der wesentlichen Anforderung 4 der Richtlinie 89/106/EWG zu erfüllen sind und bei denen ein Versagen des zu befestigenden Bauteils eine unmittelbare Gefahr für Leben oder Gesundheit von Menschen darstellt.

Der Dübel darf nur für die Verwendung als Mehrfachbefestigung von nichttragenden Systemen verwendet werden.

Der Verankerungsgrund darf gemäß folgender Tabelle aus Nutzungskategorie a, b, c und d bestehen:

Nutzungskategorie	Dübeltyp	Bemerkungen
а	Fischer SXR 8 Fischer SXR 10	Bewehrter oder unbewehrter Normalbeton Festigkeitsklasse von mindestens C12/15 und höchstens C50/60 nach EN 206-1:2000-12 Gerissener und ungerissener Beton
b	Fischer SXR 8 Fischer SXR 10	 Mauerwerkswände gemäß Anhang 6 und 8 Mörtel-Druckfestigkeitsklasse ≥ M 2,5 gemäß EN 998-2:2003
С	Fischer SXR 8 Fischer SXR 10	 Mauerwerkswände gemäß Anhang 7, 9 und 10 Mörtel-Druckfestigkeitsklasse ≥ M 2,5 gemäß EN 998-2:2003
d	Fischer SXR 10	Mauerwerkswände aus (ungerissenen) Porenbeton Blöcken (AAC) gemäß Anhang 16 und 17

Spezialschraube aus galvanisch verzinktem Stahl oder gvz Stahl mit Duplex-Beschichtung:

Die Spezialschraube aus galvanisch verzinktem Stahl oder galvanisch verzinktem Stahl mit zusätzlicher Duplex-Beschichtung darf nur in Bauteilen unter den Bedingungen trockener Innenräume verwendet werden.

Die Spezialschraube aus galvanisch verzinktem Stahl oder galvanisch verzinktem Stahl mit zusätzlicher Duplex-Beschichtung darf auch im Freien verwendet werden, wenn nach sorgfältigem Einbau der Befestigungseinheit der Bereich des Schraubenkopfes gegen Feuchtigkeit und Schlagregen so geschützt wird, dass ein Eindringen von Feuchtigkeit in den Dübelschaft nicht möglich ist. Dafür ist vor dem Schraubenkopf eine Fassadenbekleidung oder eine vorgehängte hinterlüftete Fassade zu befestigen und der Schraubenkopf selbst mit einer

Seite 4 von 28 | 20. Dezember 2012

weichplastischen dauerelastischen Bitumen-Öl-Kombinationsbeschichtung (z. B. Kfz-Unterboden- bzw. Hohlraumschutz) anzustreichen.

Spezialschraube aus nichtrostendem Stahl:

Die Spezialschraube aus nichtrostendem Stahl darf in Bauteilen unter den Bedingungen trockener Innenräume sowie auch im Freien (einschließlich Industrieatmosphäre und Meeresnähe) oder in Feuchträumen verwendet werden, wenn keine besonders aggressiven Bedingungen vorliegen. Zu diesen besonders aggressiven Bedingungen gehören z.B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z.B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Der Dübel darf in den folgenden Temperaturbereichen verwendet werden:

Temperaturbereich b): -40 °C bis +80 °C (max. Langzeit-Temperatur +50 °C und

max. Kurzzeit-Temperatur +80 °C)

Temperaturbereich c): -40 °C bis +50 °C (max. Langzeit-Temperatur +30 °C und

max. Kurzzeit-Temperatur +50 °C)

Die Anforderungen dieser europäischen technischen Zulassung beruhen auf der Annahme einer vorgesehenen Nutzungsdauer des Dübels von 50 Jahren. Die Angaben über die Nutzungsdauer können nicht als Herstellergarantie ausgelegt werden, sondern sind lediglich als Hilfsmittel zur Auswahl des richtigen Produkts angesichts der erwarteten wirtschaftlich angemessenen Nutzungsdauer des Bauwerks zu betrachten.

2 Merkmale des Produkts und Nachweisverfahren

2.1 Merkmale des Produkts

Der Dübel entspricht den Zeichnungen und Angaben der Anhänge 2 und 3. Die in diesen Anhängen nicht angegebenen Werkstoffkennwerte, Abmessungen und Toleranzen des Dübels müssen den in der technischen Dokumentation⁷ dieser europäischen technischen Zulassung festgelegten Angaben entsprechen.

Die charakteristischen Kennwerte für die Bemessung der Verankerungen sind in den Anhängen 3 und 4, 6 bis 10 und 16 angegeben.

Jeder Dübel ist gemäß Anhang 2 mit dem Werkzeichen, dem Dübeltyp, dem Durchmesser und der Länge des Dübels zu kennzeichnen.

Die Mindestverankerungstiefe ist zu markieren.

Der Dübel darf nur als Befestigungseinheit verpackt und geliefert werden.

2.2 Nachweisverfahren

Die Beurteilung der Brauchbarkeit des Dübels für den vorgesehenen Verwendungszweck hinsichtlich der Anforderungen an die Nutzungssicherheit im Sinne der wesentlichen Anforderung 4 erfolgte in Übereinstimmung mit der "Leitlinie für die europäische technische Zulassung für Kunststoffdübel als Mehrfachbefestigung von nichttragenden Systemen zur Verankerung im Beton und Mauerwerk" ETAG 020,

- Teil 1: "Allgemeines",
- Teil 2: "Kunststoffdübel zur Verwendung in Beton",
- Teil 3: "Kunststoffdübel zur Verwendung in Vollsteinen" und
- Teil 4: "Kunststoffdübel zur Verwendung in Hohl- oder Lochsteinen"
- Teil 5: "Kunststoffdübel zur Verwendung in Porenbeton"

Z5467.13 8.06.04-415/12

7

Die technische Dokumentation dieser europäischen technischen Zulassung ist beim Deutschen Institut für Bautechnik hinterlegt und, soweit diese für die Aufgaben der in das Verfahren der Konformitätsbescheinigung eingeschalteten zugelassenen Stellen bedeutsam ist, den zugelassenen Stellen auszuhändigen.

Seite 5 von 28 | 20. Dezember 2012

auf der Grundlage der Nutzungskategorien a, b, c und d.

In Ergänzung zu den spezifischen Bestimmungen dieser europäischen technischen Zulassung, die sich auf gefährliche Stoffe beziehen, können die Produkte im Geltungsbereich dieser Zulassung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Bauproduktenrichtlinie zu erfüllen, müssen ggf. diese Anforderungen ebenfalls eingehalten werden.

3 Bewertung und Bescheinigung der Konformität und CE-Kennzeichnung

3.1 System der Konformitätsbescheinigung

Gemäß Entscheidung 97/463/EG der Europäischen Kommission⁸ ist das System 2(ii) (System 2+ zugeordnet) der Konformitätsbescheinigung anzuwenden.

Dieses System der Konformitätsbescheinigung ist im Folgenden beschrieben.

System 2+: Konformitätserklärung des Herstellers für das Produkt aufgrund von:

- (a) Aufgaben des Herstellers:
 - (1) Erstprüfung des Produkts;
 - (2) werkseigener Produktionskontrolle;
 - (3) Prüfung von im Werk entnommenen Proben nach festgelegtem Prüfplan.
- (b) Aufgaben der zugelassenen Stelle:
 - (4) Zertifizierung der werkseigenen Produktionskontrolle aufgrund von:
 - Erstinspektion des Werkes und der werkseigenen Produktionskontrolle;
 - laufender Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle.

3.2 Zuständigkeiten

3.2.1 Aufgaben des Herstellers

3.2.1.1 Werkseigene Produktionskontrolle

Der Hersteller muss eine ständige Eigenüberwachung der Produktion durchführen. Alle vom Hersteller vorgegebenen Daten, Anforderungen und Vorschriften sind systematisch in Form schriftlicher Betriebs- und Verfahrensanweisungen festzuhalten. Die werkseigene Produktionskontrolle hat sicherzustellen, dass das Produkt mit dieser europäischen technischen Zulassung übereinstimmt.

Der Hersteller darf nur Ausgangsstoffe verwenden, die in der technischen Dokumentation dieser europäischen technischen Zulassung aufgeführt sind.

Die werkseigene Produktionskontrolle muss mit dem Prüfplan, der Teil der technischen Dokumentation dieser europäischen technischen Zulassung ist, übereinstimmen. Der Prüfplan ist im Zusammenhang mit dem vom Hersteller betriebenen werkseigenen Produktionskontrollsystem festgelegt und beim Deutschen Institut für Bautechnik hinterlegt.⁹

Die Ergebnisse der werkseigenen Produktionskontrolle sind festzuhalten und in Übereinstimmung mit den Bestimmungen des Prüfplans auszuwerten.

3.2.1.2 Sonstige Aufgaben des Herstellers

Der Hersteller hat auf der Grundlage eines Vertrags eine Stelle, die für die Aufgaben nach Abschnitt 3.1 für den Bereich der Dübel zugelassen ist, zur Durchführung der Maßnahmen nach Abschnitt 3.3 einzuschalten. Hierfür ist der Prüfplan nach den Abschnitten 3.2.1.1 und 3.2.2 vom Hersteller der zugelassenen Stelle vorzulegen.

Amtsblatt der Europäischen Gemeinschaften L 198 vom 25.07.1997.

Der Prüfplan ist ein vertraulicher Bestandteil der Dokumentation dieser europäischen technischen Zulassung und wird nur der in das Konformitätsbescheinigungsverfahren eingeschalteten zugelassenen Stelle ausgehändigt. Siehe Abschnitt 3.2.2.

Seite 6 von 28 | 20. Dezember 2012

Der Hersteller hat eine Konformitätserklärung abzugeben mit der Aussage, dass das Bauprodukt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

3.2.2 Aufgaben der zugelassenen Stellen

Die zugelassene Stelle hat die folgenden Aufgaben in Übereinstimmung mit den im Prüfplan durchzuführen:

- Erstinspektion des Werks und der werkseigenen Produktionskontrolle,
- laufende Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle.

Die zugelassene Stelle hat die wesentlichen Punkte ihrer oben angeführten Maßnahmen festzuhalten und die erzielten Ergebnisse und die Schlussfolgerungen in einem schriftlichen Bericht zu dokumentieren.

Die vom Hersteller eingeschaltete zugelassene Zertifizierungsstelle hat ein EG-Konformitätszertifikat mit der Aussage zu erteilen, dass die werkseigene Produktionskontrolle mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

Wenn die Bestimmungen der europäischen technischen Zulassung und des zugehörigen Prüfplans nicht mehr erfüllt sind, hat die Zertifizierungsstelle das Konformitätszertifikat zurückzuziehen und unverzüglich das Deutsche Institut für Bautechnik zu informieren.

3.3 CE-Kennzeichnung

Die CE-Kennzeichnung ist auf jeder Verpackung der Dübel anzubringen. Hinter den Buchstaben "CE" sind ggf. die Kennnummer der zugelassenen Zertifizierungsstelle anzugeben sowie die folgenden zusätzlichen Angaben zu machen:

- Name und Anschrift des Herstellers (für die Herstellung verantwortliche juristische Person),
- die letzten beiden Ziffern des Jahres, in dem die CE-Kennzeichnung angebracht wurde.
- Nummer des EG-Konformitätszertifikats für die werkseigene Produktionskontrolle,
- Nummer der europäischen technischen Zulassung,
- Nummer der Leitlinie für die europäische technische Zulassung,
- Nutzungskategorie a, b, c und d ("d" nur f
 ür D
 übeltyp SXR 10).

4 Annahmen, unter denen die Brauchbarkeit des Produkts für den vorgesehenen Verwendungszweck positiv beurteilt wurde

4.1 Herstellung

Die europäische technische Zulassung wurde für das Produkt auf der Grundlage abgestimmter Daten und Informationen erteilt, die beim Deutschen Institut für Bautechnik hinterlegt sind und der Identifizierung des beurteilten und bewerteten Produkts dienen. Änderungen am Produkt oder am Herstellungsverfahren, die dazu führen könnten, dass die hinterlegten Daten und Informationen nicht mehr korrekt sind, sind vor ihrer Einführung dem Deutschen Institut für Bautechnik mitzuteilen. Das Deutsche Institut für Bautechnik wird darüber entscheiden, ob sich solche Änderungen auf die Zulassung und folglich auf die Gültigkeit der CE-Kennzeichnung auf Grund der Zulassung auswirken oder nicht, und ggf. feststellen, ob eine zusätzliche Beurteilung oder eine Änderung der Zulassung erforderlich ist.

4.2 Bemessung der Verankerungen

4.2.1 Allgemeines

Die Brauchbarkeit des Dübels ist unter folgenden Voraussetzungen gegeben:

 Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit ETAG 020 Leitlinie für die europäische technische Zulassung für "Kunststoffdübel als Mehrfachbefestigung von nichttragenden Systemen zur Verankerung im Beton und Mauerwerk", Anhang C unter der Verantwortung eines auf dem Gebiet der Verankerungen erfahrenen Ingenieurs.

Seite 7 von 28 | 20. Dezember 2012

- Unter Berücksichtigung der zu verankernden Lasten, der Art und Festigkeit des Verankerungsgrundes, der Bauteilabmessungen und Toleranzen sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen.
- Der Dübel darf nur für die Mehrfachbefestigung von nichttragenden Systemen verwendet werden.

Die Mehrfachbefestigung kann durch die Anzahl n_1 von Befestigungsstellen zur Befestigung des Bauteils und die Anzahl n_2 von Dübeln je Befestigungsstelle spezifiziert werden. Außerdem ist durch die Festlegung des Bemessungswertes der Einwirkungen N_{Sd} einer Befestigungsstelle auf einen Wert $\leq n_3$ (kN) sichergestellt, dass die Anforderungen an die Festigkeit und Steifigkeit des zu befestigenden Bauteils eingehalten sind und die Lastübertragung bei übermäßigem Schlupf oder Versagen eines Dübels in der Bemessung des zu befestigenden Bauteils nicht berücksichtigt werden muss.

Für n₁, n₂ und n₃ dürfen die folgenden Grenzwerte verwendet werden:

 $n_1 \ge 4$; $n_2 \ge 1$ und $n_3 \le 4,5 \text{ kN}$ oder $n_1 \ge 3$; $n_2 \ge 1$ und $n_3 \le 3,0 \text{ kN}$.

- Eine Biegebeanspruchung des Dübels infolge Querlast darf nur dann unberücksichtigt bleiben, wenn die beiden folgenden Bedingungen eingehalten werden:
 - Das Anbauteil muss aus Metall bestehen und im Bereich der Verankerung direkt am Verankerungsgrund entweder ohne Zwischenlage oder mit einer Mörtel-Ausgleichsschicht mit einer Dicke ≤ 3 mm befestigt werden.
 - Das Anbauteil muss mit seiner ganzen Dicke an der Dübelhülse anliegen. (Hierfür muss der Durchmesser des Durchgangslochs im Anbauteil d_f gleich oder kleiner als der Wert gemäß Anhang 3, Tabelle 3.)

Werden diese beiden Bedingungen nicht erfüllt, so ist der Hebelarm gemäß ETAG 020, Anhang C zu berechnen. Das charakteristische Biegemoment ist in Anhang 3, Tabelle 4 angegeben.

4.2.2 Tragfähigkeit im Beton (Nutzungskategorie "a")

Die charakteristischen Werte der Tragfähigkeit des Dübels im Beton sind in Anhang 3, Tabelle 4 und Anhang 4, Tabelle 5 und 6, angegeben. Das Bemessungsverfahren gilt für gerissenen und ungerissenen Beton.

Gemäß Technical Report TR 020 "Beurteilung der Feuerwiderstandsfähigkeit von Verankerungen im Beton" kann angenommen werden, dass für die Befestigung von Fassadensystemen die Tragfähigkeit des fischer Langschaftdübels SXR 10 einen ausreichenden Feuerwiderstand von mindestens 90 Minuten (R90) besitzt, wenn die zulässige Last $[F_{Rk}/(\gamma_M \cdot \gamma_F)] \le 0.8$ kN ist (keine dauernde zentrische Zuglast).

4.2.3 Tragfähigkeit im Mauerwerk aus Vollsteinen (Nutzungskategorie "b")

Die charakteristischen Werte der Tragfähigkeit des Dübels im Mauerwerk aus Vollsteinen sind in Anhang 3, Tabelle 4 und Anhang 6, 8 und 10 angegeben. Diese Werte sind unabhängig von der Lastrichtung (Zug, Querlast, Schrägzug) und der Versagensart.

Die in Anhang 6, 8 und 10 angegebenen charakteristischen Werte im Mauerwerk aus Vollsteinen gelten für den Verankerungsgrund und die Steine gemäß dieser Tabelle oder größere Steine und größere Druckfestigkeiten des Mauerwerks.

Sind auf der Baustelle kleinere Steinformate vorhanden oder wenn die Mörteldruckfestigkeit kleiner als der erforderliche Wert ist, darf die charakteristische Tragfähigkeit des Dübels über Versuche am Bauwerk gemäß Abschnitt 4.4 ermittelt werden.

4.2.4 Tragfähigkeit im Mauerwerk aus Hohlblöcken oder Lochsteinen (Nutzungskategorie "c")

Die in Anhang 7, 9 und 10 angegebenen charakteristischen Werte im Mauerwerk aus Hohlblöcken oder Lochsteinen gelten bezüglich Verankerungsgrund, Steingröße, Druckfestigkeit und Lochbild nur für die Steine und Blöcke dieser Tabelle.

Seite 8 von 28 | 20. Dezember 2012

Diese Werte sind unabhängig von der Lastrichtung (Zug, Querlast, Schrägzug) und der Versagensart und gelten nur für $h_{nom} = 50$ mm.

Der Einfluss von größeren Einbindetiefen (h_{nom} ≥ 50 mm) und/oder abweichenden Steinen und Blöcken (gemäß Anhang 7, 9 und 10 bezüglich Verankerungsgrund, Steingröße, Druckfestigkeit und Lochbild) ist durch Versuche am Bauwerk gemäß Abschnitt 4.4 zu ermitteln.

4.2.5 Tragfähigkeit in (ungerissenen) Porenbeton Blöcken (AAC, Nutzungskategorie "d")

Die charakteristischen Werte der Tragfähigkeit des Dübeltyps SXR 10 im Mauerwerk aus Porenbeton Blöcken (AAC) sind in Anhang 16, Tabelle 14 angegeben. Diese Werte sind unabhängig von der Lastrichtung (Zug, Querlast, Schrägzug) und der Versagensart.

Der Dübel darf nicht in wassergesättigtem Porenbeton eingebaut und verwendet werden.

4.2.6 Besondere Bedingungen für das Bemessungsverfahren im Mauerwerk aus Voll- und Lochsteinen oder Hohlblöcken und Porenbeton Blöcken

Der Mörtel des Mauerwerks muss mindestens der Druckfestigkeitsklasse M 2,5 gemäß EN 998-2:2003 entsprechen.

Die charakteristische Tragfähigkeit F_{Rk} für einen einzelnen Kunststoffdübel kann auch für eine Gruppe aus zwei oder vier Kunststoffdübeln angesetzt werden, deren Achsabstand mindestens so groß wie der Mindestachsabstand s_{min} ist.

Der Abstand zwischen einzelnen Kunststoffdübeln bzw. einer Gruppe von Dübeln sollte s ≥ 250 mm betragen.

Wenn die senkrechten Fugen der Wand planmäßig nicht mit Mörtel verfüllt werden sollen, ist der Bemessungswert der Tragfähigkeit N_{Rd} auf 2,0 kN zu begrenzen um sicherzustellen, dass ein Herausziehen eines Steins aus der Wand verhindert wird. Auf diese Begrenzung kann verzichtet werden, wenn für die Wand verzahnte Steine verwendet oder die Fugen planmäßig mit Mörtel verfüllt werden.

Wenn die Fugen des Mauerwerks nicht sichtbar sind, ist die charakteristische Tragfähigkeit F_{Rk} mit den Faktor α_i = 0,5 zu reduzieren.

Wenn die Fugen des Mauerwerks sichtbar sind (z. B. bei einer unverputzten Wand), ist Folgendes zu berücksichtigen:

- Die charakteristische Tragfähigkeit F_{Rk} darf nur angesetzt werden, wenn die Fugen der Wand planmäßig mit Mörtel verfüllt werden.
- Wenn die Fugen der Wand nicht planmäßig mit Mörtel verfüllt werden, darf die charakteristische Tragfähigkeit F_{Rk} nur dann angesetzt werden, wenn der Mindestrandabstand c_{min} zu den senkrechten Fugen eingehalten wird. Wenn dieser Mindestrandabstand c_{min} nicht eingehalten werden kann, ist die charakteristische Festigkeit F_{Rk} um den Faktor $\alpha_i = 0.5$ zu verringern.

4.2.7 Kennwerte, Abstände und Bauteilabmessungen

Die Mindestabstände und Bauteilabmessungen nach Anhang 5, 11 und 17 sind abhängig vom Verankerungsgrund einzuhalten.

4.2.8 Verschiebungsverhalten

Die Verschiebungen unter Zug und Querlast in Beton und Mauerwerk sind in Anhang 5, Tabelle 7 und Anhang 17, Tabelle 16 angegeben.

4.3 Einbau des Dübels

Von der Brauchbarkeit des Dübels kann nur dann ausgegangen werden, wenn folgende Einbaubedingungen eingehalten sind:

- Einbau des Dübels durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile.
- Einbau des Dübels nach den Angaben des Herstellers, den Konstruktionszeichnungen und mit den in dieser europäischen technischen Zulassung angegebenen Werkzeugen.

Seite 9 von 28 | 20. Dezember 2012

- Überprüfung vor dem Setzen des Dübels, ob der Verankerungsgrund, in den der Dübel gesetzt werden soll, dem entspricht für den die charakteristischen Tragfähigkeiten gelten.
- Beachtung des Bohrverfahrens gemäß Anhang 6 bis 10 (Bohrlöcher in bestimmtem Mauerwerk aus Hohlblöcken oder Lochsteinen dürfen nur mit Bohrmaschinen im Drehgang hergestellt werden. Von dieser Regelung darf nur abgewichen werden, wenn durch Versuche am Bauwerk nach Abschnitt 4.4 der Einfluss des Bohrens mit Schlag- bzw. Hammerwirkung auf das Dübeltragverhalten beurteilt wird.).
- Für die Befestigung des Dübeltyps SXR 10 in Porenbeton Blöcken mit einem Nennwert der Druckfestigkeit f_{ck} < 4 N/mm² ist das Bohrloch mit dem zugehörigen Porenbetonstößel gemäß Anhang 16, Tabelle 15 herzustellen. Der Porenbetonstößel wird mit Hammerwirkung der Bohrmaschine in den Porenbeton eingetrieben. Zur Kontrolle der korrekten Anwendung des Porenbetonstößels wird auf der Oberfläche des Anbauteils eine Markierungsrille sichtbar.</p>
 - Bohrlöcher in Porenbeton Blöcken mit einer Druckfestigkeit $f_{ck} \ge 4 \text{ N/mm}^2$ sind im Drehgang mit Hartmetall-Hammerbohrern herzustellen.
- Anordnung der Bohrlöcher ohne Beschädigung der Bewehrung.
- Der Dübel darf nicht in wassergesättigtem Porenbeton (AAC) eingebaut und verwendet werden.
- Das Bohrmehl ist aus dem Bohrloch zu entfernen.
- Bei Fehlbohrungen: Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird.
- Die Dübelhülse wird durch das Anbauteil hindurch mit leichten Hammerschlägen eingeschlagen und die Spezialschraube wird eingedreht bis der Schraubenkopf die Hülse berührt. Der Dübel ist richtig verankert, wenn nach dem vollen Eindrehen der Schraube weder ein Drehen der Dübelhülse auftritt, noch ein leichtes Weiterdrehen der Schraube möglich ist.
- Setzen des Dübels bei einer Temperatur ≥ -5 °C (Kunststoffhülse und Verankerungsgrund).
- UV-Belastung durch Sonneneinstrahlung des ungeschützten Dübels ≤ 6 Wochen.

4.4 Versuche am Bauwerk gemäß ETAG 020, Anhang B

4.4.1 Allgemeines

Liegen keine nationalen Anforderungen vor, kann die charakteristische Tragfähigkeit des Kunststoffdübels durch Versuche am Bauwerk ermittelt werden, wenn für den Kunststoffdübel bereits charakteristische Tragfähigkeiten in Anhang 6 bis 10 für den gleichen Verankerungsgrund wie am Bauwerk vorhanden ausgewiesen werden.

Weiterhin sind Versuche am Bauwerk im Mauerwerk aus (abweichenden) Vollsteinen nur möglich, wenn bereits charakteristische Tragfähigkeiten für Mauerwerk aus Vollsteinen in Anhang 6, 8 und 10 angegeben werden.

Versuche am Bauwerk im Mauerwerk aus (abweichenden) Hohlblöcken und Lochsteinen sind nur möglich, wenn bereits charakteristische Tragfähigkeiten für Mauerwerk aus Hohlblöcken und Lochsteinen in Anhang 7, 9 und 10 ausgewiesen werden.

Versuche am Bauwerk sind ebenso möglich wenn von dem in Anhang 7, 9 und 10 angegebenen Bohrverfahren abgewichen wird.

Die für den Kunststoffdübel anzusetzende charakteristische Tragfähigkeit ist mit Hilfe von mindestens 15 Ausziehversuchen am Bauwerk mit einer auf den Kunststoffdübel wirkenden zentrischen Zuglast zu ermitteln. Diese Versuche sind unter denselben Bedingungen auch in einer Prüfstelle möglich.

Ausführung und Auswertung der Versuche sowie Erstellung des Prüfberichts und Ermittlung der charakteristischen Tragfähigkeit sollte von der Person, die für die Ausführung der Arbeiten auf

Seite 10 von 28 | 20. Dezember 2012

der Baustelle verantwortlich ist, überwacht und von einer fachkundigen Person durchgeführt werden.

Anzahl und Position der zu prüfenden Kunststoffdübel sind den jeweiligen speziellen Bedingungen des betreffenden Bauwerks anzupassen und z. B. bei verdeckten oder größeren Flächen so zu vergrößern, dass zuverlässige Angaben über die charakteristische Tragfähigkeit des im betreffenden Verankerungsgrund eingesetzten Kunststoffdübels abgeleitet werden können. Die Versuche müssen die ungünstigsten Bedingungen der praktischen Ausführung berücksichtigen.

4.4.2 Montage

Der zu prüfende Kunststoffdübel ist so zu montieren (z. B. Vorbereitung des Bohrloches, zu verwendendes Bohrwerkzeug, Bohrer, Bohrverfahren Hammer- oder Drehbohren, Anbauteildicke) und hinsichtlich der Rand- und Achsabstände genau so zu verteilen, wie es für den vorgesehenen Verwendungszweck geplant ist.

Je nach Bohrwerkzeug, beziehungsweise gemäß ISO 5468, sind Hartmetallhammerbohrer oder Hartmetallschlagbohrer zu verwenden. Für eine Versuchsreihe sollten neue Bohrer oder Bohrer mit $d_{\text{cut},m} = 8,25 \text{ mm} < d_{\text{cut}} \le 8,45 \text{ mm} = d_{\text{cut},\text{max}}$ (SXR 8) beziehungsweise mit $d_{\text{cut},m} = 10,25 \text{ mm} < d_{\text{cut}} \le 10,45 \text{ mm} = d_{\text{cut},\text{max}}$ (SXR 10) verwendet werden.

4.4.3 Durchführung der Versuche

Die verwendete Versuchsvorrichtung für die Auszieh-Versuche muss einen steten langsamen Lastanstieg ermöglichen, der durch eine geeichte Kraftmessdose gesteuert wird. Die Last muss senkrecht auf die Oberfläche des Verankerungsgrunds einwirken und auf den Kunststoffdübel mittels eines Gelenks übertragen werden. Die Reaktionskräfte müssen so auf den Verankerungsgrund übertragen werden, dass ein mögliches Ausbrechen des Mauerwerks nicht behindert wird. Diese Bedingung wird erfüllt, wenn die Auflagerkräfte entweder in benachbarte Steine des Mauerwerks oder mit einem Mindestabstand von 150 mm zu den Kunststoffdübeln übertragen werden. Die Last muss stetig gesteigert werden, so dass die Bruchlast nach einer Minute erreicht ist. Das Aufzeichnen der Last erfolgt bei Erreichen der Bruchlast (N₁).

Wenn kein Herausziehen auftritt, werden andere Versuchsmethoden benötigt, z.B. Probebelastungen.

4.4.4 Prüfbericht

Der Prüfbericht muss alle Angaben enthalten, die für die Beurteilung der Tragfähigkeit des geprüften Kunststoffdübels notwendig sind. Er muss der Person, die für die Bemessung der Befestigung verantwortlich ist, ausgehändigt und den Bauunterlagen beigefügt werden. Die folgenden Mindestangaben sind notwendig:

- Name des Produkts
- Bauwerk, Bauherr; Datum und Ort der Versuche, Lufttemperatur
- Versuchsvorrichtung
- Art des Anbauteils
- Mauerwerk (Ziegelart, Festigkeitsklasse, alle Ziegelabmessungen, Mörtelgruppe wenn möglich), Beurteilung des Mauerwerks durch Augenscheinnahme (Vollfuge, Fugenzwischenraum, Regelmäßigkeit)
- Kunststoffdübel und Spezialschraube
- Schneidendurchmesser der Hartmetallhammerbohrer, Messwert vor und nach dem Bohren, wenn keine neuen Bohrer verwendet werden
- Versuchsergebnisse einschließlich der Angabe des Wertes N₁, Versagensart
- Durchführung oder Überwachung der Versuche durch; Unterschrift

Seite 11 von 28 | 20. Dezember 2012

4.4.5 Auswertung der Versuchsergebnisse

Die charakteristische Last F_{Rk1} erhält man aus dem Messwert N₁ wie folgt:

 $F_{Rk1} = 0.5 \cdot N_1$

Die charakteristische Tragfähigkeit F_{Rk1} muss kleiner oder gleich der charakteristische Tragfähigkeit F_{Rk} sein, die in der ETA für gleichartiges Mauerwerk (Steine oder Blöcke) angegeben ist.

N₁ = Mittelwert der fünf kleinsten Messwerte bei Bruchlast

Wenn keine nationalen Vorschriften vorhanden sind, kann der Teilsicherheitsbeiwert für die Tragfähigkeit des Kunststoffdübel im Mauerwerk mit $\gamma_M = 2,5$ angenommen werden.

5 Vorgaben für den Hersteller

5.1 Verpflichtungen des Herstellers

Es ist Aufgabe des Herstellers, dafür zu sorgen, dass alle Beteiligten über die Besonderen Bestimmungen nach den Abschnitten 1 und 2 einschließlich der Anhänge, auf die verwiesen wird, sowie dem Abschnitt 4 unterrichtet werden. Diese Information kann durch Wiedergabe der entsprechenden Teile der europäischen technischen Zulassung erfolgen. Darüber hinaus sind alle Einbaudaten sowie der Anwendungsbereich und die Nutzungskategorie auf der Verpackung und/oder einem Beipackzettel, vorzugsweise bildlich, anzugeben.

Es sind mindestens folgende Angaben zu machen:

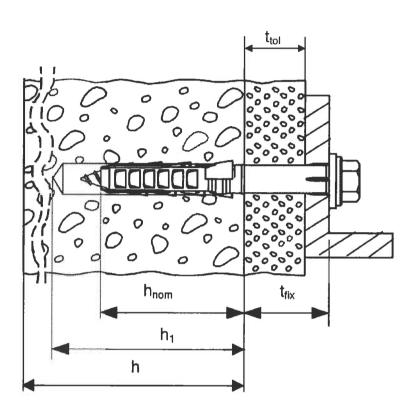
- Verankerungsgrund f
 ür den Verwendungszweck,
- Umgebungstemperatur des Verankerungsgrundes während der Montage,
- Bohrerdurchmesser (d_{cut}),
- Gesamtlänge des Kunststoffdübels im Verankerungsgrund (h_{nom}),
- Mindest-Bohrlochtiefe (h₀),
- Angaben über den Einbauvorgang,
- Identifizierung des Herstellungsloses.

Alle Angaben müssen in deutlicher und verständlicher Form erfolgen.

5.2 Empfehlungen zu Verpackung, Beförderung und Lagerung

Der Dübel darf nur als Befestigungseinheit verpackt und geliefert werden.

Der Dübel ist unter normalen klimatischen Bedingungen in der lichtundurchlässigen Originalverpackung zu lagern. Er darf vor dem Einbau weder außergewöhnlich getrocknet noch gefroren sein.


Georg Feistel Abteilungsleiter Beglaubigt

L. Bruge

Deutsches Institut
für Bautechnik

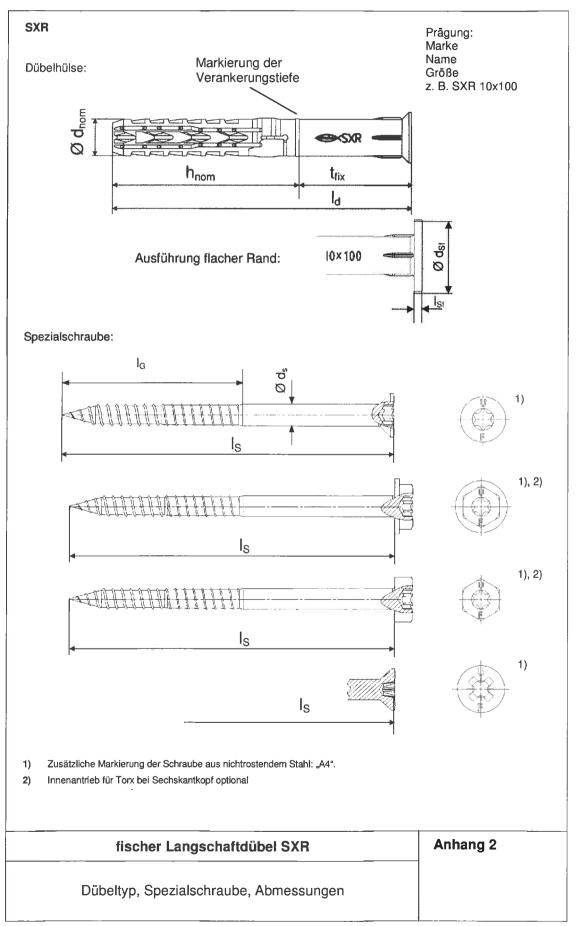
SXR

Anwendungsbereich

Verankerung in Beton, verschiedenen Mauerwerksarten und Porenbeton (AAC)

Legende

 h_{nom} = Gesamtlänge des Kunststoffdübels im Verankerungsgrund


h₁ = Tiefe des Bohrlochs bis zum tiefsten Punkt

 $\begin{array}{lll} h & = & \mbox{Dicke des Bauteils (Wand)} \\ t_{\text{fix}} & = & t_{\text{tol}} + \mbox{Dicke des Anbauteils} \end{array}$

 t_{tol} = Dicke der Toleranzausgleichsschicht oder der nichttragenden Schicht

fischer Langschaftdübel SXR	Anhang 1
Einbauzustand	

Tabelle 1: Abmessungen [mm]

Dübeltyp		Dübelhülse						ialschra	ube
	h _{nom} [mm]	Ø d _{nom} [mm]	t _{ilx} [mm]	l _d [mm]	_{St} 3} [mm]	Ø d _{sr} [mm]	Ø d _s [mm]	I _G	l _s [mm]
SXR 8	50	8	≥ 1	51-360	1,8	15,0	6,0	≥ 55	≥ 57 ²⁾
SXR 10	50	10	≥ 1	51-360	2,2	18,5	7,0	≥ 56	≥ 58 ¹⁾

- 1) Um sicherzustellen, dass die Schraube die Dübelhülse durchdringt, muss $l_s = l_a + l_{Sl}^{3} + 7$ mm betragen
- 2) Um sicherzustellen, dass die Schraube die Dübelhülse durchdringt, muss $l_s = l_d + l_{st}^{(3)} + 6 \text{ mm}$
- 3) Gilt nur bei Ausführung mit flachem Rand

Tabelle 2: Werkstoffe

Name	Material
Dübelhülse	Polyamid, PA6, Farbe grau
Spezialschraube	Stahl gvz A2G oder A2F nach EN ISO 4042 oder gvz A2G or A2F acc. to EN ISO 4042 + Duplex-Beschichtung Typ Delta-Seal in drei Schichten (Gesamtschichtdicke ≥ 6 μm) oder Nichtrostender Stahl nach EN 10 088

Tabelle 3: Montagekennwerte

Dübeltyp				SXR 8	SXR 10
Bohrlochdurchmesser	d₀	=	[mm]	8	10
Schneidendurchmesser der Bohrer	d _{cut}	≤	[mm]	8,45	10,45
Tiefe des Bohrlochs bis zum tiefsten Punkt 1)	h ₁	≥	[mm]	60	60
Gesamtlänge des Kunststoffdübels im Verankerungsgrund 1) 2)	h _{nom}	≥	[mm]	50	50
Durchmesser des Durchgangslochs im Anbauteil	d _f	<u> </u>	[mm]	8,5	10,5

¹⁾ Siehe Anhang 1

Tabelle 4: Charakteristisches Biegemoment der Schraube bei Anwendung in Beton, Mauerwerk und Porenbeton

Dübeltyp			SXR 8	SXR 10		
Werkstoff		gvz	nichtrostender Stahl	gvz	nichtrostender Stahl	
Charakteristisches Biegemoment	M _{Rk,s} [Nm]	12,4	10,4	17,7	17,1	
Teilsicherheitsbeiwert	γ _{Ms} 1)	1,25	1,29	1,25	1,29	

1) In Abwesenheit anderer nationaler Regelungen

fischer Langschaftdübel SXR	Anhang 3
Abmessungen, Werkstoffe, Montagekennwerte, charakteristisches Biegemoment	

²⁾ Im Mauerwerk aus Hohlblöcken oder Lochsteinen ist der Einfluss von h_{nom} ≥ 50 mm durch Versuche am Bauwerk gemäß Abschnitt 4.2.1.4 und 4.2.3 zu ermitteln.

Tabelle 5:	Charakteristische	Tragfähigkeit der Schraub	e bei Anwendung in Beton
------------	-------------------	---------------------------	--------------------------

TROPIN XII YATUU	4171	3	S	XR 8	SX	R 10
Versagen des Spreizelements (Schraube)			gvz	nicht- rostender Stahl	gvz	nicht- rostender Stahl
Charakteristische Zugtragfähigkeit	N _{Rk,s}	[kN]	14,8	12,3	18,7	18,1
Teilsicherheitsbeiwert	γ _{Ms} 1)		1,50	1,55	1,50	1,55
Charakteristische Quertragfähigkeit	$V_{Rk,s}$	[kN]	7,4	6,2	9,4	9,0
Teilsicherheitsbeiwert	YMs 1)		1,25	1,29	1,25	1,29

¹⁾ In Abwesenheit anderer nationaler Regelungen

Tabelle 6: Charakteristische Tragfähigkeit bei Anwendung in Beton

Teilsicherheitsbeiwert	YMc 1)			1	.8	*
Charakteristische Zugtragfähigkeit	N _{Rk,p}	[kN]	3,0	2,5/3,0 ³⁾	5,0	4,5
Beton ≥ C12/15						
Temperaturbereich			30/50 ℃	50/80 ℃	30/50 ℃	50/80 ℃
Versagen durch Herausziehen (Kunststoffhülse)			sx	R 8	SXI	R 10

Betonausbruch und Betonkantenbruch für Einzeldübel und Dübelgruppen

Zuglast 2)

$$N_{\text{Rk,c}} = 7.2 \cdot \sqrt{f_{\text{ck,cube}}} \cdot h_{\text{ef}}^{-1.5} \cdot \frac{c}{c_{\text{cr,N}}} = N_{\text{Rk,p}} \cdot \frac{c}{c_{\text{cr,N}}}$$

mit: $h_{el}^{1.5} = \frac{N_{Rk,p}}{7.2 \cdot \sqrt{f_{ck,cube}}}$

$$\frac{c}{c_{cr,N}} \leq 1$$

Querlast 2)

$$V_{Rk,c} = 0.45 \cdot \sqrt{d_{nom}} \cdot (h_{nom}/d_{nom})^{0.2} \cdot \sqrt{f_{ck,cube}} \cdot c_1^{1.5} \cdot \left(\frac{c_2}{1.5 c_1}\right)^{0.5} \cdot \left(\frac{h}{1.5 c_1}\right)^{0.5} \quad \text{mit:} \quad \left(\frac{c_2}{1.5 c_1}\right)^{0.5} \le 1$$

c₁ Minimaler Randabstand in Lastrichtung

c₂ Randabstand vertikal zu Lastrichtung 1

Nominelle charakteristische Betondruckfestigkeit (Würfel), maximal Werte für C50/60

Teilsicherheitsbeiwert	γ _{Mc} 1)	1,8	

- 1) In Abwesenheit anderer nationaler Regelungen
- 2) Das Bemessungsverfahren nach ETAG 020, Anhang C, ist anzuwenden
- 3) Werte für Betonfestigkeitsklasse ≥ C16/20

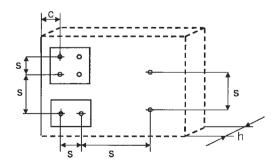
fischer Langschaftdübel SXR	Anhang 4
Charakteristische Tragfähigkeit in Beton (Nutzungskategorie "a")	

Tabelle 7: Verschiebung unter Zuglast und Querlast in Beton¹⁾ und Mauerwerk¹⁾

Dübeltyp		Zuglast		Querlast			
	F ²⁾ [kN]	δ _{NO} [mm]	δ _N ⊶ [mm]	F ²⁾ [kN]	δ _{vo} [mm]	δ_{V∾} [mm]	
SXR 8	1,2	0,65	1,30	1,2	1,02	1,53	
SXR 10	2,0	1,29	2,58	2,0	1,15	1,74	

- Gültig für alle Temperaturbereiche
- 2) Zwischenwerte dürfen interpoliert werden

Tabelle 8: Minimale Bauteildicke, Randabstand und Achsabstand in Beton


SXR 8: Besteht ein Befestigungspunkt aus mehr als einem Dübel mit Achsabständen s \leq 60 mm, wird dieser Befestigungspunkt als Gruppe betrachtet, mit einer maximalen charakteristischen Zugtragfähigkeit $N_{Rk,p}$ nach Tabelle 6. Für s > 60 mm werden die Dübel immer als Einzeldübel betrachtet, von denen jeder eine charakteristische Zugtragfähigkeit $N_{Rk,p}$ nach Tabelle 6 hat.

SXR 10: Besteht ein Befestigungspunkt aus mehr als einem Dübel mit Achsabständen s \leq 90 mm, wird dieser Befestigungspunkt als Gruppe betrachtet, mit einer maximalen charakteristischen Zugtragfähigkeit N_{Rk,p} nach Tabelle 6. Für s > 90 mm werden die Dübel immer als Einzeldübel betrachtet, von denen jeder eine charakteristische Zugtragfähigkeit N_{Rk,p} nach Tabelle 6 hat.

Dübeltyp		eltyp Mindestdicke des Bauteils h _{min} [mm] Charakteristischer Randabstand C _{cr,N} [mm]		Minimale zulässige Achs- und Randabstände 1) [mm]						
07.0	Beton ≥ C16/20		50	Smin	=	50	für	C _{min} ≥	50	
SXR 8	Beton C12/15		70	Smin	=	70	für	c _{min} ≥	70	
	Beton ≥ C16/20	100	100	S _{min}	=	70 50	für für	C _{min} ≥ C _{min} ≥		
SXR 10	Beton C12/15		140	S _{min}	=	100 70	für für	c _{min} ≥ c _{min} ≥	85	

Zwischenwerte d\u00fcrfen interpoliert werden

Anordnung der Dübel im Beton

fischer Langschaftdübel SXR	Anhang 5
Verschiebungen Minimale Bauteildicke	
Minimale Achs- und Randabstände in Beton	

Tabelle 9.1: SXR 8 Charakteristische Tragfähigkeit F_{Rk} in [kN] in Mauerwerk aus Vollsteinen (Nutzungskategorie "b")

Verankerungsgrund [Hersteller Name]	Min. Format oder min. Größe (L x W x H)	Roh- dichte- klasse	Mindest- druck- festigkeit	Bohrver- fahren	charakt. Tragfähigkeit F _{RK} ¹⁷ S XR 8 [kN]
	(mm)	[kg/dm³]	[N/mm²]		50/80 ℃
Mauerziegel Mz z. B gemäß DIN 105,	I 105, 3 DF		20	H ²⁾	3,0
DIN EN 771-1 e.g. Sc hlagmann, <i>Mz</i>	(240x175x113)		10		2,0
Mauerziegel Mz z. B gemäß DIN 105,	NF	≥1.8	20	H 2)	2,5
DIN EN 771-1	(240x115x71)	21,0	10		2,0
Mauerziegel Mz z. B gemäß DIN 105, DIN EN 771-1 + A1:2005,	5.5		28		3,0
	DF (240x115x52)	≥1,8	20] H ²⁾	2,0
z. B. Wienerberger DK, MS			10		1,5
Kalksandvollstein	NF	≥ 1,8 ≥ 2,0	20		2,5
z. B gemäß DIN 106, KS DIN EN 771-2	(240x115x71)		10	H ²⁾	2,0
z. B KS Wemding, KS	(175x500x235)		20] " [3,0
	(17 OXOCOXEGO)		10		2,5
Leichtbeton Vollstein,	(240x115x113)	≥1,2	2		0,9
z. B gemäß DIN 18152 DIN EN 771-3	(240x490x115)	≥1,0	2		1,2
z. B. KLB V	(240x490x115)	≥ 1,8	8	H ²⁾	2,5
	(24024302113)	21,0	4	''	1,2
	(240x240x245)	≥1,4	6		0,9
	(270,240,243)	Z 1,44	4		0,6 (0,75) 4)
Vollstein Normalbeton VBN			12		2,5
ge mäß DIN 18153, DIN EN 771-3	(246x240x245)	≥1,8	8	H ²⁾	1,5
z. B. Adolf Blatt, VBN			4		0,75
Teilsicherheitsbeiwert 3)				YMm	2,5

¹⁾ Charakteristische Tragfähigkeit F_{RK} für Zug, Querlast oder Schrägzug

Die charakteristische Tragfähigkeit gilt für Einzeldübel oder eine Dübelgruppe aus zwei oder vier Dübeln mit einem Achsabstand der Dübel größer oder gleich dem minimalen Achsabstand s_{min} nach Tabelle 11. Die besonderen Bedingungen für die Bemessung nach Abschnitt 4.2.1.5 der ETA sind zu berücksichtigen

- 2) H = Hammerbohren, D = Drehbohren
- 3) In Abwesenheit anderer nationaler Regelungen
- 4) Klammerwerte (F_{RK}) gelten nur für Temperaturbereich c) 30/50 ℃ (siehe Kapitel 1.2 ETA).

fischer Langschaftdübel SXR	Anhang 6
Dübeltyp SXR 8:	
harakteristische Tragfähigkeit in Vollstei	nen
arakteristische Tragfähigkeit in Vollstei (Nutzungskategorie "b")	nen

Tabelle 9.2: SXR 8 Charakteristische Tragfähigkeit F_{Rk} in [kN] in Mauerwerk aus Hohl- bzw. Lochsteinen (Nutzungskategorie "c")

Verankerungsgrund [Hersteller <i>Name</i>]	Min. Format oder min. Größe (L x W x H)	Roh- dichte- klasse	Mindest- druck- festigkeit	Bohrver- fahren	Geometrie Anhang (Bild)	Charakt. Tragfāhigkeit F _{Rk} ¹⁾ SXR 8 [kN]
	[mm]	[kg/dm ³]	[N/mm²]			50/80 ℃
Hochlochziegel Form B, gemäß DIN 105-	2 DF	≥ 1,2	20	R 2)	13	1,2
100, DIN EN 771-1 z. B. Wienerberge r <i>HIz</i>	(240x115x113)	,_	8		(1)	0,5
Hochlochziegel HLz gemäß DIN 105,	DF		28		15	2,5
OIN EN 771-1+A1:2005,	(240x110x52)	≥1,5	20	H ^{2}}	15 (17)	1,2 (1,5) 4)
z. B. Wienerberger BS			10			0,6 (0,9) 4)
Hochlochziegel z. B gemäß DIN 105-100,	2 DF	≥ 1,0	12	R 2)	15	0,6
DIN EN 771-1	(240x115x113)	- 1,0	8		(22)	0,4
Hochlochziegel Form B, HLz gemäß	12 DF		8		15 (20)	0,90
DIN 105, DIN EN 771-1	(380x240x240)	≥ 0,9	6] R ²⁾		0,6
z. B. Schlagmann			4		`	0,4
Hochlochziegel Form B, HLz gemäß DIN 105-100, DIN EN 771-1, Schlag-	12 DF (380x240x240)	≥ 0,7	6	R ²⁾	13 (2)	1,2
			4			0,75
mann Planfüllziegel			2			0,4
Kalksandlochstein gemäß DIN V106, DIN EN 771-2	5 DF	≥1,4	16	H ²⁾	13	2,0
z. B. KS Wemding , KSL	(300x240x115)		6		(4)	0,75 (0,9)4)
	P10 (495x98x248)	≥1,2	<u>6</u> 2		13 (5)	1,2 (1,5) 4) 0,4 (0,5) 4)
	3 DF (240x175x113)		20		15	1,2 (1,5) 4)
		≥ 1,4	8		(21)	0,5 (0,6) 4)
Kalksandlochstein gem.	2 DF		12	3/	13	2,0
DIN 106, DIN EN 771-2 z. B. KS Wemding ,K <i>SL</i>	(240x115x113)	≥1,4	6	H ²⁾	(8)	0,9
Hohlblockstein aus Leichtbeton, z.B. gemäß NF-P 14-301, EN 771-3, z.B. Sepa <i>Parpaing</i>	(500x200x200)	≥ 0,9	4	R ²⁾	14 (10)	0,3 (0,4) 4)
Hohlblockstein aus Leichtbeton, z.B. gemäß DIN V18151-100, DIN EN 771-3,z.B. KLB , <i>Hbl</i>	(240x240x360)	≥ 1,0	6	H ²⁾	15 (19)	1,5
Hohlblockstein aus Leichtbeton, z. B. gemäß	(440v040-045)		10	H ²⁾	15	2,5
DIN EN 771-3, z. B. <i>Roadstone masonry</i>	(440x210x215)	≥1,2	6	1 "	(18)	1,5
Teilsicherheitsbeiwert 3)				'	γMm	2,5

Fußnoten 1), 2), 3) und 4) siehe Anhang 6, Tabelle 9.1!

fischer Langschaftdübel SXR	Anhang 7
Dübeltyp SXR 8: Charakteristische Tragfähigkeit in Mauerwerk aus Hohl- bzw.	
Lochsteinen (Nutzungskategorie "c")	

Tabelle 10.1 SXR 10 Charakteristische Tragfähigkeit F_{Rk} in [kN] in Mauerwerk aus Vollsteinen (Nutzungskategorie "b")

Verankerungsgrund [Hersteller Name]	Min. Format oder min. Größe (L x W x H)	Roh- dicht- klasse	Mindest- druck- festigkeit	Bohrver- fahren	- Charakt. Tragfähigkeit F _{RK} ^{1),4)} SXR 10 [kN]		
	[mm]	[kg/dm ³]	[N/mm²]		50/80 ℃	30/50 ℃	
Mauerziegel Mz			36		5,0	5,0	
z. B gemäß DIN 105-100, Mz DIN EN 771-1 z. B.	NF (240x115x71)	≥1,8	20	H ²⁾	3,0	3,5	
Vollmeter, Schlagmann, Mz	(2402110271)		10		2,0	2,0	
	3 DF	> 4.0	20	H ²⁾	2,0/4,05)	2,0/4,55)	
	(240x175x113)	≥1,8	10	7 7	1,5/3,0 ⁵⁾	1,5/ 3,05)	
Mauerziegel Mz,			28		3,0	3,0	
z.B. gemäß DIN EN 771-1 + A1:2005,	DF (240x115x52)	≥1,8	20	H ²⁾	2,0	2,0	
e.g. Wienerberger <i>MS</i>	(2403115352)		10		1,2	1,2	
Mauerziegel,Mz z.B. gemäß DIN 105-100,	NF (240x115x71)	1,8	20	H 2)	3,0	3,0	
DIN EN 771-1			10] ''	2,0	2,0	
Kalksandvollstein	NF (240x115x71)	≥1,8	20	H ²⁾	2,5 / 4,05)	2,5 / 4,05	
KS gemäß DIN V 106, DIN EN 771-2			10		1,5	1,5	
z.B. KS Wemding , <i>KS</i>	NE	≥ 2,0	36	H ²⁾	5	5,0	
3 ,	NF (240x115x71)		20		3,0	3,5	
	(= ,		10		2,0	2,0	
		≥ 2,0	28	H ²⁾	5,0	5,0	
	(175x500x235)		20		4,5	4,5	
			10		3	3	
Leichtbeton Vollstein, z. B gemäß DIN V18152-100 DIN EN 771-3	2 DF (240x115x113)	≥1,2	2	H ²⁾	0,75/0,95)	0,75/0,95)	
z. B. KLB V	(240x490x115)	≥1,2	2	H ²⁾	1,2	1,2	
	(250x240x245)	≥ 1,6	6	H ²⁾	2,5	2,5	
	(240x490x115)	≥1,6	8	H ²⁾	3,0	3,0	
Vollstein Normalbeton Vbn	(0.10, 0.10, 0.15)		20	2)	4,5 3,0	4,5	
gemäß DIN 18153, DIN EN 771-3 z. B. Adolf Blatt, Vbn	(246x240x245)	≥1,8	10	H ²⁾		3,0	
Teilsicherheitsbeiwert 3)				УМm	2,	5	

¹⁾ Charakteristische Tragfähigkeit F_{RK} für Zug, Querlast oder Schrägzug

Die charakteristische Tragfähigkeit gilt für Einzeldübel oder eine Dübelgruppe aus zwei oder vier Dübeln mit einem Achsabstand der Dübel größer oder gleich dem minimalen Achsabstand s_{min} nach Tabelle 11.
Die besonderen Bedingungen für die Bemessung nach Abschnitt 4.2.1.5 der ETA sind zu berücksichtigen

- 2) H = Hammerbohren, D = Drehbohren
- 3) In Abwesenheit anderer nationaler Regelungen
- 4) Für 10 N/mm² \leq f_b < 20 N/mm² : F_{RK}' = 0.7 · F_{RK}
- 5) Gilt nur für Randabstand c ≥ 200 mm; Zwischenwerte dürfen interpoliert werden

fischer Langschaftdübel SXR	Anhang 8
Dübeltyp SXR 10: Charakteristische Tragfähigkeit in Vollsteinen (Nutzungskategorie "b")	

Tabelle 10.2: SXR 10 Charakteristische Tragfähigkeit F_{Rk} in [kN] in Mauerwerk aus Hohl- bzw. Lochsteinen (Nutzungskategorie "c")

Ver ankerungsgrund [Herstelle r <i>Name</i>]	Min. Format oder min. Größe (L x W x H)	Roh- dichte- klasse p	Mindest- druck- festigkeit	Bohrver- fahren	Geometrie Anhang (Bild)	Tragfä F _R SXI	rakt. ihigkeit k 10 110 Nj
	[mm]	[kg/dm ³]	[N/mm²]			50/80 ℃	30/50 °C
Lloobloobaiogol	, , , , , , , , , , , , , , , , , , , ,		20			2,0	2,0
Hochlochziegel Form B gemäß DIN 105-	2 DF	≥1,0	10	_ 2)	13	1,2	1,2
100, DIN EN 771-1z. B.	(240x115x113)		20	R ²⁾	(1)	2,5	3,0 4)
Wienerberger Hlz		≥1,2	10			1,5	2,0
Hochlochziegel Form B, HLz gemäß DIN 105-100, DIN EN 771-1, Schlag- mann <i>Planfüllziegel</i>	12 DF (380x240x240)	≥ 0,7	6	R ²⁾	13 (2)	2,0	2,0
Hochlochziegel Form B, HLz gemäß DIN 105, DIN EN 771-1, Schlag- mann Poroton T14	(300×240×240)	≥ 0,7	6	R ²⁾	13 (3)	0,3	0,4
	0.05		12	R ²⁾	15 (22)	0,9	0,9
Hochlochziegel HLz z.B. gemäß DIN EN 771-1	2 DF (240x115x113)	≥1,0	10			0,75	0,75
	(= 1011110)		8		(==)	0,6	0,6
Hochlochziegel, HLz	DF (240x110x52)		28	H ²⁾	15 (17)	2,5	2,5
gemāß DIN EN 771-1+A1: 2005.		≥1,5	20			2,0	2,0
z.B. Wienerberger BS			10			1,2	1,2
	5 DF (300x240x115) P10		16	H ²⁾	13	3,0	3,5 4)
Kalksandlochstein gemäß DIN V 106, DIN EN 771-2		≥1,4	10		(4)	1,5	1,5
z. B. KS Wemding, KSL		≥ 1,2	6	H ²⁾	13	1,5	1,5
	(495x98x248)	- ',=		, .	(5)	2,0 5)	2,5 5)
Kalksandlochstein gemäß	2 DF		12	2)	13	2,0	2,5
DIN V 106, DIN EN 771-2 z. B. KS Wemding , <i>KSL</i>	(240x115x113)	≥1,4	10	H ²⁾	(8)	2,0	2,0
Hohlblockstein aus Leicht- beton gemäß DIN 18151-	360x240x240)	≥1,2	2	R ²⁾	13 (6)	1,5	1,5
100, DIN EN 771-3, z. B. KLB, <i>Hbl</i>					12 (Table)	-,-	
Hohlblockstein aus Leichtbeton gemäß	10 DF	≥1,2	8	H ²⁾	15	2,5	2,5
DIN EN 771-3, z.B. Roadstone masonry	(440x210x215)	,_	6		(18)	2,0	2,0
Hohlblockstein aus Normalbeton, z.B. gemäß DIN EN 771-3,DIN 18153, z.B. Adolf Blatt , <i>Hbn</i>	10 DF (300x240x240)	≥ 1,6	6	H ²⁾	13 (7)	2,5	2,5
Teilsicherheitsbeiwert 3)					γm.	2,	5

Für Fußnoten 1), 2), 3) und 4) siehe Anhang 8, Tabelle 10.1

fischer Langschaftdübel SXR	Anhang 9
Dübeltyp SXR 10: Charakteristische Tragfähigkeit in Mauerwerk aus Hohl- bzw. Lochsteinen (Nutzungskategorie "c")	

Tabelle 10.3: SXR 10 charakteristische Tragfähigkeit F_{Rk} in [kN] in Vollsteinen, Hohlblöcken oder Lochsteinen (Nutzungskategorie "b" + "c")

Verankerungsgrund [Hersteller Name]	Min. Format oder min. Größe (L x W x H)	Roh- dichte- klasse	Mindest- druck- festigkeit	Bohrver- fahren	Geometrie Anhang (Bild)	Tragfa F _R SXI	rakt. ihigkeit ik ^{1),4)} R 10 N]
	[mm]	[kg/dm³]	[N/mm²]			50/80 ℃	30/50 ℃
Vollstein aus Normalbeton VBN, z. B. Tarmac	(440x215x100)	≥ 1,8	20 10	H ²⁾	-	4,0 2,5	4,5 3,0
Vollstein aus Leichtbeton VBL, z. B. Tarmac	(440x215x100)	≥ 1,4	6	H ²⁾	-	2,0 2,5 ⁵⁾	2,0 2,5 ^{b)}
Wärmedämmblock z. B. Gisoton <i>WDB</i>	(390x240x250)	≥ 0,7	2	H ²⁾	14 (9)	1,5	1,5
Hohlbaustein aus Leichtbeton gemäß NF-P 14-301 EN 771-3, z. B. Sepa <i>Parpaing</i>	(500x200x200)	≥ 0,9	4	R ²⁾	14 (10)	0,9 1,2 ⁵⁾	0,9 1,5 ⁶⁾
Hochlochziegel, HLz gemäß NF-P 13-301 EN 771-1, z. B. Imerys <i>Gelimatic</i>	(270×200×500)	≥ 0,6	6	R ²⁾	14 (11)	0,6	0,6 0,75 ⁵⁾
Hochlochziegel, HLz gemäß NF-P 13-301 EN 771-1, z. B. Terreal Calibric	(500x200x314)	≥ 0,7	8	R ²⁾	14 (12)	0,6	0,6 0,75 ⁵⁾
Hochlochziegel Form B, HLz gem. NF-P 13-301, EN 771-1, z. B. Imerys <i>Optibric</i>	(560x200x274)	≥ 0,6	10	R ²⁾	14 (13)	1,2	1,2
Hochlochziegel, HLz gemäß NF-P 13-301, EN 771-1, z. B. Bouyer Leroux BGV	(570x200x314)	≥ 0,6	6	R ^{2}}	14 (14)	0,75 0,9 ⁵⁾	0,75 1,2 ⁵⁾
Hochlochziegel, HLz gemäß NF-P 13 301, EN 771-1, z. B. Wiener- berger <i>Porotherm 30 R</i>	(370x300x249)	≥ 0,7	10	R ²⁾	14 (15)	0,5 0,6 ⁵⁾	0,5 0,6 ⁵⁾
Hochlochziegel Form B, HLz gem. NF-P 13-301 EN 771-1, z. B. Wiener- berger Porotherm GFR20	(500x200x299)	≥ 0,7	10	R ²⁾	14 (16)	0,6 0,75 ⁵⁾	0,6 0,75 ⁶⁾
Teilsicherheitsbeiwert 3)					γMm	2	5

¹⁾ Charakteristische Tragfähigkeit F_{fix} für Zug, Querlast oder Schrägzug

Die charakteristische Tragfähigkeit gilt für Einzeldübel oder eine Dübelgruppe aus zwei oder vier Dübeln mit einem Achsabstand der Dübel größer oder gleich dem minimalen Achsabstand s_{min} nach Tabelle 11. Die besonderen Bedingungen für die Bemessung nach Abschnitt 4.2.1.5 der ETA sind zu berücksichtigen

- 2) H = Hammerbohren, R = Drehbohren
- 3) In Abwesenheit anderer nationaler Regelungen
- 4) Für 10 N/mm² $\leq \beta < 20$ N/mm² : $F_{RK}' = 0.7 \cdot F_{RK}$
- 5) Gilt nur für Randabstand c ≥ 200 mm; Zwischenwerte dürfen interpoliert werden

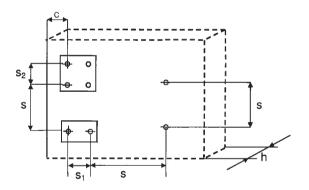
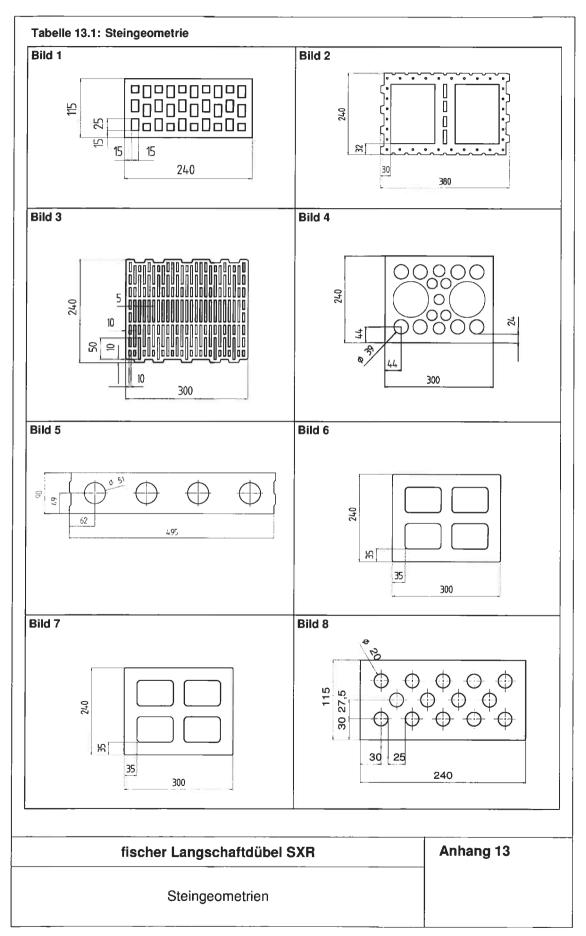

fischer Langschaftdübel SXR	Anhang 10
Dübeltyp SXR 10: Charakteristische Tragfähigkeit in Vollsteinen, Hohlblöcken oder Lochsteinen (Nutzungskategorie "b" + "c")	

Tabelle 11: Minimale Bauteildicke, Randabstand und Achsabstand in Mauerwerk

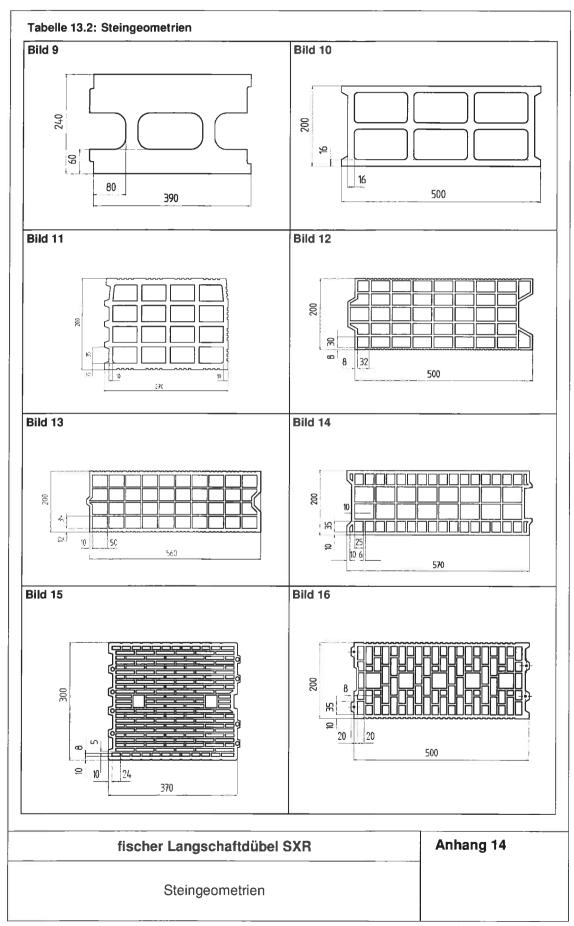
Dübeltyp			SXR 8	SXR 10
Mindestdicke des Bauteils	h _{min}	[mm]	100	100
Einzeldübel				
Minimaler zulässiger Achsabstand	Smin	[mm]	250	250
Minimaler zulässiger Randabstand	C _{min}	[mm]	100	100
Dübelgruppe				
Minimaler zulässiger Achsabstand vertikal zum freien Rand	S _{1,min}	[mm]	100	100
Minimaler zulässiger Achsabstand parallel zum freien Rand	S _{2,min}	[mm]	100	100
Minimaler zulässiger Randabstand	C _{min}	[mm]	100	100

Anordnung der Dübel im Mauerwerk

fischer Langschaftdübel SXR	Anhang 11
Minimale Bauteildicke, minimale Achs- und Randabstände in Mauerwerk	


Tabelle 12: Zuordnung des Dübeltyps – Steingeometrie für Hohlblöcke aus Leichtbeton gemäß DIN 18151-100 bzw. DIN EN 771-3

Geometrie	Steinbreite d [mm]	Stegdicke in Längsrichtung a [mm]	Dübeltyp SXR 10 SXR 8
a	175	50	•
a	240 300	50	•
g	240 300 365	35	•
B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	240 300 365	30	•


Der Dübel ist so zu setzen, dass das Spreizteil im Steg des Steines verankert wird.

fischer Langschaftdübel SXR	Anhang 12
Zuordnung des Dübeltyps bei Hohlblocksteinen	

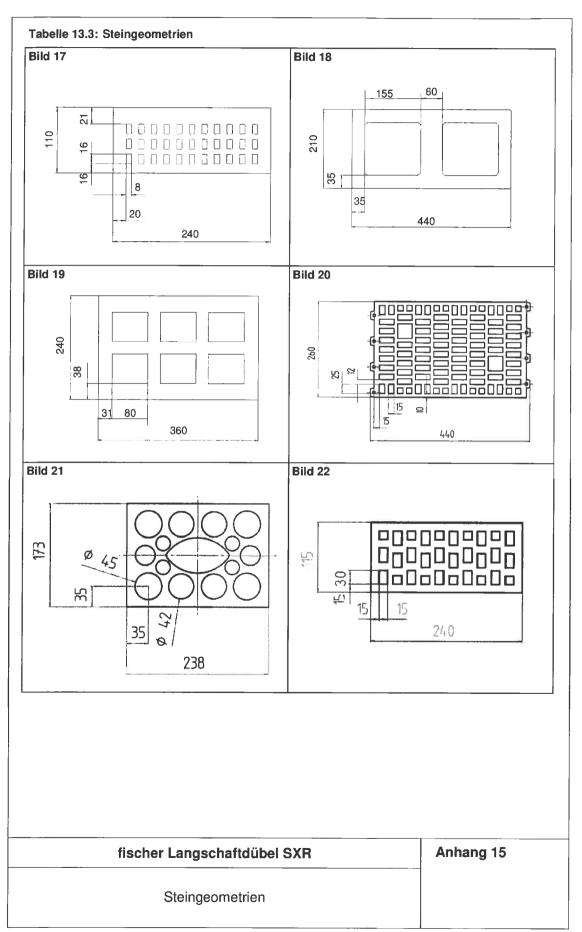


Tabelle 14: SXR 10 Charakteristische Tragfähigkeit F_{Rk} in [kN] in Porenbeton (AAC) (Nutzungskategorie "d")

Verankerungsgrund	Rohdicht- klasse	Mindest- druck- festigkeit	Bohrverfahren	Charakt. Tragfähigkeit F _{RK} 1) SXR 10 [kN]	
	[kg/m³]	[N/mm²]		50/80 ℃	30/50 °C
Porenbetonsteine, z.B. PP gemäß DIN V 4165-100:2005-10,	≥ 350	2	Porenbetonstößel ²⁾ mit Hammerwirkung der Bohrmaschine	0,4	0,5
EN 771-4	≥ 500	4	Hammerbohrer im Drehgang	0,75	0,9
Teilsicherheitsbeiwert 3)			Умаас	2,	,0

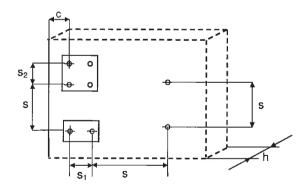
- 1) Charakteristische Tragfähigkeit F_{RK} für Zug, Querlast oder Schrägzug
 - Die charakteristische Tragfähigkeit gilt für Einzeldübel oder eine Dübelgruppe aus zwei oder vier Dübeln mit einem Achsabstand der Dübel größer oder gleich dem minimalen Achsabstand s_{min} nach Tabelle 17. Die besonderen Bedingungen für die Bemessung nach Abschnitt 4.2.1 der ETA sind zu berücksichtigen
- 2) Für Befestigungen in Porenbeton mit einem Nennwert der Druckfestigkeit f_{ck} < 4 N/mm² ist das Bohrloch mit dem zugehörigen Porenbeton Stößel gemäß Tabelle 15 herzustellen.</p>
- 3) In Abwesenheit anderer nationaler Regelungen

Table 15: Abmessungen Porenbetonstößel-Typ – Dübeltyp (Länge)

Porenbetonstößel				Dübeltyp	
Тур	a ₁	a ₂	b		(Länge)
					SXR 10 x 52
GBS 10 x 80			80	85	SXR 10 x 60
					SXR 10 x 80
GBS 10 x 100				105	SXR 10 x 100
GBS 10 x 135	9	10		140	SXR 10 x 120
GBS 10 x 160	9			165	SXR 10 x 140
GBS 10 X 100			90	100	SXR 10 x 160
GBS 10 x 185				190	SXR 10 x 180
GBS 10 x 230				235	SXR 10 x 200
GBS 10 X 230				233	SXR 10 x 230

fischer Langschaftdübel SXR	Anhang 16
Dübeltyp SXR 10: Charakteristische Tragfähigkeit in Porenbeton (AAC - Nutzungskategorie "d"), Abmessungen Porenbetonstößel-Typ – Dübelyp (Länge)	

Tabelle 16: Verschiebungen unter Zuglast und Querlast in Porenbeton (AAC) 1)


Dübeltyp	Zuglast			Querlas		
	F ²⁾ [kN]	δ _{NO} [mm]	δ _{N∞} [mm]	F ²⁾ [kN]	δ _{vo} [mm]	δ γ₌ [mm]
SXR 10	1,8	0,16	0,32	1,8	1,18	1,76

- 1) Gültig für alle Temperaturbereiche
- 2) Zwischenwerte dürfen interpoliert werden

Tabelle 17: Minimale Achs- und Randabstände in Porenbeton (AAC)

Dübeltyp			SXR 10
Mindestdicke des Bauteils	h _{min}	[mm]	100
Einzeldübel			
Minimaler zulässiger Achsabstand	Smin	[mm]	250
Minimaler zulässiger Randabstand	C _{min}	[mm]	100
Dübelgruppe			
Minimaler zulässiger Achsabstand vertikal zum freien Rand	S _{1,min}	[mm]	200
Minimaler zulässiger Achsabstand parallel zum freien Rand	S _{2,min}	[mm]	400
Minimaler zulässiger Randabstand	C _{min}	[mm]	100

Anordnung der Achs- und Randabstände in Porenbeton (AAC)

fischer Langschaftdübel SXR	Anhang 17
Dübeltyp SXR 10:	
Minimale Bauteildicke, minimale Achs- und Randabstände in Porenbeton (AAC)	